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In this study we analyze the travel patterns of 500,000 individuals in Cote d’Ivoire using mobile phone call
data records. By measuring the uncertainties of movements using entropy, considering both the frequencies
and temporal correlations of individual trajectories, we find that the theoretical maximum predictability is
as high as 88%. To verify whether such a theoretical limit can be approached, we implement a series of
Markov chain (MC) based models to predict the actual locations visited by each user. Results show that MC
models can produce a prediction accuracy of 87% for stationary trajectories and 95% for non-stationary
trajectories. Our findings indicate that human mobility is highly dependent on historical behaviors, and that
the maximum predictability is not only a fundamental theoretical limit for potential predictive power, but
also an approachable target for actual prediction accuracy.

S
tudies of mobility patterns and predictions of individual mobility trajectories are important in many
research fields, such as mobile computing, epidemic modeling, traffic planning and disaster response1–3.
Real-time locations visited by individuals are typically collected through mobile devices equipped with

global-positioning system (GPS) capability, mobile phone cell towers, or wireless local area network (WLAN)
access points.

Various methods have been proposed to forecast individual trajectories, including Markov chain (MC) mod-
els4,5, neural networks6, Bayesian networks7, and finite automaton8. Prediction accuracy has been shown to vary
according to the algorithm used and the context from which the location data come. For example, in an evaluation
of next cell prediction based on more than 6000 users on Dartmouth’s campus-wide Wi-Fi wireless network, it
was found that the best predictor (the O 2ð Þ-MC model) had an accuracy of about 65–72%9. In another study
where mobility traces of six researchers and GPS-locations of 175 individuals were used, the prediction accuracy
was shown to be in the range of 70% to 95% with anO 2ð Þ-MC model10–12. On the other hand, in an evaluation of
MC models for pedestrian-movement prediction, the prediction accuracy was as low as 2%, 45% and 74.4% for
the O 1ð Þ-MC model, hidden-Markov model, and the mixed MC model, respectively13.

The above studies investigated small numbers of individuals or special populations, and the results and
practical feasibility of the proposed new predictive algorithms were therefore difficult to generalize to the general
population. In addition, it was not clear how well these algorithms performed versus the best possible algorithm
that could theoretically be constructed; i.e., what is, for the given data type, the best possible accuracy achievable
and how well do the predictive algorithms perform versus such a benchmark? The highest potential accuracy of
predictability, termed ‘‘maximum predictability’’ (Pmax), is defined by the entropy of information of a person’s
trajectory (frequency, sequence of location visits, etc.). Pmax can be calculated by solving a limiting case of Fano’s
inequality (a relation derived from calculation of the decrease in information in a noisy information channel)14–16.

By measuring Pmax, Song et al showed, using a mobile phone dataset of 50,000 users in a high-income country,
that there is a 93% potential predictability in user mobility, despite very large differences in travel distances17.
Under much more extreme conditions and in a low-income setting, Lu et al analyzed a complete mobile phone
dataset of 2.9 million anonymous subscribers after the earthquake in Haiti in 2010, and found that despite massive
population movements and increased travel distances following the earthquake, the predictability of people’s
movements remained as high as 85%, indicating a fundamental regularity in human mobility1. These findings are
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promising for the design and improvement of predictive algorithms.
However, these studies did not show how close to the maximum
potential predictability the accuracy of actual algorithms can come
in practice.

In this study we aim to fill this gap in knowledge by measuring the
maximum predictability and performance of actual prediction algo-
rithms on a mobile phone data set of 500,000 users from Cote
d’Ivoire (CIV), West Africa. We also give an overview of population
mobility patterns during the data collection period, which took place
after the 2011 civil war. We find that the maximum predictability and
regularity in mobility in CIV is high, similar to what was found in
studies in Haiti and Europe1,17. The evaluation of practical predictive
algorithms on this dataset reveals that the maximum predictability
can be approached with MC-based models. Interestingly, we also

show that higher order MC models do not generate improved pre-
diction accuracy when compared to a first order MC model.

Results
The mobile phone dataset. Mobility data was provided by the
telecom company Orange and derived from call detail records
(CDR) from a random sample of 500,000 anonymous Orange
mobile phone subscribers, active during December 1, 2011 to April
28, 2012 in CIV. The user’s location was provided as the location of
the subprefecture (sous-préfecture in French) of the mobile phone
tower through which the call was routed. CIV is composed of 19
regions, which are further divided into 255 subprefectures (237 of
these subprefectures have at least one tower, see Fig. 1). The original
CDR contains approximately five million users (1/4 of the total
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Figure 1 | Administrative map of Cote d’Ivoire and distribution of cell phone towers. (http://sodexo.orange-labs.fr/GEOM_SUB_PREFECTURE.zip).
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population of CIV)18,19. Detailed description of the data can be found
in20.

The number of Orange subscriptions per person varies consid-
erably throughout the country, as does the overall population density
in CIV. For example, the region of Lagunes, which includes the
economic capital Abidjan, is home to 25% of the CIV population
and is the most frequently visited location for 43% percent of the
mobile phone subscribers in this dataset (see Fig. 2A). The distri-
bution of the number of location updates (calls and SMS) follows a
log-normal distribution (Fig. 2B), with 81.3% having between 100
and 2000 location updates. Seventy-seven percent of users had at
least one location update per day during two thirds of the data col-
lection period (Fig. 2C). Heterogeneity in visitation patterns was
high. While sixteen percent of subscribers were only found in one
subprefecture during the period, a few users were registered in more
than 50 subprefectures (Fig. 2D).

Overview of mobility and aggregated flows. The absolute change in
the number of subscribers in each region is dominated by the changes
in the region of Lagunes, where Abidjan is situated (Fig. 3A). Seven-
day cyclical patterns (workday-weekend cycles) are clearly visible for
several regions, e.g. Lagunes and Sud-Comoe, but other more
complex trends are also evident. An irregular change in population
flow was observed near the end of March and early April when the
numbers of users rapidly increased in Abidjan then decreased a few
days later (potentially partly related to Easter). In addition,

Bas-Sassandra, in the southwest experienced a decrease of users
during large parts of the period studied here.

In relative terms (Fig. 3B), several regions showed considerable
changes over the period of time analyzed, dominated by Denguele,
which showed a small change in absolute terms (see Fig. 3A). As we
see from Fig. 3C, both the distribution of average travel distances, �D,
and the radius of gyration, rg, (see Methods for definition) illustrate a
skewed decay over increasing traveling distances. While the move-
ments of the vast majority of users were confined within an area of
10 km, a few users traveled on average as far as 100 to 300 km per
day (Fig. 3D). Note that the radius of gyration is calculated from
location data on the level of the sub-prefecture and thus excludes
short movements.

Regularity and potential predictability. We now focus on the
regularity of the daily observed trajectories of the users by
allocating the last observed location (subprefecture) to each user’s
trajectory. To avoid the illusion of high predictability stemming from
users with many unknown locations, or from users who never
traveled to other locations, we include users who visited at least
two subprefectures, and were observable for more than 120 days in
the period (208,288 users).

The distributions of users’ random entropy (Srand), temporal-
uncorrelated entropy (Sunc) and true-entropy (Sreal) are presented in
Fig. 4A (see Methods). We can see that, consistent with findings from
previous studies, the entropy of visited locations is greatly reduced if
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Figure 2 | Characteristics of the mobile phone users. (A) Proportion of users in each region compared to the population. Modelled population data

based on 2002 official estimates were obtained from the AfriPop project27, and 2008 estimates were made by UN OCHA and CNTIG18. SIM1: the number

of users who made their first calls in this region; SIM2: the number of users who appeared for the majority of their time in this region. We use SIM1 and

SIM2 to approximate the number of residential mobile phone users in each region. (B) Distribution of the number of observations for each user during

the data collection period. Note that the x-axis is logged. (C) Number of active days on which each user made at least one call. (D) Distribution of the

number of different subprefectures visited by each user.
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we consider both the spatial and temporal correlation of the visit
sequences. The median value of Srand is 2.0, indicating that if we
assume that individuals randomly choose a location to visit the next
day, a typical individual could be found in any of 22.0 < 4 locations.
On the other hand, if we use information contained in the frequency
and sequence order of the trajectory of individuals, the uncertainty in
a typical individual’s whereabouts reduces to 2Sunc

~20:91<1:88 and
2Sreal

~20:71<1:64, in less than two locations.
Not surprisingly, the reduced uncertainty leads to increased max-

imum predictability, as shown in Fig. 4B. If information is available
only on the number of unique locations visited, Li, the accuracy of
any predictive algorithm cannot exceed 0.35. With the additional
information on frequency and temporal correlation, the average pre-
dictability increases to ,Punc. < 0.84, and ,Pmax. < 0.88,
respectively. Additionally, we evaluated the sensitivity of our entropy
and predictability measures to the sampling rate of the data, without
finding any important biases (see Supporting Information S1).

In Fig. 4C, we investigated the correlation between the radius of
gyration and the average predictability, ,P.. There is a steady
decrease of ,Prand. and ,Punc. when rg increases (measured
based on the centroid of each subprefecture). On the other hand,
,Pmax. stays around 0.85 for a wide range of rg g [20, 300]. This
finding is consistent with previous studies, revealing the independ-
ence of predictability on travel distance in human mobility1,17.
However, we have also examined other travel distance measure-
ments. Increases in average travel distance (�D) cause a slight decrease

in predictability. ,Pmax. ranging from 0.9 to 0.7 when �D increases
from 1 to 20 km, and stays around 0.63 0.68 for �D [ 20,70½ �. However,
interestingly, predictability decreases considerably with an increas-
ing number of unique locations visited. From Fig. 4E, we can see that
the average predictability ,Punc. and ,Pmax. decays almost lin-
early with the number of unique locations visited.

Prediction accuracy based on Markov-chain models. The predicta-
bility analysis in the previous section reveals that, by combining
information on frequency with temporal correlation of the trajec-
tory, the theoretical upper bound of prediction accuracy can get as
high as 0.88. However, the largest prediction accuracy that can be
achieved with properly designed predictive algorithms is not given
directly by this measure. In this section, we use MC(n) models to
predict the location of users on each day, by considering all previous
data points in the trajectory (see Methods). The accuracy of these
models is presented in Fig. 5A and shows accuracies of more than 0.8
for almost all days. The accuracy of MC-based models (,c. < 0.91),
MC(1) toMC(7), produce substantially higher accuracies than the
estimation method based only on frequency information, i.e., MC(0)
(,c. < 0.85).

There is however little difference between the performance of MC-
based models of different orders. At the beginning of the period when
historical information is limited, the accuracy of MC(1) is slightly
higher than the other MC models, however this difference becomes
very small when the historical trajectory is over 100 data points.

Figure 3 | Overview of population movements: (A) Cumulative change in number of users in each region. (B) Same data as in panel (A) but changes are

shown in proportion to the number of users in each region at the beginning of the period. (C) Distribution of average travel distances �D and the radius of

gyration, rg. (D) Cumulative probability distribution of average daily travel distance over the 150 study days.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2923 | DOI: 10.1038/srep02923 4



Another interesting finding from Fig. 5A, is that the MC-based
models perform more robustly than MC(0). For example, during the
later period of the data, there is a sharp decrease in the accuracy of
MC(0) (from 0.88 to 0.77), while the accuracy of MC-based models
shows a much smaller decrease, from 0.92 to 0.87. Irruptions of
decreased accuracy from the MC(0) model indicate that people
moved abnormally from their regular patterns. The sustainability
of MC-based models reveals that such abnormalities can be captured
partly by considering the temporal correlation of visiting sequences
in the trajectories.

The increase of ,c. over the observation period is not very appar-
ent from Fig. 5A, as ,c. is calculated based on a combination of users
with long and short historical trajectories. To investigate the effect of

trajectory length on the performance of algorithms, we removed, for
each user, the unknown locations and calculated the average prediction
accuracy for users with valid historical trajectories of the same length
Lhist. The results (Fig. 5B) show that the accuracy of MC(0) approaches
relative stability after around 15 historical data points. For a wide range
of Lhsit g [15, 120], ,c. is steady around 0.85, indicating that the
visiting behavior on frequency is relatively stable over time for users
with valid historical trajectories of this range. On the other hand, there
is a steady increase of ,c. for the MC-based models. When the
available historical trajectories contain more than 100 data points,
the average prediction accuracy climbs to over 0.9.

The performance of MC-based models indicates that, while the
predictability of a typical user is Pmax 5 0.88, which gives an upper

Figure 4 | Entropy and predictability analysis based on trajectory of visited subprefectures. (A) Shows the frequency distribution of Srand, Sunc and Sreal.

(B) Shows the frequency distribution of Prand, Punc and Pmax. (C) Shows the correlation between radius of gyration and Pmax. (D) Shows the correlation

between average travel distance �D and P. (E) Shows the correlation between the number of different locations visited and P.

Figure 5 | Visiting behavior and prediction accuracy. (A) Proportion of accurate predictions for each day based on historical data (users who were not

active on a day are excluded in the prediction). In (B), the accuracy of predictive algorithms increases with the length of historical trajectories. (C) Fraction

of time users spent in their most n visited subprefectures. Subscribers are divided into 10 groups based on the number of distinct locations they visited (N).
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bound for the accuracy of any predictive algorithm when the traject-
ory is stable, the MC-based models are able to produce estimates as
high as 0.91, even higher than the theoretical upper limit. Possible
reasons for why the practical algorithm can produce accuracies
higher than Pmax could be that the trajectory data contains only
one data point for each day, which means that the maximum length
of the trajectory can only be 150 and the movement patterns of
individuals may not yet have stabilized. To investigate the effect of
stability on the performance of prediction algorithms, we use the
Geweke diagnostic21,22 to classify Xi into stationary and non-station-
ary trajectories (see Methods). In Fig. 6, we can see that there is a clear
difference in the prediction accuracy of MC models between station-
ary and non-stationary trajectories: after 50 historical observations,
the average prediction rate is about 0.95 for non-stationary traject-
ories and only 0.87 for stationary trajectories. This finding confirms
that, given that the trajectory is stationary, the maximum predict-
ability,Pmax, provides an upper bound of accuracy for any prediction
algorithm. However, for non-stationary trajectories we show that
prediction accuracy can greatly surpass the maximum predictability.

MC-models considering higher orders (longer correlations of pre-
vious locations) do not necessarily improve prediction accuracy. For
example, for trajectories with the same historical length, the MC(4)
model always produces less precise predictions compared to other
MC-models (Fig. 5B). This finding is consistent with previous stud-
ies, in which the MC(n . 2) model was found to not bring important
improvement at the cost of a significant overhead in terms of com-
putation and space for the learning and storing of the mobility
model9,12. It is worth noting that a large part of the predictive power
of the studied prediction algorithm is due to the fact that many

individuals spent a substantial time in his/her top visited locations.
For example, users who visited four distinct subprefectures, still
spent almost 80% of their time in their most visited locations
(Fig. 5C).

Entropy, predictability and prediction accuracy. The evaluation of
predictive algorithms above reveal that, for this dataset, which is a
combination of stationary and non-stationary trajectories, the
maximum predictability Pmax can be achieved with a first-order
Markov chain model (MC(1)). In this section, we investigate
whether the individual predictability, Pmax

i , is correlated with the
accuracy in predicting all the locations when the trajectory
increases from 1 to T. We measure the individual prediction
accuracy (,ci.) by the proportion of accurate predictions over all
days for each individual (days without any location data are
excluded).

First, we check the correlation between prediction accuracy and
the disorder in the trajectory, i.e., Sreal. As we can see from Fig. 7A,
,ci. is highly correlated with the trajectory’s entropy; the larger the
entropy, the lower the prediction accuracy. The correlation coef-
ficient between Sreal and ,ci. is as high as 20.849, with p ,

0.000. Second, we investigate the correlation between prediction
accuracy and the maximum predictability, i.e., Pmax

i . Not surpris-
ingly, Pmax

i also correlates highly with ,ci., with a correlation
coefficient of 0.802, p , 0.000 (Fig. 7B).

The high correlation between predictability and prediction accu-
racy of the MC(1) model reveals that, as a measurement for disorder
and potential predictability, Sreal and Pmax

i capture the theoretical
limits for the predictive analysis of human movement behaviors,

1

Figure 6 | Prediction accuracy on stationary (A, C) and non-stationary (B, D) trajectories.
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and provide an approachable upper bound of predictive power for
this type of mobility data. More broadly, the approach used here
provides an important strategy to evaluate and guide the design
and improvement of mobility prediction algorithms.

Discussion
By investigating the movement of 500,000 mobile phone users
during the post-civil war period in Cote d’Ivoire, we have found a
potential predictability in user mobility as high as 88% in this West-
African, lower-middle income setting. The finding of high predict-
ability is consistent with two previous studies which investigated the
mobility patterns of mobile phone users in very different settings, one
in a high-income country with stable social conditions17 and one in a
low-income country following an extreme natural disaster1. By
applying MC-based estimate algorithms, we found that the first
order MC model (MC(1)) is able to produce an average predictive
accuracy of 91%, with stationary and non-stationary trajectories hav-
ing a predictive accuracy of 87%, and 95% respectively.

One would perhaps assume that Markov chains of second or sev-
enth order would produce next-location estimates with higher accu-
racy, as aggregated flows based on mobile phone data frequently
show weekly cycles, see e.g., Fig. 3A, and1,2,17. However, our evalua-
tions on the MC(n) models show that this information is not neces-
sary in this setting. This could be due to the fact that many people in
Cote d’Ivoire do not have a two-day weekend, and that unplanned
journeys are less common in resource-limited settings, which may be
true of travel in general23,24. The trajectories used for prediction con-
tain only the last observed location on each day, which makes it
difficult for the time series to reach stability. As we can see, there is
a big difference in the predictive power between stationary and non-
stationary trajectories, implying that the diagnostics for convergence
are critical for drawing conclusions from predictability analysis on
human mobility. Nevertheless, we believe that the evaluation of pre-
dictive performance on a daily basis is most practical for the long-
term investigation of population movements. For the purpose of this
study, we have only included the Markov chain based models in the
evaluation of predictive performance of algorithms. Future studies
may want to compare other predictive algorithms, such as dynamic
Bayesian networks (DBN)25, neural networks6 and finite automaton8,
and to evaluate the feasibility of predicting aggregated population
movements with individual-based travel behavior models.

In summary, this paper is, to the best of our knowledge, the first
attempt to investigate both the maximum predictability and how
close to this value practical algorithms can come when applied on

a large mobile phone data set. Our results not only show that the
predictability of human mobility is high, but also show that this high
predictability is achievable for daily population movement predic-
tions. These findings indicate that human mobility behavior is far
from random, and that individuals’ movements are highly influenced
by their historical behavior. With a good understanding of indivi-
duals’ travel patterns, mobility modeling and public policy decision
making, such as epidemic modeling, urban planning, and traffic
design, may be significantly improved.

Methods
Measures of mobility. We use the average travel distance, �D, and the radius of
gyration of the trajectory, rg, to measure the mobility property of individuals.
Specifically, let Mi 5 {m1, m2, …, mn} be the sequence of observed location updates for
person i during the period of data collection. Then �D and rg are defined by:

�D ið Þ~
Xn

j~2
mj{mj{1

�� �� ð1Þ

and rg ið Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
j~1 mj{�m
�� ��2

q
, where jmj 2 mj21j is the distance between location

mj and mj21, and �m~ 1
n

P
j mj is the center of mass of the trajectory26.

The radius of gyration is different from the average travel distance. Someone who
moves in a comparatively confined space will have a small radius of gyration even
though he or she covers a large distance. On the other hand, rg can be larger than �D if
someone travels with small steps but in a fixed direction or in a large circle. Note that
in the dataset used here we only know the location of each individual by subprefec-
ture, consequently, the centroid of each subprefecture is used to approximate the
coordinates of individuals. Such an approximation can introduce imprecision for the
measure of travel distances, but still provides useful information when comparing
mobility between users, as those who traveled across many subprefectures will have
larger rg and �D than those who spent most of their time in one or two subprefectures.

Measures of entropy and predictability. We are primarily interested in the stable,
long-term patterns of population mobility behavior as opposed to short-term
movements. Here we focus on entropy and predictability analysis of day-to-day
movements of individuals. Let Xi 5 {x1, x2, …, xT} be the sequence of daily locations
for person i during the data collection period of T days. xj is the last observed location
ID of person i on day j, otherwise we mark xj ‘‘unknown’’. The uncertainty (or
disorder) of the trajectories can be measured by entropy. Larger entropy indicates
greater disorder, and consequently reduces the predictability of an individual’s
movements.

Entropy. Following notation in17 we measure: (i) the random entropy, Srand
i ~log2Li ,

capturing the predictability of each user by assuming that the person’s whereabouts
are uniformly distributed among Li distinct locations in Xi; (ii) the temporal-uncor-
related entropy, Sunc

i ~{
PLi

k~1 pklog2pk , where pk is the frequency at which the
person visited the kth location among the Li distinct locations. Sunc

i takes into account
the number of different locations visited as well as the proportion of time i spent at
each location, decreasing the uncertainty of the trajectory, and; (iii) the true-entropy,
Sreal

i ~{
P

X’i5Xi
P X’ið Þ log2 P X’ið Þ½ �, where P X’ið Þ is the probability of finding a sub-

sequence X’i in Xi, considering both spatial and temporal patterns.

Figure 7 | Correlation between entropy, predictability and prediction accuracy. Data points are aggregated into intervals of equal lengths.

(A) Correlation between entropy and prediction accuracy. (B) Correlation between predictability and prediction accuracy.
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Predictability. Given the entropy E for an individual i, Fano’s inequality gives an upper
limit for the predictability of i, i.e., the level of accuracy the best possible predictive
algorithm can achieve:

PiƒPFano
i E, Lið Þ ð2Þ

where PFano
i is given by

E~H PFano
i

� �
z 1{PFano

i

� �
log2 Li{1ð Þ ð3Þ

and

H PFano
i

� �
~{PFano

i log2 PFano
i

� �
{ 1{PFano

i

� �
log2 1{PFano

i

� �
ð4Þ

Let Prand
i ~PFano

i Srand
i , Li

� �
, Punc

i ~PFano
i Sunc

i , Li
� �

and Pmax
i ~PFano

i Sreal
i , Li

� �
,

since Srand
i §Sunc

i §Sreal
i , it is true thatPmax

i §Punc
i §Prand

i . Comparing between these
three predictability measurements provides us with the ability to investigate how the
spatial distribution and temporal correlations in an individual’s trajectory improve
potential predictive power. Since Pmax

i provides the best possible predictive power
(because it uses the maximum information from Sreal

i ) we refer to it in this paper as the
‘‘maximum predictability’’.

Prediction algorithms. Predicting a user’s next location using Markov chain models.
To investigate how close we can get to achieving P with actual prediction algorithms
we implement several variants of Markov chain (MC) based models.

In an MC-based model, the trajectory of each individual is modeled as a Markov
chain of order n, which assumes that the movement of individuals between the Li

locations is a process with limited memory in the sense that the future location is
visited depending only on the previous n visited location, i.e., P Xtz1

i ~xtz1 Xt
i ~xt ,

���
Xt{1

i ~xt{1, . . . , X1
i ~x1:Þ~P Xtz1

i ~xtz1 Xt
i ~xt , Xt{1

i ~xt{1, . . . , Xt{nz1
i ~

���
xt{nz1:Þ, where Xt

i is a random variable representing the location for individual i at
time t.

Given the previous n locations Xt
i ~xt

i , Xt{1
i ~xt{1

i , . . . , Xt{nz1
i ~xt{nz1

i , the
prediction is then determined by the transition matrix, P, choosing the destination
location xpre(1 # pre # Li) which maximizes the probability:

P Xtz1
i ~xpre Xt

i ~xt
i , Xt{1

i ~xt{1
i , . . . , Xt{nz1

i ~xt{nz1
i

��� �

~maxLi
k~1 P Xtz1

i ~xk Xt
i ~xt , Xt{1

i ~xt{1, . . . , Xt{nz1
i ~xt{nz1

��� �� �

Increases of the order n in the Markov chain do not necessarily lead to improve-
ment in the prediction accuracy. However, to investigate the correlation of predictive
powers with the length of trips to historical locations considered, we vary n from 1 to 7
(one day to one week). If predictions for a higher ordered MC(n) model did not exist
(i.e., the order of the previous n locations is unique in history), the prediction from a
lower ordered model, MC(n 2 1), was used.

The performance of each model was evaluated by the accuracy, c, which is the
proportion of accurate predictions from all predictions made:

c~
number of correct predictions

total number of predictions
: ð5Þ

Users who were not active on a specific day were excluded from the prediction.

Next place prediction using historical frequency data. For comparison we implemented
a simple algorithm predicting the next location based on the most visited location in
the historical trajectory: P xpreð Þ~maxLi

k~1 pk Xt
i ~xt

i , Xt{1
i ~xt{1

i , . . . , X1
i ~x1

i

���� �
,

where pk is defined the same as in Sunc. As no temporal correlation is considered in this
algorithm, we refer it as MC(0).

Using the MC models, we repeatedly updated the transition matrices and the
visiting frequency for each user when new locations were observed in the trajectory.
We predicted for each user the most likely location s/he would visit on each day based
on all the historical information, i.e., for each day t, the transition matrices and
visiting frequency are constructed based on the trajectory from day 1 to day t 2 1.

Geweke diagnostic. The Geweke Diagnostic21,22 is a test to detect failure of
convergence by comparing values in the early part of a Markov chain to those in the
latter part of the chain.

Let X1
i ~ x1

i,t : t~1, . . . , n1

n o
and X2

i ~ x2
i,t : t~na, . . . , n

n o
, where 1 , n1 , na

, n. let n2 5 n 2 na 1 1 and define

�h1~
1

n1

Xn1

t~1

x1
i,t , ð6Þ

�h2~
1

n2

Xn2

t~na

x2
i,t : ð7Þ

Then the statistic

Zn~
�h1{�h2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ1 0ð Þ
n1

z
ŝ2 0ð Þ

n2

q ð8Þ

converges to a standard normal distribution as n1 R ‘ given that the chain is
stationary and (n1 1 n2)/n , 1.

In the above equation, ŝ1 and ŝ2 denote consistent spectral density estimates at zero
frequency21,22 for X1

i and X2
i , respectively.

Large Zn-scores then indicate rejection of the null hypothesis and provide evidence
that the chain is non-stationary. For the purpose of this study, we first converted the
values of xi,t into unique integers monotonically increasing from 1, and used a sig-
nificant level of a 5 0.05 and let n2/n 5 50%. A trajectory is said to be stationary only
if it passes all the tests at n1/n 5 0.2, n1/n 5 0.3, n1/n 5 0.4, and n1/n 5 0.5. By the end,
the proportion of trajectories that passed the Geweke test (stationary trajectories) was
49%, see also supporting figure S2.
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