Abstract
We investigated the effects of chlorophyll derived from Chlorella on gastrointestinal absorption of seven types of polychlorinated dibenzo-p-dioxin (PCDD) and 10 types of polychlorinated dibenzofuran (PCDF) in Wistar rats. Twenty-eight rats were randomly distributed into seven groups (n = 4). After overnight food deprivation, rats were given 4 g of the basal diet or 4 g of the chlorophyll diet containing 0.01-0.5% chlorophyll one time on day 1; each diet also contained 0.2 mL PCDD and PCDF standard solutions. The amounts of fecal excretion of PCDD and PCDF congeners from days 1 to 5 in the group fed 0.01% chlorophyll were 64.8% for 1,2,3,7,8-pentaCDD, 78.6% for 1,2,3,4,7,8-hexaCDD, 73.5% for 1,2,3,6,7,8-hexaCDD, 58.5% for 1,2,3,7,8,9-hexaCDD, 33.3% for 1,2,3,4,6,7,8-heptaCDD, 85.7% for 1,2,3,7,8-pentaCDF, 77.3% for 2,3,4,7,8-pentaCDF, 88.6% for 1,2,3,4,7,8-hexaCDF, 78.0% for 1,2,3,6,7,8-hexaCDF, 62.5% for 1,2,3,7,8,9-hexaCDF, 84.1% for 2,3,4,6,7,8-hexaCDF, 41.7% for 1,2,3,4,6,7,8-heptaCDF, and 40.0% for 1,2,3,4,6,7,8-heptaCDF greater (p < 0.01) than those of the control group, respectively. The fecal excretion of PCDD and PCDF congeners was remarkably increased along with the increasing dietary chlorophyll. The amounts of PCDD and PCDF congeners in rats on day 5 administered dioxin mixtures were lower in the 0.01% chlorophyll group than in the control group, ranging from 3.5 to 50.0% for PCDD congeners and from 3.7 to 41.7% lower for PCDF congeners, except for 2,3,7,8-tetrachlorodibenzofuran. The amount of PCDD and PCDF congeners in rats was remarkably decreased along with the increasing dietary chlorophyll. These findings suggest that chlorophyll is effective for preventing dioxin absorption via foods.
Full Text
The Full Text of this article is available as a PDF (83.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abraham K., Hille A., Ende M., Helge H. Intake and fecal excretion of PCDDs, PCDFs, HCB and PCBs (138, 153, 180) in a breast-fed and a formula-fed infant. Chemosphere. 1994 Nov-Dec;29(9-11):2279–2286. doi: 10.1016/0045-6535(94)90395-6. [DOI] [PubMed] [Google Scholar]
- Baxter J. H. Absorption of chlorophyll phytol in normal man and in patients with Refsum's disease. J Lipid Res. 1968 Sep;9(5):636–641. [PubMed] [Google Scholar]
- Birnbaum L. S., Decad G. M., Matthews H. B. Disposition and excretion of 2,3,7,8-tetrachlorodibenzofuran in the rat. Toxicol Appl Pharmacol. 1980 Sep 15;55(2):342–352. doi: 10.1016/0041-008x(80)90096-4. [DOI] [PubMed] [Google Scholar]
- Brewster D. W., Birnbaum L. S. Disposition and excretion of 2,3,4,7,8-pentachlorodibenzofuran in the rat. Toxicol Appl Pharmacol. 1987 Sep 15;90(2):243–252. doi: 10.1016/0041-008x(87)90332-2. [DOI] [PubMed] [Google Scholar]
- Brewster D. W., Birnbaum L. S. Disposition of 1,2,3,7,8-pentachlorodibenzofuran in the rat. Toxicol Appl Pharmacol. 1988 Sep 30;95(3):490–498. doi: 10.1016/0041-008x(88)90367-5. [DOI] [PubMed] [Google Scholar]
- Christou M., Savas U., Schroeder S., Shen X., Thompson T., Gould M. N., Jefcoate C. R. Cytochromes CYP1A1 and CYP1B1 in the rat mammary gland: cell-specific expression and regulation by polycyclic aromatic hydrocarbons and hormones. Mol Cell Endocrinol. 1995 Nov 30;115(1):41–50. doi: 10.1016/0303-7207(95)03668-w. [DOI] [PubMed] [Google Scholar]
- Dashwood R. H. Protection by chlorophyllin against the covalent binding of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) to rat liver DNA. Carcinogenesis. 1992 Jan;13(1):113–118. doi: 10.1093/carcin/13.1.113. [DOI] [PubMed] [Google Scholar]
- Edenharder R., Leopold C., Kries M. Modifying actions of solvent extracts from fruit and vegetable residues on 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-3,4-dimethylimidazo[4,5-f]quinoxaline (MeIQx) induced mutagenesis in Salmonella typhimurium TA 98. Mutat Res. 1995 Feb;341(4):303–318. doi: 10.1016/0165-1218(95)90101-9. [DOI] [PubMed] [Google Scholar]
- Guo D., Schut H. A., Davis C. D., Snyderwine E. G., Bailey G. S., Dashwood R. H. Protection by chlorophyllin and indole-3-carbinol against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced DNA adducts and colonic aberrant crypts in the F344 rat. Carcinogenesis. 1995 Dec;16(12):2931–2937. doi: 10.1093/carcin/16.12.2931. [DOI] [PubMed] [Google Scholar]
- Iriyama K., Ogura N., Takamiya A. A simple method for extraction and partial purification of chlorophyll from plant material, using dioxane. J Biochem. 1974 Oct;76(4):901–904. [PubMed] [Google Scholar]
- Kohn M. C., Lucier G. W., Clark G. C., Sewall C., Tritscher A. M., Portier C. J. A mechanistic model of effects of dioxin on gene expression in the rat liver. Toxicol Appl Pharmacol. 1993 May;120(1):138–154. doi: 10.1006/taap.1993.1096. [DOI] [PubMed] [Google Scholar]
- Masuda Y. Approach to risk assessment of chlorinated dioxins from Yusho PCB poisoning. Chemosphere. 1996 Feb;32(3):583–594. doi: 10.1016/0045-6535(95)00314-2. [DOI] [PubMed] [Google Scholar]
- McLachlan M. S. Digestive tract absorption of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in a nursing infant. Toxicol Appl Pharmacol. 1993 Nov;123(1):68–72. doi: 10.1006/taap.1993.1222. [DOI] [PubMed] [Google Scholar]
- Morita K., Hirakawa H., Matsueda T., Iida T., Tokiwa H. [Stimulating effect of dietary fiber on fecal excretion of polychlorinated dibenzofurans (PCDF) and polychlorinated dibenzo-p-dioxins (PCDD) in rats]. Fukuoka Igaku Zasshi. 1993 May;84(5):273–281. [PubMed] [Google Scholar]
- Morita K., Matsueda T., Iida T., Hasegawa T. Chlorella accelerates dioxin excretion in rats. J Nutr. 1999 Sep;129(9):1731–1736. doi: 10.1093/jn/129.9.1731. [DOI] [PubMed] [Google Scholar]
- Morita K., Matsueda T., Iida T. [Effect of dietary fiber on fecal excretion and liver distribution of PCDF in rats]. Fukuoka Igaku Zasshi. 1995 May;86(5):218–225. [PubMed] [Google Scholar]
- Morita K., Matsueda T., Iida T. [Effect of green vegetable on digestive tract absorption of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in rats]. Fukuoka Igaku Zasshi. 1999 May;90(5):171–183. [PubMed] [Google Scholar]
- Olson J. R. Metabolism and disposition of 2,3,7,8-tetrachlorodibenzo-p-dioxin in guinea pigs. Toxicol Appl Pharmacol. 1986 Sep 15;85(2):263–273. doi: 10.1016/0041-008x(86)90121-3. [DOI] [PubMed] [Google Scholar]
- Poland A., Knutson J. C. 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Annu Rev Pharmacol Toxicol. 1982;22:517–554. doi: 10.1146/annurev.pa.22.040182.002505. [DOI] [PubMed] [Google Scholar]
- Rose J. Q., Ramsey J. C., Wentzler T. H., Hummel R. A., Gehring P. J. The fate of 2,3,7,8-tetrachlorodibenzo-p-dioxin following single and repeated oral doses to the rat. Toxicol Appl Pharmacol. 1976 May;36(2):209–226. doi: 10.1016/0041-008x(76)90001-6. [DOI] [PubMed] [Google Scholar]
- Schecter A., Startin J., Wright C., Kelly M., Päpke O., Lis A., Ball M., Olson J. Dioxins in U.S. food and estimated daily intake. Chemosphere. 1994 Nov-Dec;29(9-11):2261–2265. doi: 10.1016/0045-6535(94)90393-x. [DOI] [PubMed] [Google Scholar]
- Wolfe W. H., Michalek J. E., Miner J. C., Pirkle J. L., Caudill S. P., Patterson D. G., Jr, Needham L. L. Determinants of TCDD half-life in veterans of operation ranch hand. J Toxicol Environ Health. 1994 Apr;41(4):481–488. doi: 10.1080/15287399409531858. [DOI] [PubMed] [Google Scholar]
- Yoshimura T., Hayabuchi H. Relationship between the amount of rice oil ingested by patients with yusho and their subjective symptoms. Environ Health Perspect. 1985 Feb;59:47–51. doi: 10.1289/ehp.59-1568095. [DOI] [PMC free article] [PubMed] [Google Scholar]