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Abstract—An internet user wanting to share observed content
is typically restricted to primitive techniques such as screenshots,
web caches or share button-like solutions. These acclaimed proofs,
however, are either trivial to falsify or require trust in centralized
entities (e.g., search engine caches). This motivates the need
for a seamless and standardized internet-wide non-repudiation
mechanism, allowing users to share data from news sources, social
websites or financial data feeds in a provably secure manner.

Additionally, blockchain oracles that enable data-rich smart
contracts typically rely on a trusted third party (e.g., TLSNo-
tary or Intel SGX). A decentralized method to transfer web-
based content into a permissionless blockchain without additional
trusted third party would allow for smart contract applications
to flourish.

In this work, we present TLS-N, the first TLS extension that
provides secure non-repudiation and solves both of the mentioned
challenges. TLS-N generates non-interactive proofs about the
content of a TLS session that can be efficiently verified by third
parties and blockchain based smart contracts. As such, TLS-N
increases the accountability for content provided on the web and
enables a practical and decentralized blockchain oracle for web
content. TLS-N is compatible with TLS 1.3 and adds a minor
overhead to a typical TLS session. When a proof is generated,
parts of the TLS session (e.g., passwords, cookies) can be hidden
for privacy reasons, while the remaining content can be verified.

I. INTRODUCTION

The overwhelming adoption of TLS [43] for most HTTP
traffic has transformed the web into a more confiden-
tial and integrity protected communication platform. Despite
TLS’s adoption, an efficient, secure, privacy-preserving, non-
interactive and seamless method to prove communication con-
tents to a third party — i.e. a standardized method for non-
repudiation — that does not require an additional trusted party
is missing.

Such a non-repudiation solution and its proofs would allow
more accountability in the web and aid the construction of
decentralized blockchain oracles as we outline in the following.
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Interestingly, users are currently unable to prove to a third
party the content they have observed on a particular website.
One of the most popular methods for users to document and
share content they watch on the Internet are screenshots that
are trivial to falsify [21], [31]. A non-repudiation solution
would remove the necessary trust towards a user that claims
to have observed a given content. Further, currently trusted
third parties, such as search engine caches or web archives
could add non-repudiable proofs about the content they have
observed and thus increase their credibility.

Furthermore, blockchain-based smart contracts [44] can
significantly benefit from an efficient non-repudiation solu-
tion. If for example a stock market price API provides non-
repudiable data, any user could submit verifiably valid stock
price information to the blockchain (effectively creating a de-
centralized blockchain oracle). Because the blockchain-based
smart contract verifies the validity of the provided data, peers
would only need to trust the data provider, not the peers that
actually transmit the data to the blockchain. Generally, this
would allow to seamlessly connect real world events with
a blockchain and as such enable new application scenarios
for smart contracts. Note that existing blockchain oracles
either rely on deprecated security protocols (e.g., TLS 1.1 for
TLSNotary [42]) or introduce additional trusted third parties
(e.g., TLSNotary and Intel SGX).

In this paper, we propose TLS-N, an extension of TLS that
enables the seamless integration of non-repudiation between
arbitrary parties within TLS. TLS-N allows the generation of
privacy-preserving, non-repudiable, non-interactive proofs of
the contents of a TLS session. Our solution takes into account
the performance requirements of TLS, both in computation and
memory to promote adoption and reduce the potential attack
surface (e.g. against Denial-of-Service attacks). Our design
supports various proof types, that can be shared with other
parties, allowing them to verify the conversation contents.

The proof verification requires no additional security as-
sumptions other than those of TLS, and we do not need
an additional trusted third party. Furthermore, the security of
TLS-protected content can be partially preserved using privacy
protection. Privacy-protected content inside the proof is pro-
tected from dictionary attacks due to (undisclosed) salts with
sufficiently high entropy. Salts for private content remain secret
while other salts are included in the proof for verifiability.
Note that any non-repudiation solution based on a higher
layer (e.g., HTTP), would either require access to the long-
term cryptographic TLS keys from the higher layer, violating
the layer principle, or would require the deployment and



authentication of additional key material, thereby significantly
increasing the complexity of the solution.

In TLS-N, by the definition of non-repudiation, message
authentication and the identification of at least one TLS peer
is guaranteed. We compare TLS-N to existing non-repudiation
proposals and identify properties that non-repudiation solutions
must possess for particular use cases.

We implement and evaluate TLS-N as an extension of
the new TLS 1.3 standard. As such, we implement a TLS-
N-enabled web server, web client, an Ethereum-based library
for proof parsing and verification and finally an Ethereum-
based oracle that uses TLS-N proofs. We also deploy the oracle
inside the public Ethereum test network. The implementation
details, the code and contract addresses can be found at
https://tls-n.org, which itself has TLS-N enabled. Furthermore,
users can use the website to generate and verify TLS-N proofs.

We find that our prototype implementation incurs an over-
head of less than 1.5 milliseconds on existing TLS connections
per HTTP request for responses of 10 KB or less, which is a
realistic size for an API response. Verifying our proof examples
in a smart contract costs between 0.5 and 8 USD due to the
currently high gas price!. Prices depend on the proof size and
signature type. Note that, once this proof is verified, it can be
used by millions of blockchain users.

As a summary our contributions are as follows:

e  We propose the first secure non-repudiation solution
that captures privacy and performance requirements
and can be seamlessly integrated with the TLS 1.3
standard [39]. Our solution does not add new security
assumptions to those of TLS and does not rely on an
additional trusted third party.

e We implement our extension for TLS 1.3 on top of
Mozilla’s NSS library [33] and create an Apache
module supporting our extension. Our experimental
evaluation shows that a typical proof size as well
as the proof generation and verification times grow
linear with the size of the data. The server side
processing times are low with less than 1ms for 16 KB
plaintext without privacy protection and less than 8ms
for 16 KB plaintext with privacy protection.

e We provide an Ethereum-based library for TLS-N
proof verification and parsing. TLS-N therefore acts as
a practical decentralized blockchain oracle that does
not require any additional trusted third party. Users can
source data from any TLS-N-enabled content provider,
submit it to the blockchain where the smart contract
verifies the proof. Note that only the data provider
needs to be trusted, and as such any client can submit
a TLS-N proof to the smart contract. On our website,
https://tls-n.org we also provide an example oracle
that securely inserts bitcoin prices into the Ethereum
blockchain based on an API from bitcoin.com.

e  We provide a structured description of non-repudiation
properties, possible attacks, requirements and use-
cases for non-repudiation solutions.
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Fig. 1: Our view of non-repudiation. First, evidence genera-
tion (by generator), second proof generation (by requester),
third proof verification (by verifier). Message originator and
recipient might act as requester, generator or both.

The remainder of the paper is organized as follows. In
Section II, we define the problem statement and motivate
our TLS-based approach before presenting the design of our
solution TLS-N in Section III. In Section IV, we perform its
security analysis and evaluate it in Section V. We overview
related work and contrast it to our solution in Section VI, while
highlighting attacks on previous TLS-based work. We provide
a discussion in Section VII, before concluding the paper in
Section VIII.

II. PROBLEM STATEMENT

In this section we describe the main problem that we are
trying to solve and we discuss relevant use cases and their
requirements.

Broadly, we address the problem of non-repudiation in
online interactions as seen in Figure 1. Given that such
interactions are mainly protected using TLS [12], we focus on
the provision of non-repudiation for services that run on top
of TLS. TLS is the most widely used security protocol suite
on the Internet and provides authentication, confidentiality,
and integrity. Although it relies on public-key signatures for
authentication, TLS protects message integrity and confiden-
tiality of exchanged messages via shared secret keys that are
established at the beginning of the session. Given this, TLS
does not provide non-repudiation for the exchanged messages
— clearly, a sender of the message can deny having sent the
message, given that the Message Authentication Codes have
been generated using a shared, symmetric key.

More precisely, we consider the following problem: Can
TLS be extended to provide a compact evidence allowing
for efficient proof generation and verification so that the
non-interactive proofs allow third parties to verify the TLS
conversation contents. >

In addition, since TLS peers might exchange privacy-
sensitive content (e.g., login credentials, cookies or access
tokens), the TLS extension should provide efficient, privacy-
protection features to hide sensitive parts of the conversation
from third parties.

IThe gas price determines the conversion rate between gas and ether and
therefore influences the transaction cost.

2Here by extended we mean that a proper TLS Extension as specified in [39]
can be created.
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Based on previous work in the area, we consider the
following non-repudiation types [20], [47], [1], [37]:

Non-repudiation of origin (NRO) provides proof that a
message has originated from the specified originator. The
evidence is provided by the originator and given the proof,
the originator is not able to later deny having sent the
message.

Non-repudiation of receipt (NRR) provides proof that a
message was received by the specified recipient. The
evidence is provided by the recipient and given the proof,
the recipient is not able to later deny having received the
message.

Non-repudiation of conversation (NRC) provides a proof
of a total order of messages sent and received by a party.
Intuitively, NRC specifies the conversation and the party’s
role in it, from the perspective of its system. The specified
party is not able to later deny a claim of having sent and
received the message in the conversation or the order of
messages within the conversation.

Note, that non-repudiation of conversation (NRC) implies
non-repudiation of origin (NRO) for all sent messages within
the conversation and non-repudiation of receipt (NRR) for all
received messages. Therefore, NRC is a stronger proof than
NRR or NRO. To highlight the difference between NRO and
NRC consider the following example. A web service returns
the current stock price for a requested ticker symbol, e.g. for
the request EXAMPLE the response is $10. Non-repudiation of
origin would ensure that the web service answered $10. The
answer by itself, however, is not useful without the context
of the conversation. Non-repudiation of conversation would
ensure that the web service answered $10 after being queried
for EXAMPLE.

Apart from the non-repudiation type we also consider
the following properties of a non-repudiation solution. These
properties are motivated by different use cases, as we will show
in Table I.

Order-Preserving: A total order of messages between the
TLS peers can be determined based on the proof.

Request-Response Binding: A TLS conversation might in-
clude multiple requests and responses. This property
ensures a binding between requests and responses based
on the proof. This is important as protocols such as
HTTP/1.x do not reference the request in the response,
e.g. they contain no request ID.

Time: Based on the proof the content creation time (as seen
by the peers) can be identified.

Privacy Protecting: Privacy sensitive content (e.g., pass-
words or cookies) transmitted in a TLS session can be
efficiently hidden in the proof.

Possible use cases that would benefit from a non-
repudiation solution are (cf. Table I) (i) Document Submission
Systems (e.g., HotCRP) and (ii) Public Data Feeds, e.g.
for stock exchange rates and currency exchange rates [45],
[36]. Verifiable, public data feeds are essential for the further
development and expansion of blockchain-based smart contract
applications [44]. Given such a feed, public data can be
securely inserted into the blockchain: a smart contract can, on
submission of data including a proof, verify the proof and then
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TABLE I: For the use cases presented here, non-repudiation
of conversation NRC is the most commonly required one. We
also find that most use cases require request-response binding
and timing information. Additionally, some use cases require
privacy protection (e.g., hiding of access tokens or passwords).
@ = required property, © = partially required property, - = non-
required property.

store the verified data on the blockchain. Any other contract
can use such blockchain-based information. This disintermedi-
ation removes the need for an additional third party acting as an
oracle [46], [26]. Further use cases are (iii) Web Archives [2],
[38] for web content or deleted social media content [14], and
(iv) proving misbehaviour in P2P networks [34], [16].

A. Previous Work and its Limitations

Here, we briefly motivate why existing work is insufficient
and motivate our TLS-based design. For a more extensive
discussion, please refer to Section VI.

Our design is TLS-based as this comes with multiple key
advantages. TLS is ubiquitous. Based on the layer approach,
many applications can benefit from a TLS-based solution.
TLS provides extension support, allowing for incremental
deployment as our extension is backwards compatible. We can
reuse existing, cryptographic primitives of TLS reducing de-
velopment and maintenance overhead. Additionally, most TLS
deployments are based on a few cryptographic libraries simpli-
fying standardization. Finally, TLS already uses an established
public-key infrastructure (PKI) necessary for authentication.

1) Existing TLS-based solutions: Existing TLS-based so-
lutions do not provide secure non-repudiation, as we will
show in Section VI-B. In particular, none of the solutions
provides NRC. We present attacks against all existing solutions
and conclude that none of them has all the required security
properties.

2) (Existing) Application Layer solutions: Non-repudiation
can also be managed on the application layer. However, as
we will explain in Section VI-B, application layer solutions
come with multiple drawbacks. One drawback is that each
of the application layer solutions has to provide a separate
non-repudiation implementation resulting in many presumably
poorly maintained implementations. Therefore, we think that
the TLS layer should provide non-repudiation, because it
already provides a frequently-used layer offering confidential-
ity and authentication to all kinds of applications. Further-
more, application layer solutions need their own authentication
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Fig. 2: Simplied Overview of TLS-N: The TLS conversation proceeds as usual. During the conversation the generator continually
processes sent and received TLS records, thereby keeping only a small state. The requester stores all TLS records for the proof
generation. The TLS-N-specific “Return Evidence” message closes the Evidence Window (shown as bold part of the time axis),
which determines the evidence-relevant records. Upon receiving the message, the generator signs the evidence, which the requester
uses to generate the proof according to the user’s privacy settings.

scheme, while a TLS-based solution can reuse the existing
PKI. Finally, in a design as ours, the application layer still
retains full flexibility, as it decides what will be included in
the proof.

To the best of our knowledge, there are currently no fully
worked-out application layer solutions that would cover the
relevant protocols that run on top of TLS. However, even if
an application layer solutions would be built, this wouldn’t
devalue TLS-N, since to compare, one needs to design, build
and evaluate both. TLS-N explores the TLS layer approach
whereas we hope that application layer system might be
explored in future work so that the two can be properly
compared.

3) Other existing solutions: There are other solutions pro-
viding similar properties, such as TLSnotary [42] and Town
Crier [46] that we will discuss in Section VI-C. While TLS-
notary only works for older TLS versions and requires trust
in a third party, Town Crier is a specific solution for smart
contracts that requires a third party with special hardware and
trust in the attestation service.

Our design, overcomes the shortcomings of previous work,
requires no special hardware, no trusted third party and
provides a general and portable solution for secure non-
repudiation that reuses existing TLS primitives. We describe
our design in the following section.

III. OUR DESIGN: TLS-N

Throughout this paper, we consider the following three
parties: (i) the requester (typically a client machine), (ii) the
generator (typically a web server) and (iii) the verifier (third
party or smart contract), as seen in Figure 1. Our design,
called TLS-N, provides generator-signed evidence about the
TLS conversation to the requester, who can then construct a
(redacted) proof. The design is similar to content extraction
signatures [40] and redactable signatures [22], which have not
been used in combination with TLS. We provide a comparison
to these schemes in Section VI.

Figure 2 shows the evidence and proof generation between
requester and generator. Initially, they establish a TLS con-
nection and negotiate the TLS-N parameters in the handshake.

During the TLS session, the generator keeps a small TLS-
N state that is updated using all the sent and received TLS
records 3. This state contains a hash value incorporating all
previous records, an ordering vector and a timestamp from the
beginning of the session.

Once the requester asks for the evidence, the evidence
window that defines which records will be included in the
evidence closes. Note, that in TLS-N and in contrast to
previous work the evidence window begins right after the
handshake. To compute the evidence, the generator signs its
TLS-N state using its private key. Together with the saved
records, this evidence allows the requester to produce non-
repudiable proofs for the entire conversation or for a subset of
1t.

Therefore, the requester retains full control what is in-
cluded in the proof. To protect sensitive TLS content, the
requester can hide entire records or chunks thereof. Note,
that most client applications, e.g. browsers or email clients,
are aware what content parts are sensitive, e.g., they know
where passwords are used and how they are sent. Furthermore,
TLS-N proofs can be further redacted if a sensitive piece of
information was missed initially.

The generator is oblivious to what the requester considers
sensitive and is not involved in the proof generation. By
checking the proof, a verifier learns the disclosed content of
the TLS session in a non-repudiable manner. We only make
standard TLS assumptions, such that both requester and verifier
trust the certificates to correctly identify the generator.

A. Parameter Negotiation

TLS sessions begin with the handshake during which
settings such as the cipher suite are negotiated. If the requester
wants to use TLS-N, it includes a TLS-N extension into the
handshake. Here, the requester also specifies its preferences
for the TLS-N settings. To hide sensitive content, the requester
can chose between: record-level and chunk-level granularity.
While chunk-level granularity is more precise it also has a
higher computational overhead. In case of chunk-level gran-
ularity the requester can also select the chunk size. Again a
smaller granularity leads to a higher computational overhead.

3In TLS, protocol messages including application data are sent in records.



Essentially, record-level granularity allows efficient proofs
for public data, e.g. in a web archive, or for conversations
where entire records can be censored. It represents the most
efficient design, as the conversation has to be parsed record-
by-record.

The generator can reject or accept the TLS-N settings by
including a corresponding response in its handshake message.
To ensure that TLS-N cannot be abused for Denial-of-Service
attacks, the generator can also enforce the use of a TLS client
puzzle [35].

B. Evidence Generation

In this Section, we outline how the generator (server) pro-
duces the evidence in TLS-N. We discuss the evidence window,
the provided evidence and provided auxiliary information to
aid proof generation.

In our solution, the evidence collection starts immediately
after the TLS handshake. This has two main benefits. One
is to prevent Content Omission Attacks (cf. Section VI-Blc)
and the other is that TLS-N then does not require an explicit
“Collect Evidence” message (proposed by related work [5]).
In TLS-N, the evidence window ends as soon the generator
receives a “Return Evidence” message.

1) Order of records: The generation of the evidence is non-
trivial as the requester and generator might observe a different
order of records. We label the i-th requester and generator
records r; and g; respectively. If both peers simultaneously
send records 7y and gg, each peer will observe its sent record
before observing its received record, resulting in two different
orders: (rg, go) and (go, 7o). Note, however, that the two peers
have identical partial orders over records generated by one
peer, i.e., they observe the same order for all {r;} and for all

{gi}-

Based on their partial orders, both peers have to agree
on a total order. In TLS-N the generator determines the total
order of records, as it generates the evidence. To inform the
requester about the chosen total order, the generator uses an
ordering vector. As both peers have the same partial order over
{r;} and {g;}, the ordering vector is a bit vector encoding
the interleaving of {r;} and {g;}. In the ordering vector, a
0 corresponds to a record sent by the requester (r;) and a 1
to a record sent by the generator (g;). An ordering vector of
(1,0,0,1) results in the total record order of (go,70,71,91)-

2) Commitments: To allow chunk-level censoring of sensi-
tive information during proof generation, each record of length
l,- is split into fixed-sized chunks of the negotiated chunk size
l.. We construct hiding and binding commitments for each
of the chunks using a commitment scheme C () that takes a
chunk and a pseudo-random value, called salt, as input. As
the chunk might have low entropy the pseudo-random salt is
used to protect the hiding property of the commitment against
brute-force attacks.

3) Merkle Tree Generation: To efficiently include commit-
ments in the proof, we construct a Merkle Tree [30] over the
commitments, as shown in Figure 3a. The root hashes of the
Merkle trees h; are generated from the children hash values,
the length of the record [, and the originator information O;.
O, is the i-th element of the ordering vector. We assume

that H () provides a binding commitment scheme, i.e., is a
collision-resistant hash function. To reuse secure, existing TLS
primitives we use the hash function negotiated in the cipher
suite (typically SHA-256) as H ()

The records’ root hashes h; are combined in a hash
chain (hc;), with he,,—; being the final hash chain state. Using
a hash chain ensures a very small storage overhead per TLS
session, namely only a single hash value. The hash chain uses
markers (0x0, Ox1) to prevent second preimage attacks, as
explained in Section IV-C. A hash chain allows the server
to keep a constant-size state while the TLS session is alive,
namely the last hash chain element. A tree, in comparison,
would require a state which grows logarithmically in the
session size. Therefore, we chose a hash chain to minimize
the memory overhead and the associated DoS risk.

4) Salt Tree Generation: To create hiding commitments
using C () we need independent, random values S;_;_, called
salts, for record 7,- and chunk 7.. To achieve hiding, the outputs
Sig,i. and S;r i, have to be 1ndependent ifip # iRy Vie # 1.,
Additionally, to reduce proof sizes we need efficient dlsclosure
of salts for non-sensitive chunks. Therefore, we use a salt tree
based on the function E () to derive the salt values. By using a
salt tree, to censor a single chunk, only a logarithmic number of
salts need to be revealed in the proof. E () is a variable-length
output pseudorandom function that takes a pseudorandom key,
(possibly empty) context information and the output length as
inputs. E () leaks no information about its key.

The salt tree is computed as follows (cf. Figure 3a):
Initially, for each record I?; composed of ¢ chunks, a unique
salt secret is derived from the TLS traffic secret using a record-
based nonce. This ensures the generation of a pseudo-random
and independent salt secret as explained in Section IV-C. The
derived salt secret is further expanded using E () to generate
the salt tree. In the salt tree, each output of E () is truncated
to length 2/, and split into two bitstrings of length [, e.g.,
S8 and S3 | in Figure 3a. Until the salt tree has ¢ leaves and
thus is large enough to supply a unique salt for every chunk
of the record, this process is repeated, i.e. each intermediate
secret Sd4 at depth d is used as an input to E () and the

output is spht again to produce the values S ! and S 2] +1
The leaves of this tree are then used as salts In TLS 1.3,
HKDF-Expand-Label is used as E () [39], [23].

5) Chunk-level granularity vs. Record-level granularity: In
Figures 3a and 3b we show the overall evidence generation
based on the content for chunk-level and record-level gran-
ularity. For chunk-level granularity we combine the salt tree
with the commitments, the Merkle tree and the hash chain. On
the other hand for record-level commitments, we only generate
a single commitment per record and therefore do not need a
salt or Merkle tree. In short, for record-level granularity, each
record is handled as a single chunk. In both cases we generate
the overall hash chain result hc,, 1 that is subsequently signed.

6) Providing Trustworthy Timing Information: To provide
trustworthy timing information and protect against the Time
Shifting attack (cf. Section VI-Bla), our design employs two
generator-produced timestamps: one timestamp taken during
the TLS handshake and one timestamp taken during evidence
generation, i.e. at the beginning and the end of the evidence
window. As both timestamps are included in the evidence, the
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(b) Evidence Generation with record-level granularity. Salt tree or Merkle trees are
not computed, as each record is just one one chunk. Record-level granularity has a

significantly smaller computational overhead for all involved parties, but also provide

less flexibility for privacy protection. For non-sensitive records, the complete plaintext

and the salt secret is included in the proof.

Fig. 3: Evidence Generation based on the ordered TLS records using expansion function E ()

hash function H ()

(c) Final step of the evidence generation. Negotiated
parameters from the TLS Handshake are included to

S protect their integrity. Out of the evidence generation

the timestamp and final hash chain value are used.

The evidence hash is signed with the private key.

, commitment scheme C () and
. O; gives the originator information and [p, is the length of record . The record-based hashes h; are input

to a hash chain, whose result is the final hash value hc,_; that will be signed by the generator. Sensitive content is marked red

and is hidden in the proof while all

elements are included in the proof. Accordingly, we also color the salts in red and

. Red salts will not be disclosed and thereby provide a protection against dictionary attacks. Note, that the decision about
included content is made by the requester during proof generation. We only provide the colors here for completeness.



verifier can detect proofs resulting from long TLS sessions and
Time Shifting attacks.

As seen in Figure 3c, the evidence consists of the final
hash hc,_1, the two timestamps, the chunk size /., the salt
size [, and the TLS cipher suite negotiated for this session.
When the evidence is requested, it is hashed and signed with
the generator’s private key. Our design limits the generator’s
computational overhead as it mostly computes hashes and only
provides one signature. The evidence is sent to the requester
together with the ordering vector. The requester can use the
evidence to construct a variety of different proofs as we will
show in the following section.

C. Proof Generation And Verification

A central benefit of performing non-repudiation over TLS
is that we can reuse the already deployed public-key infras-
tructure (PKI). The signed evidence and its authentication can
therefore be verified by third parties. However, third parties
only possess the trusted root certificates and miss intermediate
certificates required to verify the certificate chain. To allow
third-party verification, the requester saves the certificate chain
of the TLS connection and includes it in the proof.

Therefore, a proof contains these global parameters: times-
tamps for start and end, the negotiated salt size and chunk size,
the number of records, the evidence signature, and optionally
the certificate chain.

For every record, a proof node is included with the
following information: type of proof node (e.g. hash chain
element, plain text etc.), in case the proof node contains hidden
data: hashes and salts and their respective locations in the
Merkle and salt tree; in case the proof node contains plaintext
data: plaintext length and plaintext data, and the originator
information.

For proof generation, the requester uses the n records,
the salt secrets, the evidence provided by the generator, the
ordering vector, and the certificate chain. Based on these, the
requester can generate different kinds of proofs. Here, we give
some representative examples.

1) Proving NRO or NRR: As explained in Section II, NRC
implies non-repudiation of origin (NRO) and non-repudiation
of receipt (NRR). Therefore, we can also prove these for one
or multiple messages of the conversation. A NRO-proof or
NRR-proof for a record i, contains the following: plain text of
record 14, salt secret i, O;, hc;—1, hiy1,...,hy,, the evidence
and the certificate chain.

During proof verification the verifier uses the plain text of
record 14, its salt secret, the cipher suite and O; to build the
Merkle tree and salt tree, and compute h; as in Figure 3a.
Using the hash chain value hc;_; and the computed h; the
verifier can compute hc; and using the h;iq,...,h, the
verifier can complete the hash chain and compute hc,, 1. Then,
the verifier checks the evidence, by verifying the signature
using the certificate chain and comparing its hc,—1 to the
provided hc,_;. Finally, the verifier checks the timestamps
based on the application-specific requirements, e.g., testing
whether they are too far apart or from a wrong date.

2) Privacy-preserving, browser-based NRC proof: In this
scenario, the browser acts as the requester and a web server as
generator. The browser is configured to consider all passwords
and cookies sensitive and remove them from the proof, while
the web server is unaware of these privacy settings. To hide
only the passwords the browser requests evidence with chunk-
level granularity. The web server generates the evidence as
shown in Figure 3a.

For the proof generation the browser proceeds as follows:
For every record i without sensitive information, the browser
includes its plaintext, its salt secret and O;. For every record
i with sensitive information, the browser proceeds as in Fig-
ure 3a. All plaintext of all non-sensitive chunks are included
with their salts S; ;. For chunks with sensitive content the
browser includes their commitment and keeps their salt values
secret. Thereby, dictionary attacks are infeasible even if the
content has low entropy. If subsequent chunks are sensitive
or non-sensitive the browser includes higher level-nodes from
the Merkle tree and the salt tree respectively. Therefore, only
O(log(c)) nodes have to be included and the proof size is
reduced. Additionally, the proof contains the evidence, and the
certificate chain.

During proof verification the verifier uses the proof to re-
generate the same evidence as in Figure 3a. For records without
sensitive content it constructs the Merkle Tree and salt tree, for
records with sensitive content it constructs the partial Merkle
Tree based on the provided plaintext, commitments and hashes.
Thereby, the verifier obtains all root hashes h;, constructs
the hash chain and he,,_1. As before the verifier also checks
the evidence based on the certificate chain and validates the
timestamps.

IV. SECURITY ANALYSIS

In this section we present the security analysis of TLS-N.
We start by introducing our system and attacker model.

1) Trust assumptions: For the purpose of this paper, we
make the following trust assumptions. First, we assume that
the used cryptographic primitives such as digital signatures
and cryptographic hash functions are secure. We need H ()
to produce a binding and hiding commitment. Note, that the
hiding property of hash functions has neither been proven nor
rejected. Second, we assume the existence of a Public Key
Infrastructure (PKI) that correctly binds entities to the public
keys used in TLS, i.e. we inherit the trust assumptions of
TLS when used with certificates. Hence, both requester and
verifier trust the generator’s identity. Note, that we assume
public keys to be unique which they might not always be [19].
Third, we assume that private keys used by the generator
are not leaked to the adversary and that the generator will
not sign arbitrary statements. In any non-repudiation solution
relying on digital signatures, incorrect use of the private key
compromises the security of the scheme. We consider concrete
solutions to the problem of revoked or leaked private keys to
be out of the scope of this work (a non-repudiable statement
could be included in a blockchain together with a consecutive
Online Certificate Status Protocol (OCSP) response to proof
the validity at creation time). Fourth, we assume that TLS
connections are not intercepted, e.g. by some middle box.
Finally, the verifier trusts the generator to produce accurate
content and timestamps.



A. Security Properties

For the security analysis, we adopt the security definition of
Content Extraction Signature [40] . The extended security def-
initions and proofs had to be omitted due to space constraints.
Please find the complete version under https://tls-n.org.

Property P, , is the adapted CES-Unforgeability stating that
a valid proof can only be produced for a conversation that
is a subconversation of a conversation signed in a proof.
Here, we substitute the documents in the definition of
CES-Unforgeability with the conversations.

Property P, is the adapted CES-Privacy, stating that a proof
leaks no information about hidden parts.

Property P, : The proof reveals the structure of hidden
data. Records with hidden chunks are distinguishable
from records without hidden chunks and conversations
with missing records are distinguishable from complete

conversations.
Property P; : For every non-hidden record, the originator is
known.

Property P, : The timestamps inside the proof provide tight
upper and lower bounds on the generator’s time during
the conversation.

B. Adversarial Model

We assume a computationally-bounded adversary that can
take one of two roles. Either the adversary acts as requester
trying to generate proofs that lead the verifier to wrong
conclusions about the conversation (violating Py, P», Ps or
Py,). Or the adversary acts as a verifier trying to learn hidden
data (violating P).

Either way, the adversary is allowed to interact with
the generator, request evidence for different conversations
and inspect proofs published by other users. Furthermore,
in accordance to the TLS threat model, on the network the
adversary acts as described in the Dolev-Yao Model [13]. In
section VI-B1, we detail attacks on existing solutions under
this adversarial model.

C. Security Sketch for TLS-N

In this section we provide a brief security analysis of TLS-
N. The full analysis and the proofs had to be omitted due to
space constraints, but is available at https://tls-n.org.

For Property Py, the unforgeability of the signature scheme
and the collision resistance of H (), ensure that the additional
data (parameters and timestamps) and the hash chain output
are unforgeable. The unforgeability of the hash chain inputs,
namely the Merkle hashes, reduces to the collision resistance
of H (). Given all these, the CES-Unforgeability is satisfied
for each records according to the proof provided by Steinfeld
et al. [40] as records are almost identical to documents and as
the differences are irrelevant for the proof.

For Property P, we need to prove that the commitments
do not leak any information and that the TLS traffic secret
is not revealed, which together with the adversarial network
capabilities would disclose hidden data. The hiding property
of C () is sufficient for the first part given that the salts are
pseudorandom and independent. Salts are pseudorandom due
to the properties of E () and independent as for each record

they are derived from an independent salt secret. The TLS
traffic secret is not leaked as it is only input to E (), which
due to its properties does not leak it.

A hidden chunk is observable due to the definition of a
record and its length is known due its position, the chunk size
and the record size. If the first record of a conversation is
not included the proof must start with a hash chain node of
the type H(0x1, hc;—1, h;) instead of H(0x1, hg), which
together satisfies property P».

As the records include originator information that is un-
forgeable due to Fp, Ps is satisfied. And as the timestamps
are likewise unforgeable and are taken at the beginning and
the end of the evidence window, tight bounds can be provided
on the generator’s time, fulfilling P;.

V. IMPLEMENTATION AND EVALUATION

In this section we describe our TLS-N implementation,
its deployment and its evaluation using real-world as well as
synthetic traffic. The code for our implementation and further
details can be found at https://tls-n.org.

A. Implementation

For our implementation, we extend the Network Secu-
rity Services (NSS) library [33] provided by the Mozilla
Foundation. We chose the NSS library for its support of
TLS 1.3 and because it can be used on the client side, e.g.,
in Mozilla Firefox, and on the server side, e.g., through the
mod_nss Apache module [9], [10]. We implement TLS-N as
an extension in NSS and deploy it in a real-world setting
using an adapted version of mod_nss and Apache running on
an Amazon EC2 node. Our unoptimized NSS extension uses
roughly 2400 lines of C code.

We extend TLS so that the requester application can enable
the TLS-N extension. The peers negotiate the usage of TLS-
N during the handshake. We use a 16-byte salt size, in order
to preserve the 128-bit confidentiality protection of TLS [12].
Unless otherwise stated, we also use a 16-byte chunk size,
as Figure 4b shows that it provides a good trade-off between
granularity and efficiency. For H () our implementation uses
the hash function of the chosen cipher suite and for E () we use
the HKDF-Expand-Label function with specific labels for
salt secret and salt tree generation. HKDF-Expand-Label
is already used for these properties [39]. As nonce for the salt
secret generation, we use the TLS per-record nonce #, which
is guaranteed to be unique in combination with the traffic
secret [39]. For C () we use the same function as for H (),
as we assume that modern hash functions with sufficiently
large salts provide a hiding commitment. To reduce the proof
size we use TLS certificates using elliptic curve cryptography,
namely secp256rl. Overall, we completely reuse cryptographic
primitives that are already present in TLS.

Our extension then constructs a proof according to the
settings of the requester application, which provides regular
expressions for sensitive content that is then hidden in the
proof. Finally, the proof is returned to the requester application.
The requester application can store the proof and send it to

4In TLS 1.3 the per-record nonce is a bi-directional record counter. [39]
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(a) Proof generation and proof verification
times for random, simulated TLS sessions.
Such proofs without hidden data are the
worst case for the proof verification. We
observe a linear scaling for both times. Each
result is averaged over 20 repetitions.
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(b) Average processing time for one record
depending on its size. Time includes building
salt and Merkle tree. Chunk-granularity with
sizes ranging from 8 to 64 bytes is compared
to record-level granularity. 16 KB is the
largest NSS-supported record size.
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(c) Average time from sending one HTTP re-
quest until the requested file is received with
and without our TLS-N extension running on
an Apache webserver. We find that TLS-N is
usable, even for bigger files. Each result is
averaged over 100 measurements.

Fig. 4: Performance Evaluation for our implemented extension of TLS-N on client and server side.

Conversation Size

1 KB 10 KB
secp256rl [ secp256kl [ secp256rl | secp256kl
Basic Gas 119,758 737,159
» | Total Gas 1,284,723 131,286 1,938,872 782,219
& | Ether 0.0257 0.0026 0.0388 0.0156
© USD 5.2198 0.5334 7.8776 3.1782

TABLE II: Gas costs for validating public, record-level proofs
within our Ethereum smart contract based on the conversation
size and the elliptic curve. The basic gas cost is intrinsic for
a transaction of that size. Gas and ether prices taken as of
August 1st 2017.

verifiers. Verifiers can use our library extension to determine
the validity of a proof, which includes the necessary salt tree
and Merkle tree computations as well as the signature check
and the verification of the included certificate chain.

B. Blockchain Implementation and Evaluation

To show that the proof verification can be performed by a
blockchain-based smart contract, we provide an Ethereum [44]
implementation of the proof verification procedure in our TLS-
N solidity library, which is available at https://tls-n.org. The
library parses the proof, computes the hashes, and performs a
signature verification. The library contains 45 lines of solidity
code. The unoptimized secp256rl signature verification has
168 lines. We measure the cost of these operations in gas,
Ethereum’s currency for computational tasks.

Table II shows the respective gas costs in ether and USD (at
the time of writing), depending on the conversation size (the
cumulative length of all records) and the elliptic curve used in
the evidence signature. We also show the basic gas cost that
results from the size of a transaction [44]. We show two elliptic
curves, because no elliptic curve is supported by major TLS
implementations and Ethereum (TLS implementations mostly
support secp256r1 while Ethereum uses secp256k1). The costs
differ greatly for the signature schemes, because Ethereum’s
support for secp256k1 [4]. We had to implement verification
for secp256rl on top of Ethereum, resulting in a verification

cost around 1.2 million gas per signature verification. Overall,
we observe, that the proof validation costs are dominated by
the basic gas cost and cost for signature verification, whereas
our design only adds a marginal cost.

Another issue is the certificate chain verification within
the blockchain. To the best of our knowledge, there is no
blockchain-based system to verify TLS signatures based on
the web-PKI. We, therefore, suggest that the verifying smart
contract knows the generator’s (e.g. the content provider’s)
public key so that it can omit the certificate chain verification.
Our smart contract library supports this functionality and our
website allows the generation of (blockchain-specific) proofs
without the certificate chain. Essentially, the public key is
thereby pinned inside the smart contract, which, however,
might allow this pinning to be updated. Once the smart
contract has verified the proof, it knows that the conversation
is authentic and can act immediately, e.g. perform a matching
payout, save the content or save a content hash in order to
avoid future verifications.

Given our smart contract implementation, TLS-N allows to
connect web-based content from any TLS-N-enabled content
provider such that any smart contract can operate on the
provided, non-repudiable data. Note that the requester is not
required to be trusted, and as such any requester can submit
a TLS-N proof to the smart contract. Therefore, clients can
even use web services, such as at https://tls-n.org, to generate
proofs. On the project website we also provide an example
oracle using our library. The oracle accepts proofs from the
bitcoin.com-API [27] to securely insert bitcoin prices into the
blockchain.

C. Evaluation

In the following we evaluate the performance of our
implemented TLS extension using real world examples and
synthetic examples to test its scalability, as shown in Table III
and Figure 4.

1) Real-world Examples: We evaluate the performance of
TLS-N for real-world examples by replaying recorded HTTP
connections of web services, such as the Twitter API, Facebook
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API, YAHOO! API and a Google Search (cf. Table III).
Since the network latency is irrelevant for the proof size and
the processing times, we locally replay the recorded traffic
between a Lenovo X220 laptop and a server with an Intel
Core i7.

We first study the time we deem most critical, the server’s
processing time during the TLS connection. For conversation
sizes below 6 KB the server has a total processing time of
less than 3.5 ms. After processing all the records during the
connection, the server’s final step of the evidence generation is
independent of the conversation size. For chunk-level proofs,
we filter all cookies, passwords and authentication tokens, but
we also show an unfiltered record-level proof, namely archiv-
ing a Wikipedia page, which is significantly more efficient
given the conversation size.

2) Performance Projections: In Figure 4a, we study the
scalability of proof generation and verification using syn-
thetically generated proofs. For each size, we create random
conversations consisting of 2000-byte records. We observe that
the proof generation and verification times scale linearly in the
conversation size. Regarding the proof verification, Figure 4a
shows the worst-case scenario, as the proofs contain no hidden
data and as such all salt and Merkle tree nodes have to be
computed. We observe that proofs with record-level granularity
are significantly efficient, as Merkle and salt trees only have a
single node.

In Figure 4b, we find that server processing times scale
linearly in the record size. We plot the average server side
processing time for a single record depending on the record
length and the chunk size. Bigger chunk sizes require less
computation, but have a coarse-grained privacy protection.
Along this trend, record-level granularity is by far the most
efficient solution.

3) Latency Overhead: To estimate the real-world overhead
of a complete HTTP request, we measure the overhead of
our implementation on the latency of HTTP requests to an
Apache server running on an Amazon AWS c4.large instance.
In each request, the client requests a file of a size between
10 and 107 bytes (in powers of 10). For each file size, the
average time from sending the request until the file is received
is plotted in Figure 4c. Again, we use a chunk size of 16 B.
We observe that as long as the whole file can be sent in a
single record (i.e. its size is smaller than 16 KB), the latency
of TLS 1.3 without TLS-N remains below 10 milliseconds.
For larger files the overhead increases but remains below one
second for 10MB files. Even though our implementation is
neither optimized or parallelized, i.e. the overhead could still
be reduced, the overhead appears tolerable. Additionally, recall
that this was achieved with a relatively small chunk size of
16 B.

VI. SOLUTION SPACE AND RELATED WORK

In the following we summarize existing solutions and their
limitations, provide insights on possible strawman solutions
and compare their applicability to the use-cases from Section II
and which properties they satisfy.
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A. Related Approaches

In this section, we overview approaches that are related to
our design and describe their properties.

Content Extraction Signatures [40] aim to solve a similar
problem. Given a signed document, different parts can be ex-
tracted while the signature remains valid and is still verifiable
by third parties. Content Extraction Signatures consist of a
“PseudoRandom Generator with Seed Extraction” correspond-
ing to our salt tree and use merkle trees based on commitments.
As they are only designed for a single document, the document
length is included in the signature. We include the record
length and the originator information in the Merkle root node.

Redactable Signatures [22] as proposed by Johnson et al.,
are also design-related. Their GGM tree [15] corresponds to
our salt tree and they use a Merkle tree, however without
commitments. However, they do not include the overall docu-
ment length in the proof so that a verifier cannot observe how
much data was “redacted”, if it was “redacted” at the end of
the document. Also, their solution requires a marker in every
Merkle tree node which is less efficient.

Further additions to redactable signatures provide trans-
parency [6], [24]. These signatures aim to prevent any in-
ference attacks as they hide the structural information of the
data. Some schemes even make it impossible for the verifier to
observe a redaction. In our work, we intentionally reveal the
fact that data was hidden and its structural information (FP).
Previously motivated [22], we provide our motivation for this
design through the Content Hiding Attack.

Another related solution, Sanitizable Signatures [7], can
be generated by a signer using its private key. They also
include the public key of a designated sanitizer and a division
into blocks and admissible. These admissible blocks can later
be changed by the sanitizer. However, in our design there
shouldn’t be a designated sanitizer. To simplify adoption and
deployment, any generator-accepted peer can act as requester.

Authenticated Data Structures [32], [11] achieve a similar
goal as our design. An untrusted party extracts or computes a
result based on a signed construct so that the result correct-
ness can be verified by a third party. However, authenticated
data structures are more aimed at data outsourcing, e.g. for
databases.

B. Existing and Strawman TLS Solutions

In this section, we look at other solutions to provide non-
repudiation through TLS and present attacks according to our
adversarial definition in Section IV. The solutions and their
provided properties are summarized in Table I'V.

TLS Sign is a proposed extension [17] for TLS 1.1. TLS
Sign defines a new sub-protocol (or content type) for TLS
called TLSSignOnOff (in addition to the three already existing:
Handshake, Application data, and Alert). Both, client and
server can use the TLSSignOnOff messages to notify their
peer that they will start or stop transmitting signed data, i.e.,
the sub-protocol is used to specify the evidence window. In
the evidence window, each record is hashed, and a signature
over this hash is generated. When the stop signal is triggered,
the generator gathers all hash signature pairs and sends them
to the requester as evidence.



Server side during TLS session
Online Upon Request Client side, Offline
Conversa- | Number TLS-N . Ev1denc'e Proof Proof . Proof Hidden
. . X Evidence | Generation | Proof Rt Generation R . Data, e.g.,
Use Case tion Size of Processing . . Size . Verification .
(B) Records Time (ms) Size (B) Time Type (B) Time Time (ms) cookies
) (ms) (ms) ) (B)
Twitter API 5,320 3 3.223 84 0.404 | Chunk 5,668 9.491 10.345 348
Facebook API 3,187 4 2.041 84 0.394 | Chunk 3,629 8.410 9.734 224
YAHOO! API 2,038 4 1.376 84 0.395 | Chunk 2,676 8.721 10.032 182
Oanda API 935 2 0.662 84 0.397 | Chunk 1,414 6.320 8.767 161
Google Search* 549,530 424 283.162 84 0.398 | Chunk | 552,180 357.411 231.934 10,001
Wikipedia Archive 585,136 218 11.418 84 0.339 | Record | 589,924 20.949 20.662 0

TABLE III: Use case evaluation: For each use case we give

its sizes, total, server-side processing time during the session, the

evidence generation time (performed upon request) and the client-side times for proof generation and verification. We highlight
the only additional latency during the TLS session. Times are averaged over 20 repetitions. When applicable, the chunk size was
16 B. *The Google Search includes many records due to auto-completion.™ The proof size includes the conversation size.
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TABLE IV: Provided properties satisfied by the different
solutions. @ = provided property, © = partially provided
property, - = not provided property.

The development of TLS Sign had stopped before a final
version was released; thus this extension is incomplete. TLS
Sign’s design presents following disadvantages: TLS Sign is
inefficient, because it requires one asymmetric signature per
record within the evidence window. TLS Sign is vulnerable
to content reordering and content omission attacks. Therefore,
TLS Sign only provides NRO and no timing information or
message ordering.

TLS Evidence is a TLS extension [5]. Similar to TLS Sign,
the client expresses his intent to use TLS Evidence in the TLS
extension field. TLS evidence uses a set of new alert messages
to be transmitted in the existing alert protocol to define the
evidence window. The requester sends an alert message and
waits (i.e. he is not allowed to send any messages) for the
responding alert. After exchanging these alerts, the evidence
window is open until one of the peers sends an alert, trig-
gering a corresponding reply. Then, the peers exchange their
certificates and generate the following evidence: a signature
over a timestamp, a hash over all sent messages, a hash over
all received messages and a hash of the handshake.

TLS evidence has several limitations. First, for human-
centered use cases it is unclear when to start and stop the
evidence collection.Second, since TLS evidence provides a
signature over the hash of all sent and the hash of all received
messages, it only provides a partial order within the sent
and the received messages. However, the total order between
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sent and received messages is not preserved. Therefore, TLS
Evidence is vulnerable to the content reordering attack, as
seen in Figure 5. Because the evidence window can be opened
after some content has already been transmitted, TLS Evidence
is also vulnerable to the content omission attack. Finally, as
the included timestamp is the time of evidence generation, a
time shifting attack is possible. Therefore, TLS Evidence only
provides NRO, NRR, a partial order and upper time bound.

MAC Chaining was described in the IETF mailing list [25]
as combining the already-used Message Authentication Codes
(MACG:s) of individual records to a MAC over the complete
communication. MAC Chaining suggests including the MAC
of the previous record into the current record and thereby
chaining the MAC properties. Finally, to provide the evidence
the last MAC of the communication is signed to verify the
whole stream with very small overhead. Two variants of MAC
Chaining are proposed that either verify only one side or both
sides of the communication.

However, in TLS 1.3 a proof for MAC Chaining would
have to include the TLS traffic secrets used for authenticated
encryption (AEAD) [29] to allow the verification of individual
MAGC:s. Given such a proof, including the TLS traffic secrets,
the signature of the last MAC and the conversation content, the
adversary can create proofs with different conversation content.
In short, the unforgeability of Py is violated. This is because
AEAD authentication tags, for all cipher suites available in
TLS 1.3 [39], are not considered collision resistant if the key
is known to the adversary. We therefore conclude that MAC
Chaining provides no non-repudiation as proofs can be forged
given an existing proof.

Signing the complete TLS session from the beginning of the
handshake until one party closes the connection would be one
of the simplest solutions to provide non-repudiation. The evi-
dence window would thereby cover the complete connection.
Similar to previous work, such an extension would require
the inclusion in the handshake and an additional evidence
message at the end of the session.The evidence would be order-
preserving. However, this solution requires the requester to
store all records in order to be able to compute the final signa-
ture and would necessarily result in a big proof size. Finally,
such a non-repudiation service offers no privacy protection.
In contrast our record-level approach has comparably low
computational costs, while being more efficient and providing



record-level privacy protection.

Signing content at the application layer could be another
non-repudiation solution, as one could argue that such a func-
tionality should not be handled at the TLS layer. Two parties
can exchange signed content on the application layer by explic-
itly requesting to sign data, or employ already existing proto-
cols such as OpenPGP [8]. Application layer non-repudiation
however suffers from several disadvantages. First, regarding
reusability, an application layer solution would only support a
particular protocol/application. Having a TLS layer solution,
however, enables any TLS-based application to benefit from
non-repudiation. Second, an application layer solution would
require that private keys are exposed to the application layer,
contradicting the principle of minimum exposure and that the
TLS layer is responsible of managing the cryptographic keys.

There are existing solutions providing additional authen-
tication for REST-ful HTTP as studied and extended by Lo
Tacono et al. [28]. However, these solutions include different
HTTP headers, would have to be extended for future headers
and provide authentication only. A TLS-based non-repudiation
solution includes all of the HTTP traffic and allows the proof
contents to be chosen during proof generation. Finally, in
contrast to the existing solutions, TLS-based non-repudiation
solves the problem of public key authentication by leveraging
the already established web-PKI. Using the existing PKI from
the application layer would require the exposure of private
keys.

As explained in the previous section, earlier works are
vulnerable to a number of attacks and do not achieve all of
the desirable properties. Furthermore, they don’t easily allow
the specification of the evidence window and, therefore, limit
usability. The protection of sensitive information moreover is
only feasible on a record granularity which is impractical for
most applications (e.g., stock market API).

1) Attacks on Existing TLS Solutions: In this section we
present attacks against existing TLS solutions apart from the
already explained attack on MAC Chaining.

a) Time Shifting Attack: In Section II we described
why proofs should contain timing information. However, an
adversary acting as requester can manipulate time information
included in the proof. The possible kind of manipulation
depends the kind of timing information included in the proof.

If a single timestamp is included, the adversary can ma-
nipulate the connection according to its type. If the proof
generation time is included, the adversary can request the
information at time ¢, then keep the connection open for a time
duration At and finally request the proof at time ¢’ = ¢ + At.
Note that At may be substantial as TLS connections can
be long lived. Therefore, the proof contains timestamp ¢’ for
content requested at time ¢. Even if At is only in the order
of minutes, this could have big impacts for data feeds such
as stock prices or currency exchange rates. Thus, if such
attacks are possible, the timing information is not trustworthy,
violating Py.

b) Content Reordering Attack: As our system makes no
assumptions about the higher level protocol, we must assume
that there are cases where the order of messages is important.
In particular, the verifier should be able to identify the message
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order from the perspective of the generator, i.e. the relative
order of sent and received messages.

If the adversary can perform a partial content reordering or
the content order is not clear from the proof, unforgeability is
violated. The scheme cannot prove non-repudiation of conver-
sation (NRC) as the context is unclear. An example relevant
for TLS Sign and TLS Evidence is shown in Figure 5.

c) Content Omission Attack: If the adversary acts as the
requester and if the evidence window does not start right after
the TLS handshake, i.e., the non-repudiation service allows
omission of content as in TLS Sign or TLS Evidence, P»
is violated. Figure 6 shows a scenario where the adversary
requests a resource x before opening the evidence window,
immediately requesting another resource y and closing the
evidence window. Now, only two records are in the evidence
window: the request for y and the response for x.

If the upper-level protocol does not supply any resource
identifier in the response, as is the case for HTTP 1.x, it
appears to a verifier that x was the legitimate response to the
request for y. Therefore such non-repudiation services provide
no request-response binding and cannot provide a NRC.

d) Content Hiding Attack: In this attack the adversary
hides important communication content of variable-length pro-
tocols by abusing the privacy protection features. In particular,
the adversary hides a part of the communication, e.g. a
complete request, in order to trick the verifier. An example
is shown in Figure 7.

In Figure 7 we assume a simple protocol with three
message types: authentication with a password (Auth), requests
with an identifier (Req) and responses. As passwords, identi-
fiers and responses can be of variable length, all messages are
terminated with a special character (\0).

The adversary first starts evidence collection, then authen-
ticates, sends two requests for resources x and y and then
requests the evidence so that only the response for x will
be included in the evidence. If the non-repudiation service
allows the protection of information, the adversary hides the
password along with the request for x (up until the terminating
character). The verifier observes the authentication with a
hidden password, a request for y and the response 123. The
verifier therefore incorrectly assumes that 123 is the correct
response for resource y, even though it is 987.

The adversary can send authentication and first request
within the same TLS record, so that the verifier cannot use
TLS metadata to determine whether an extra request was sent.

C. Orthogonal Solutions

In the following, we describe orthogonal solutions that
offer evidence of TLS sessions using a trusted third party, e.g.,
TLSnotary [42] and Town Crier [46].

1) TLSnotary: TLSnotary [42] provides a service that
allows a third party auditor to attest a TLS connection between
a server and a client. If the client follows a particular protocol
with a third party auditor, while initiating a connection to a
server, the third party auditor is able to claim with certainty
that the client provided data that originated from the server.
TLSnotary modifies the TLS handshake protocol on the client
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Fig. 5: Content Reordering Attack: The left figure shows the
original and the right figure the signed conversation. Due
to content reordering, the response 123 seems to belong to
request y, which is incorrect.
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Fig. 7: Content Hiding Attack: The left figure shows the orig-
inal and the right figure the signed and redacted conversation.
The verifier can not determine whether a long password was
used or an additional request took place.

side by leveraging particular properties of TLS 1.0 and TLS
1.1. The modified protocol prevents the client from learning the
TLS key material that would allow the client to authenticate
traffic from the server. More specifically, the client is not able
to generate the server MAC key, only the third party auditor
is capable of doing so, effectively preventing the client from
crafting traffic that seemingly originates from the server. After
the client provided a hash of the traffic, the third-party auditor
releases the TLS server MAC key. The client can then verify
the message authentication.

a) TLSnotary Limitations: Although TLSnotary pro-
vides the capability of notarizing TLS connections, it comes
with several limitations and security issues.

First, TLSnotary is only supported up to TLS 1.1. The
properties that are used by TLSnotary were removed in ver-
sions 1.2 and 1.3. TLS 1.1 and below are considered less
secure than current TLS versions. Second, TLSnotary uses and
can only use the hash functions MD5 and SHA-1, both of
which can be considered deprecated [41]. Third, TLSnotary
only supports the RSA key exchange, which does not provide
forward secrecy. Last, TLSnotary requires trust in a third party
in most use cases, e.g. if the evidence should be publicly
verifiable. If the verifier takes the role of the auditor in the
protocol, a trusted third party is not required. However, in that
case, the verifier needs to take part in the interactive protocol,
i.e. evidence of a past session cannot be provided.
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Fig. 6: Content Omission Attack: The left figure shows the
original and the right figure the signed conversation. Since
context is missing in the signed conversation, the response
123 appears to belong to request y which is incorrect.

2) Town Crier: Town Crier [46] allows disintermediation
through the Intel SGX technology. Town Crier can provide
publicly verifiable data feeds based on the contents of a TLS
session, but it can also do more as it has computational
resources and allows further confidentiality. In order to provide
verifiable data feeds for smart contracts (e.g. on the Ethereum
blockchain [44]), the core of Town Crier runs in an SGX
enclave and can thus provide attestation that the correct code
was executed. Town Crier then forwards information that was
provided by an HTTPS website to a smart contract on the
blockchain.

a) Town Crier Limitations: Similarly to TLSnotary,
Town Crier requires a trusted third party, i.e., a client of the
service needs to trust Intel since the attestation relies on the
security of Intel SGX. In contrast to TLSnotary, Town Crier
always requires the trusted third party and requires correct
SGX attestation.

VII. DISCUSSION

In the following we discuss observations and possible
avenues for future work. Our solution is not directly applicable
to Datagram TLS (DTLS) that is based on UDP. The DTLS
extension remains as a challenge. Moreover, because TLS
1.3 provides simplified resumption features, TLS-N could be
extended to support TLS session resumption.

A. Validity or Expiry of Proof

A proof should only by considered valid as long as all
involved TLS certificates are neither outdated nor revoked.
In order to retrospectively understand the time of validity
of a proof, either the generator or the validator could make
use of a timestamping service attesting the existence of the
proof. Besides a centralized service, a cryptographic hash of
the proof could also be submitted to a blockchain, effectively
timestamping the first occurence of the proof and reducing the
trust into a single entity.

B. Variable-sized chunking

Our current solution provides fixed-size chunking which
is generally applicable, but which might not represent the
most efficient solution for the privacy protection of certain
applications. Cookies or access tokens (e.g. an OAuth bearer
token [18]) are typically stored in the HTTP header. In a



hypothetical HTTP mode, TLS-N could support variable-sized
chunking, where one chunk could represent one HTTP header.
The privacy protection of one header would therefore be more
efficient.

C. SNARKs for extended Proofs

In some cases, it may be desirable for a requester to
provide a more fine grained proof. For example, if a higher-
level protocol is used that contains large sections of sensitive
variable length data, an attacker could succeed with a content
hiding attack (cf. Section VI-B1d). In such cases, the proof
will no longer convince a verifier of its validity. Therefore, a
requester can extend the TLS-N proof with a zk-SNARK [3].
Such a proof could e.g. prove that the hidden content matches
some regular expression, i.e. that no non-sensitive content is
censored that is required for the correct semantic meaning of
the provided data.

Additionally, a prover can extend a TLS-N proof with a zk-
SNARK to prove some statement about the sensitive data. For
example, if a party requires proof of sufficient funds, a prover
can provide a TLS-N proof of his bank statement but censor his
actual bank account balance. He can then provide a zk-SNARK
stating that his balance is above some threshold value. Since
the TLS-N proof contains a signature of the bank, the verifier
is convinced of the origin of the bank account information but
since the sensitive content is hidden, he does not receive any
unnecessary information.

D. Applicability to future TLS versions

As we have argued through this paper, previous are in-
sufficient as they rely on specific features of outdated TLS
versions. This raises questions about the future applicability
of TLS-N. We clearly cannot predict the future development
of TLS. However, in contrast to TLSnotary that relied on very
specific algorithms, TLS-N uses the generic security primitives
of TLS 1.3 and does not depend on their exact implementation.
As an example, TLS-N works with any strong cryptographic
hash function.

VIII. CONCLUSION

In this paper we present TLS-N, the first efficient
and privacy-preserving TLS extension that provides non-
repudiation of a TLS conversation based on content extraction
signatures. Our flexible, parametrized design allows the trade-
off between efficiency and privacy, being especially efficient
if privacy is not required. No trusted third party or trusted
hardware is required while the security assumptions of TLS
are inherited and TLS primitives are reused.

Our real-world evaluation including recorded traffic and an
Apache Server module demonstrate the usability. For smaller
requests, such as API calls, the extra latency is less than 1.5 ms.
This secure and efficient non-repudiation solution for TLS will
enable parties to provably share the vast amounts of content
accessible through TLS — and thus provide disintermediation
leading to more trustworthy and decentralized services.

In the future we plan to provide an RFC for TLS-N and
also aim to resolve the issue of certificate chain verification
on the blockchain. Furthermore, we plan to demonstrate how
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TLS-N can be used to generate proofs for complex websites
whose content is transferred through multiple, parallel TLS
connections.
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