Metasurface-generated holography has emerged as a promising route for fully reproducing vivid scenes by manipulating the optical properties of light using ultra-compact devices. However, achieving multiple holographic images using a single metasurface is still difficult due to the capacity limit of a single meta-atom. In this work, an inverse design method based on gradient-descent optimization is presented to encode multiple pieces of holographic information into a single metasurface. The proposed method allows the inverse design of single-cell metasurfaces without the need for complex meta-atom design strategies, facilitating high-throughput fabrication using broadband low-loss materials. By exploiting the proposed design method, both multiplane red-green-blue (RGB) color and three-dimensional (3D) holograms are designed and experimentally demonstrated. Multiplane RGB color holograms with nine distinct holograms are achieved, which demonstrate the state-of-the-art data capacity of a phase-only metasurface. The first experimental demonstration of metasurface-generated 3D holograms with completely independent and distinct images in each plane is also presented. The current research findings provide a viable route for practical metasurface-generated holography by demonstrating the high-density holography produced by a single metasurface. It is expected to ultimately lead to optical storage, display, and full-color imaging applications.
Keywords: holography; inverse design; metasurface; multi-color; three-dimensional.
© 2023 Wiley-VCH GmbH.