Snapsolve any problem by taking a picture.
Try it in the Numerade app?
1.16 Calculate the frequency of the damped oscillation of the system shown in Fig. 1.33 for the values $k = 4,000 \text{ lb/in} \ (7.0051 \times 10^5 \text{ N/m})$, $c = 20 \text{ lb-s/in} \ (3,502.54 \text{ N-s/m})$, $m = 10 \text{ lb-}s^2/\text{in} \ (1,751.27 \text{ kg})$, $a = 50 \text{ in} \ (1.27 \text{ m})$, and $L = 100 \text{ in} \ (2.54 \text{ m})$. Determine the value of the critical damping.Show more…
Added by Jose Ignacio W.
Step 1
- Spring constant, \( k = 4,000 \, \text{lb/in} \) (7.005110 N/m) - Damping coefficient, \( c = 20 \, \text{lb-s/in} \) (3,502.54 N-s/m) - Mass, \( m = 10 \, \text{lb-s}^2/\text{in} \) (1,751.27 kg) - Distance \( a = 50 \, \text{in} \) (1.27 m) - Distance \( L = Show more…
Show all steps