
IBM	XL	Compiler:	OpenMP offloading	support	
for	GPU

Ettore	Tiotto,	Kelvin	Li
IBM	Canada	Laboratory

Some	slides	courtesy	of	Alex	Eichenberg (IBM)

§ Modern	high-performance	scientific	applications	must	exploit	
heterogeneous	resources	in	a	performance	portable	manner

§ What	Programming	Models	should	we	use?	What’s	the	right	level	of	
abstraction?

CPU

GPU

11/30/16 2

IBM	POWER8	processors

NVIDIA	Tesla	P100	GPU

Programming	Heterogeneous	Systems

§ Extracting	maximum	performance:

• to program a GPU: you have to use CUDA, OpenCL, OpenGL, DirectX,
Intrinsics, C++AMP, OpenACC

• to program a host SIMD unit: you have to use Intrinsics, OpenCL, or auto-
vectorization (possibly aided by compiler hints)

• to program the CPU threads, you might use C11, C++11, OpenMP, TBB, Cilk,
MS Async/then continuation, Apple GCD, Google executors, …

§ With	OpenMP 4.0/4.5:
• you	can	use	the	same	standard	to	program	the	GPU,	the	SIMD	units,	and	the	CPU	

threads
• Better	yet:	you	can	do	so	in	a	portable	way

Programming	Heterogeneous	Systems

11/30/16 3

OpenMP 4.5

§ OpenMP is	an	industry	standard	for	directive	based	parallel	
programming
• OpenMP has	been	(and	is)	widely	used	to	program	CPUs
• In	OpenMP 4.0/4.5,	new	features	have	been	added	to	provide	support	

for	offloading	computation	to	accelerators
• Industry-wide	acceptance:	IBM,	Intel,	PathScale,	Cray,	PGI,	Oracle,	MS	

è application	portability

11/30/16 4

§ How	do	we	exploit	an	accelerator	in	OpenMP?
§ Simply	add	a	target construct	around	the	computation	to	be	offloaded	to	

the	accelerator
§ map clauses	are	used	to	copy	data

#pragma omp target map(to: A, B) map(from: C)
#pragma omp parallel for
for (i=0; i<N; i++) {
for (j=0; j<N; j++)
for (k=0; k<N; k++)
C[i][j] = A[i][k] * B[k][j];

}

A	Quick	Introduction	to	OpenMP 4.5

11/30/16 5

GPU
de

vi
ce
	e
xe
cu
tio

n
CPU

map()

target

in
ac
tiv
e	
ho
st
	th

re
ad

#pragma	omp target	map(to:	A,	B)	map(from:	C)
{	…	}

• target transfer control of execution to a SINGLE device thread
• the compiler packages the target region into a function
• the OpenMP runtime transfer execution of the function to the device

device	master	threadhost	thread

copy*	A,	B

copy*	C

device	
parallel	
region

device	sync	
barrier

device
worker
threads

*	copies	optional	with	unified	memory

A	Quick	Introduction	to	OpenMP 4.5

11/30/16 6

§ The	“distribute”	directive	can	be	used	to	assign	loop	iterations	to	teams

• the	target	region	is	executed	by	several	teams,	each	team	gets	a	subset	of	iteration	
space	for	the	i-loop

• the	j-loop	iterations	are	distributed	amongst	the	threads	in	a	team	
• distribute	schedule	controls	size	of	iterations	per	team,	there	is	no	synchronization	

between	teams

#pragma omp target teams
map(to: a, b) map(from: c)

{
#pragma omp distribute
for (int i=0; i<n; i++) {
#pragma omp parallel for
for (int j=0; j<n; j++)
for (int k=0; k<n; k++)
c[i][j] = a[i][k] * b[k][j];

}
}

device	initial	
threads

one	team

OpenMP 4.5:	Device	Execution

11/30/16 7

Optimization:	omp distribute	parallel	for
§ Programming	model:	OpenMP vs CUDA

• OpenMP uses	a	fork-join	abstraction
• team	regions	start	with	one	thread,	and	parallel	threads	are	

created	as	needed	when	a	parallel	region	is	found
• CUDA	kernels	are	launched	using	a	grid	of	blocks/threads	

(SPMD	model)

#pragma omp target map(from: z) map(to:x,y)
#pragma omp teams
#pragma omp distribute parallel for

for (i=0; i<N; i++)
z[i] = a*x[i] + y[i];

§ Orchestrating	CUDA	threads	to	fit	the	OpenMP programming	model	can	have	significant	
overhead	(runtime	manages	state	transitions)

§ However	OpenMP provides	“SPMD-like”	directives

• distribute	parallel	for	directive	can	be	used	to	distribute	loop	iterations	amongst	
teams	and	then	execute	those	iteration	in	parallel	using	the	threads	in	each	team

• Compiler	can	generate	efficient	GPU	code	for	this	construct	(state	transitions	not	
required	è bypass	OpenMP runtime	system)

• Default	schedule	recommended	to	maximize	performance	portability
§ HW	coalescing	on	GPU,	good	cache	locality	on	CPU

11/30/16 8

XL	C/C++	and	XL	Fortran	Compilers

§ XL	C/C++	and	XL	Fortran	are	full-featured	compilers	that	has	
been	targeting	the	POWER	platform	since	1990
• Aggressively	tuned	to	take	maximum	advantage	of	IBM	processor	

technology	as	it	becomes	available
• Industry	leading	customer	support	&	service

§ The	XL	compiler	products	use	common	optimizer	and	backend	
technology
• Leverage	mature	compiler	optimization	infrastructure	for	both	CPU	

and	GPU	exploitation,	across	source	languages

11/30/16 9

CPU/GPU	W-Code	Partitioner

OpenMP 4.5	support	in	XL	C/C++	and	XL	Fortran

11/30/16 10

CPU	W-Code

Executable for
POWER/GPU system

Data flow, loop, other optimizations

High-Level	Optimizer

GPU	W-Code

libNVVM
W-Code	to	LLVM	IR	translator

nvlink

PTX	CodeGen

LLVM	Optimizer

PTX	Assembler

NVVM	IR

PTX

Libraries
CUDA Runtime
CUDA DriverSystem	Linker

NVVM	=	LLVM	with	
NVIDIA	enhancements

XL	C/C++	Frontend

C/C++ source

W-Code	(XL	IR)

XL Device
Libraries

CUDA Device
Libraries

POWER	Low-level	Optimizer
Low-level Optimizations

POWER Code Generation

Register Allocation + Scheduling

CPU	code	is	aggressively	optimized	for	POWER

XL’s	optimizer	sees	both	host	and	device	code

CUDA	Toolkit	optimizes	device	code

W-Code

XL	Fortran	Frontend

Fortran source

OpenMP 4.0	&	4.5	offloading	features
Features OpenMP 3.1	

(in	target	region)
OpenMP 4.0 OpenMP 4.5

OpenMP
Directive

Parallel	Construct	
• omp parallel
• omp sections
• parallel	workshare

Worksharing
• parallel	do/for
• omp ordered
• omp single

Synchronization
• omp master
• omp critical
• omp barrier
• omp atomic	
• omp flush

Device	Constructs		
• omp target	data
• omp target
• omp target	update
• omp declare	target
• omp teams
• omp distribute
• omp distribute parallel	for
• omp declare	target
• combined	constructs
SIMD	Constructs
• omp loop	simd
• Omp distribute	parallel	do	

simd
• omp simd
• omp declare	simd
• omp distribute	simd

Offloading	Enhancements	
• firstprivate, private,	default	
map

• map	changes	(4.5	semantics)
• if	clause	for	combined	
directives

• implicit	firstprivate (4.5)
• omp target	enter	data
• omp target	exit	data
• omp target	parallel
• target	nowait &	depend
• omp target	simd

[italic means	in	progress]

11/30/16 11

§ Initial	support	for	OpenMP V4.5	features	for	GPU	offloading
§ Support	S822LC	systems	(POWER8	+	P100	via	NVLink)
§ Support	for	NVIDIA	K40,	K80,	and	P100	GPUs
§ Support	for	CUDA	Toolkit	8.0
§ Supported	Operating	Systems:	Ubuntu	16.04,	RHEL	7.3	...

XL	C/C++	for	Linux	V13.1.5
XL	Fortran	for	Linux	V15.1.5

GA:

compiling	the	OpenMP programs

§ -qsmp=omp option:	enables	the	OpenMP compile	in	the	
compiler

§ -qoffload option:	enables	the	target	constructs	being	offloaded	
to	GPU	(if	available)
• without	the	–qoffload option,	the	target	regions	are	executed	on	the	

CPU	host

§ for	example
$ xlf90 –qsmp=omp –qoffload test1.f

$ xlc –qsmp=omp –qoffload –qhot –O3 test2.c

11/30/16 13

use	profiling	tool

§ nvprof provides	information	about	execution
§ output:

11/30/16 14

Questions?

11/30/16 15

