OpenPOWER

IBM XL Compiler: OpenMP offloading support
for GPU

Ettore Tiotto, Kelvin Li
IBM Canada Laboratory

Some slides courtesy of Alex Eichenberg (IBM)

Programming Heterogeneous Systems

= Modern high-performance scientific applications must exploit
heterogeneous resources in a performance portable manner

gi GPU
—

]
e
T T

“ What Programming Models should we use? What'’s the right level of
abstraction?

i
0 TR, »e

NVIDIA Tesla P100 GPU

IBM POWERS8 processors

? OpenPOWER

Programming Heterogeneous Systems

Extracting maximum performance:

to program a GPU: you have to use CUDA, OpenCL, OpenGL, DirectX,
Intrinsics, C++AMP, OpenACC

to program a host SIMD unit: you have to use Intrinsics, OpenCL, or auto-
vectorization (possibly aided by compiler hints)

to program the CPU threads, you might use C11, C++11, OpenMP, TBB, Cilk,
MS Async/then continuation, Apple GCD, Google executors, ...

Y OpenPOWER

OpenMP 4.5

OpenMP is an industry standard for directive based parallel
programming

OpenMP has been (and is) widely used to program CPUs

In OpenMP 4.0/4.5, new features have been added to provide

Industry-wide acceptance: IBM, Intel, PathScale, Cray, PGlI, Oracle, MS
->

. OpenPOWER

A Quick Introduction to OpenMP 4.5

How do we exploit an accelerator in OpenMP?

Simply add a construct around the computation to be offloaded to
the accelerator

clauses are used to copy data

€)

#pragma omp parallel for
for (i=0; i<N; i++) {
for (j=0; j<N; j++)
for (k=0; k<N; k++)
C[i][J] = A[i][k] * B[k][]];

_ ! Y,

* OpenPOWER

A Quick Introduction to OpenMP 4.5

transfer control of execution to a SINGLE device thread

the compiler packages the target region into a function

the OpenMP runtime transfer execution of the function to the device

L host thread
map() |- All],B[][]

—

- copy* A, B

target | function shipping

device
parallel
region

o—0
device execution

device
worker
threads

Y VY

Q)
=

U

«_ device sync
barrier

* copies optional with unified memory

* OpenPOWER

OpenMP 4.5: Device Execution

The

#pragma omp target teams
map(to: a, b) map(from: c)
{

for (int i=0; i<n; i++) {
#pragma omp parallel for

for (int j=0; j<n; j++)
for (int k=0; k<n; k++)

}

_

c[i][J] = a[i][k] * b[k][3];

~

e

directive can be used to assign loop iterations to teams

v

/_b%\

— V

——=/"

— 3

Y

the target region is executed by several teams, each team gets a subset of iteration

space for the i-loop

the j-loop iterations are distributed amongst the threads in a team
distribute schedule controls size of iterations per team, there is no synchronization

between teams

* OpenPOWER

Optimization: omp distribute parallel for

Programming model: OpenMP vs CUDA

OpenMP uses a fork-join abstraction #pragma omp target map(from: z) map(to:x,y)
#pragma omp teams

team regions start with one thread, and parallel threads are
created as needed when a parallel region is found

CUDA kernels are launched using a grid of blocks/threads
(SPMD model)

for (i=0; i<N; i++)
z[1] = a*x[1] + y[i];

Orchestrating CUDA threads to fit the OpenMP programming model can have significant
overhead (runtime manages state transitions)

However OpenMP provides “SPMD-like” directives

distribute parallel for directive can be used to distribute loop iterations amongst
teams and then execute those iteration in parallel using the threads in each team

Compiler can generate efficient GPU code for this construct (state transitions not
required =» bypass OpenMP runtime system)

Default schedule recommended to maximize performance portability
HW coalescing on GPU, good cache locality on CPU

* OpenPOWER

XL C/C++ and XL Fortran Compilers

XL C/C++ and XL Fortran are full-featured compilers that has
been targeting the POWER platform since 1990

Aggressively tuned to take maximum advantage of IBM processor
technology as it becomes available

Industry leading customer support & service

The XL compiler products use common optimizer and backend
technology

Leverage mature compiler optimization infrastructure for both CPU
and GPU exploitation, across source languages

Y OpenPOWER

OpenMP 4.5 support in XL C/C++ and XL Fortran

C/C++ source Fortran source

XL C/C++ Frontend XL Fortran Frontend
‘ W-Code (XL IR) l,

High-Level Optimizer

Data flow, loop, other optimizations

CPU/GPU W-Code Partitioner

GPU W-Code

CPU W-Code

W-Code to LLVM IR translator
POWER Low-level Optimizer

Low-level Optimizations
Register Allocation + Scheduling
POWER Code Generation

NVVM = LLVM with
NVIDIA enhancements

XL Device
avlink Libraries
DA Runtime

‘ v " CUDA Device
------------------ e
System Linker

11/30/16 ’., OpenPOWER

OpenMP 4.0 & 4.5 offloading features

Features

OpenMP 3.1

OpenMP 4.0

OpenMP 4.5

OpenMP
Directive

11/30/16

(in target region)

Parallel Construct

* omp parallel

* omp sections
 parallel workshare

Worksharing
* parallel do/for
* omp ordered
* omp single

Synchronization
* omp master

* omp critical

* omp barrier

* omp atomic

* omp flush

11

Device Constructs

e omp target data

* omp target

omp target update

* omp declare target

* omp teams

e omp distribute

e omp distribute parallel for

e omp declare target

* combined constructs

SIMD Constructs

e omp loop simd

 Omp distribute parallel do
simd

e omp simd

e omp declare simd

* omp distribute simd

Offloading Enhancements

* firstprivate, private, default
map

* map changes (4.5 semantics)

* if clause for combined
directives

* implicit firstprivate (4.5)

* omp target enter data

e omp target exit data

e omp target parallel

* target nowait & depend

* omp target simd

[italic means in progress])

OpenPOWER

AL Compilers

ro——— XL C/C++ for Linux V13.1.5 @)
1, G, & Forran XL Fortran for Linux V15.1.5 Power Systems =~

December
Sun Mon Tue Wed Thu Fri Sat

1 2

GA: 4 5 6 7 8 9
1 12 13 14 @ 16
18 19 20 21 2 23

25 26 27 28 29 30

= Initial support for OpenMP V4.5 features for GPU offloading
= Support S822LC systems (POWERS8 + P100 via NVLink)

= Support for NVIDIA K40, K80, and P100 GPUs

= Support for CUDA Toolkit 8.0

“ Supported Operating Systems: Ubuntu 16.04, RHEL 7.3 ...

* OpenPOWER

compiling the OpenMP programs

-gsmp=omp option: enables the OpenMP compile in the
compiler

-goffload option: enables the target constructs being offloaded
to GPU (if available)

without the —qoffload option, the target regions are executed on the
CPU host

for example
$ x1f90 -gsmp=omp -qgoffload testl.f

$ xlc -gsmp=omp -qoffload -ghot -03 test2.c

Y OpenPOWER

nvprof provides information about execution

output:

use profiling tool

kli@yc@lsros:
==123002==
3
==123002==
==12300P==
Time(%) Time Calls
89.18% 21.632us 1
5.94% 1.4400us 2
4.88% 1.1840Qus 1

==123002== API calls:
Time(%) Time Calls
83.50% 89.855ms 1
12.24% 13.170ms 1
2.05% 2.2069ms 364
0.75% 803.09us 4
0.59% ©638.39us 1

Profiling application:
Profiling result:

$ nvprof ./testl
NVPROF is profiling process 123002, command:

Avg
21.632us
720ns
1.1840us

Avg
89.855ms
13.170ms
6.0620us
200.77us
638.39us

./testl

Min
21.632us
512ns
1.1840Qus

Min
89.855ms
13.170ms

208ns
195.09us
©38.39us

Max
21.632us
928ns
1.1840us

Max
89.855ms
13.170ms
229 .30us
203 .61us
638.39%us

/testl

Name
main$_$0L$_$1
[CUDA memcpy DtoH]
[CUDA memcpy HtoD]

Name

cuCtxCreate
cuModulelLoadDataEx
cuDeviceGetAttribute
cuDeviceTotalMem
cuMemAlloc

* OpenPOWER

Questions?

I P T— —
(P SR S T
— St = g e
e ———— —_— e — —
pm— T e T
— — — LI A
[S S W —
I S p——3 v 1

11/30/16

15

OpenPOWER"

