Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Environmental impact of direct lithium extraction from brines

Abstract

Evaporitic technology for lithium mining from brines has been questioned for its intensive water use, protracted duration and exclusive application to continental brines. In this Review, we analyse the environmental impacts of evaporitic and alternative technologies, collectively known as direct lithium extraction (DLE), for lithium mining, focusing on requirements for fresh water, chemicals, energy consumption and waste generation, including spent brines. DLE technologies aim to tackle the environmental and techno–economic shortcomings of current practice by avoiding brine evaporation. A selection of DLE technologies has achieved Li+ recovery above 95%, Li+/Mg2+ separation above 100, and zero chemical approaches. Conversely, only 30% of DLE test experiments were performed on real brines, and thus the effect of multivalent ions or large Na+/Li+ concentration differences on performance indicators is often not evaluated. Some DLE technologies involve brine pH changes or brine heating up to 80 oC for improved Li+ recovery, which require energy, fresh water and chemicals that must be considered during environmental impact assessments. Future research should focus on performing tests on real brines and achieving competitiveness in several performance indicators simultaneously. The environmental impact of DLE should be assessed from brine pumping to the production of the pure solid lithium product.

Key points

  • Fresh water consumption of direct lithium extraction (DLE) needs to be urgently quantified. Many DLE technologies might require larger freshwater volumes than current evaporative practices, compromising their applicability in arid locations.

  • Chemical processing is not completed until a pure solid product is obtained. Energy consumption of DLE should be estimated for the overall process, including potential water extraction or evaporation from pure but dilute LiCl solutions, as is the case with many DLE technologies.

  • Lithium ions are only a minor component in continental, geothermal and oilfield brines. Thus, from a circular economy perspective, there is potential for extraction of more than one valuable mineral, notably, borates, magnesium, potassium and sodium salts.

  • Knowledge of the precise number, distribution and depths of brine and fresh water wells is vital for hydrogeological modelling of lithium brine deposits. The distinct hydrogeology of each salar means that each deposit should be modelled independently, and results from one exploitation cannot be directly extrapolated to another.

  • Environmental monitoring should be permanent and precede the start of the exploitation as environmental impacts might only be observable in the long term. Water monitoring requires gathering precipitation data, river flows and a sufficient number of observation wells to follow water tables at different locations.

  • Environmental monitoring guidelines have been drafted with evaporitic technology in mind, but they should also be applied to the implementation of any DLE technology, which still consumes brine, uses fresh water and produces residues, the latter two hopefully at considerably lower volumes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lithium sources and exploitation.
Fig. 2: Direct lithium extraction (DLE) technologies, freshwater inputs and spent brine production.
Fig. 3: Ion concentrations in selected continental and geothermal brines worldwide.
Fig. 4: Brine processing performance indicators.
Fig. 5: Lithium mining in a circular economy framework.

Similar content being viewed by others

References

  1. Trahey, L. et al. Energy storage emerging: a perspective from the Joint Center for Energy Storage Research. Proc. Natl Acad. Sci. USA 117, 12550–12557 (2020).

    Article  Google Scholar 

  2. Koohi-Fayegh, S. & Rosen, M. A. A review of energy storage types, applications and recent developments. J. Energy Storage 27, 101047 (2020).

    Article  Google Scholar 

  3. Dehghani-Sanij, A. R., Tharumalingam, E., Dusseault, M. B. & Fraser, R. Study of energy storage systems and environmental challenges of batteries. Renew. Sustain. Energy Rev. 104, 192–208 (2019).

    Article  Google Scholar 

  4. Olivetti, E. A., Ceder, G., Gaustad, G. G. & Fu, X. Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243 (2017).

    Article  Google Scholar 

  5. Global EV Outlook (IEA, 2021); https://www.iea.org/reports/global-ev-outlook-2021.

  6. Tabelin, C. B. et al. Towards a low-carbon society: a review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Miner. Eng. 163, 106743 (2021).

    Article  Google Scholar 

  7. The role of Critical World Energy Outlook Special Report Minerals in Clean Energy Transitions (IEA, 2022); https://iea.blob.core.windows.net/assets/ffd2a83b-8c30-4e9d-980a-52b6d9a86fdc/TheRoleofCriticalMineralsinCleanEnergyTransitions.pdf.

  8. Xu, C. et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 99 (2020).

    Article  Google Scholar 

  9. Mineral Commodity Summaries. LITHIUM (USGS, 2021); https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-lithium.pdf.

  10. Kesler, S. E. et al. Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 48, 55–69 (2012).

    Article  Google Scholar 

  11. Alessia, A., Alessandro, B., Maria, V. G., Carlos, V. A. & Francesca, B. Challenges for sustainable lithium supply: a critical review. J. Clean. Prod. 300, 126954 (2021).

    Article  Google Scholar 

  12. Tadesse, B., Makuei, F., Albijanic, B. & Dyer, L. The beneficiation of lithium minerals from hard rock ores: a review. Miner. Eng. 131, 170–184 (2019).

    Article  Google Scholar 

  13. Vikström, H., Davidsson, S. & Höök, M. Lithium availability and future production outlooks. Appl. Energy 110, 252–266 (2013).

    Article  Google Scholar 

  14. Sanjuan, B. et al. Major geochemical characteristics of geothermal brines from the Upper Rhine Graben granitic basement with constraints on temperature and circulation. Chem. Geol. 428, 27–47 (2016).

    Article  Google Scholar 

  15. Sanjuan, B. et al. Lithium-rich geothermal brines in Europe: an up-date about geochemical characteristics and implications for potential Li resources. Geothermics 101, 102385 (2022).

    Article  Google Scholar 

  16. Stringfellow, W. T. & Dobson, P. F. Technology for the recovery of lithium from geothermal brines. Energies 14, 6805 (2021).

    Article  Google Scholar 

  17. Dugamin, E. J. M. et al. Groundwater in sedimentary basins as potential lithium resource: a global prospective study. Sci. Rep. 11, 21091 (2021).

    Article  Google Scholar 

  18. Flexer, V., Baspineiro, C. F. & Galli, C. I. Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Total Environ. 639,, 1188–1204 (2018).

    Article  Google Scholar 

  19. Garrett, D. E. Handbook of Lithium and Natural Calcium Chloride https://doi.org/10.1016/B978-0-12-276152-2.X5035-X (2004).

    Article  Google Scholar 

  20. Mudd, G. M. Sustainable/responsible mining and ethical issues related to the Sustainable Development Goals. Geol. Soc. London, Spec. Publ. 508, 187 LP–199 (2021).

    Article  Google Scholar 

  21. Jerez, B., Garcés, I. & Torres, R. Lithium extractivism and water injustices in the Salar de Atacama, Chile: the colonial shadow of green electromobility. Polit. Geogr. 87, 102382 (2021).

    Article  Google Scholar 

  22. Alam, M. A. & Sepúlveda, R. Environmental degradation through mining for energy resources: the case of the shrinking Laguna Santa Rosa wetland in the Atacama Region of Chile. Energy Geosci. 3, 182–190 (2022).

    Article  Google Scholar 

  23. Hailes, O. Lithium in international law: trade, investment, and the pursuit of supply chain justice. J. Int. Econ. Law 25, 148–170 (2022).

    Article  Google Scholar 

  24. Bustos-Gallardo, B., Bridge, G. & Prieto, M. Harvesting lithium: water, brine and the industrial dynamics of production in the Salar de Atacama. Geoforum 119, 177–189 (2021).

    Article  Google Scholar 

  25. Agusdinata, D. B., Liu, W., Eakin, H. & Romero, H. Socio-environmental impacts of lithium mineral extraction: towards a research agenda. Environ. Res. Lett. 13, 123001 (2018).

    Article  Google Scholar 

  26. Liu, W. & Agusdinata, D. B. Interdependencies of lithium mining and communities sustainability in Salar de Atacama, Chile. J. Clean. Prod. 260, 120838 (2020).

    Article  Google Scholar 

  27. Ellingsen, L. A. W., Singh, B. & Strømman, A. H. The size and range effect: lifecycle greenhouse gas emissions of electric vehicles. Environ. Res. Lett. 11, 054010 (2016).

    Article  Google Scholar 

  28. Ambrose, H. & Kendall, A. Understanding the future of lithium: part 2, temporally and spatially resolved life-cycle assessment modeling. J. Ind. Ecol. 24, 90–100 (2020).

    Article  Google Scholar 

  29. Porzio, J. & Scown, C. D. Life-cycle assessment considerations for batteries and battery materials. Adv. Energy Mater. 11, 2100771 (2021).

    Article  Google Scholar 

  30. Pell, R. et al. Towards sustainable extraction of technology materials through integrated approaches. Nat. Rev. Earth Environ. 2, 665–679 (2021).

    Article  Google Scholar 

  31. Stamp, A., Lang, D. J. & Wäger, P. A. Environmental impacts of a transition toward e-mobility: the present and future role of lithium carbonate production. J. Clean. Prod. 23, 104–112 (2012).

    Article  Google Scholar 

  32. Ejeian, M., Grant, A., Shon, H. K. & Razmjou, A. Is lithium brine water? Desalination 518, 115169 (2021). Discussion of why brine water should be considered in environmental assessments.

    Article  Google Scholar 

  33. Marazuela, M. A., Vázquez-Suñé, E., Ayora, C. & García-Gil, A. Towards more sustainable brine extraction in salt flats: learning from the Salar de Atacama. Sci. Total. Environ. 703, 135605 (2020). Conceptual hydrogeological modelling, calibrated with field data, proposing clever strategies to minimize water impacts during brine pumping.

    Article  Google Scholar 

  34. Marazuela, M. A., Vázquez-Suñé, E., Ayora, C., García-Gil, A. & Palma, T. Hydrodynamics of salt flat basins: the Salar de Atacama example. Sci. Total. Environ. 651, 668–683 (2019).

    Article  Google Scholar 

  35. Marazuela, M. A., Vázquez-Suñé, E., Ayora, C., García-Gil, A. & Palma, T. The effect of brine pumping on the natural hydrodynamics of the Salar de Atacama: the damping capacity of salt flats. Sci. Total. Environ. 654, 1118–1131 (2019).

    Article  Google Scholar 

  36. Houston, J., Butcher, A., Ehren, P., Evans, K. & Godfrey, L. The evaluation of brine prospects and the requirement for modifications to filing standards. Econ. Geol. 106, 1125–1239 (2011). Conceptual hydrogeological modelling about brine pumping and freshwater recharge.

    Article  Google Scholar 

  37. Liu, W., Agusdinata, D. B. & Myint, S. W. Spatiotemporal patterns of lithium mining and environmental degradation in the Atacama Salt Flat, Chile. Int. J. Appl. Earth Obs. Geoinf. 80, 145–156 (2019). Pioneering publication with solid data highlighting the environmental impacts related to lithium mining from continental brines.

    Google Scholar 

  38. Gutierrez, J. S. et al. Climate change and lithium mining influence flamingo abundance in the Lithium Triangle. Proc. R. Soc. B Biol. Sci. 289, 20212388 (2022).

    Article  Google Scholar 

  39. Marazuela, M. A. et al. 3D mapping, hydrodynamics and modelling of the freshwater-brine mixing zone in salt flats similar to the Salar de Atacama (Chile). J. Hydrol. 561, 223–235 (2018).

    Article  Google Scholar 

  40. Rosen, M. R. The importance of groundwater in playas: a review of playa classifications and the sedimentology and hydrology of playas. in Paleoclimate and Basin Evolution of Playa Systems Vol. 289 (ed. Rosen, M. R.) (Geological Society of America, 1994).

  41. Currey, D. R. & Sack, D. Hemiarid Lake Basins: Hydrographic Patterns BTGeomorphology of Desert Environments (eds Parsons, A. J. & Abrahams, A. D.) 471–487 (Springer Netherlands, 2009). https://doi.org/10.1007/978-1-4020-5719-9_15.

  42. Marconi, P., Arengo, F. & Clark, A. The arid Andean plateau waterscapes and the Lithium Triangle: flamingos as flagships for conservation of high-altitude wetlands under pressure from mining development. Wetl. Ecol. Manag. https://doi.org/10.1007/s11273-022-09872-6 (2022).

    Article  Google Scholar 

  43. Gajardo, G. & Redón, S. Andean hypersaline lakes in the Atacama Desert, northern Chile: between lithium exploitation and unique biodiversity conservation. Conserv. Sci. Pract. 1, e94 (2019).

    Google Scholar 

  44. Boualleg, M. & Burdet, F. A. P. Method of preparing an adsorbent material shaped in the absence of binder and method of extracting lithium from saline solutions using said material. US patent WO/097202 Al. (2015).

  45. Chen, S., Zhang, Q., Andrews-Speed, P. & Mclellan, B. Quantitative assessment of the environmental risks of geothermal energy: a review. J. Environ. Manage. 276, 111287 (2020).

    Article  Google Scholar 

  46. Megalooikonomou, K. G., Parolai, S. & Pittore, M. Toward performance-driven seismic risk monitoring for geothermal platforms: development of ad hoc fragility curves. Geotherm. Energy 6, 8 (2018).

    Article  Google Scholar 

  47. Bosia, C., Mouchot, J., Ravier, G., Seibel, O. & Genter, A. Evolution of brine geochemical composition during operation of EGS geothermal plants (Alsace, France). In Proc. 46th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 15–17, 2021 SGP-TR-218 (2021).

  48. Tyszer, M., Tomaszewska, B. & Kabay, N. Desalination of geothermal wastewaters by membrane processes: strategies for environmentally friendly use of retentate streams. Desalination 520, 115330 (2021).

    Article  Google Scholar 

  49. Chagnes, A. & Światowska, J. Lithium Process Chemistry: Resources, Extraction, Batteries and Recycling (Elsevier, 2015).

  50. Khalil, A., Mohammed, S., Hashaikeh, R. & Hilal, N. Lithium recovery from brine: recent developments and challenges. Desalination 528, 115611 (2022).

    Article  Google Scholar 

  51. Meng, Z. et al. Highly flexible interconnected Li+ ion-sieve porous hydrogels with self-regulating nanonetwork structure for marine lithium recovery. Chem. Eng. J. 445, 136780 (2022).

    Article  Google Scholar 

  52. Marthi, R. & Smith, Y. R. Application and limitations of a H2TiO3 — diatomaceous earth composite synthesized from titania slag as a selective lithium adsorbent. Sep. Purif. Technol. 254, 117580 (2021).

    Article  Google Scholar 

  53. Li, X. et al. Amorphous TiO2-derived large-capacity lithium ion sieve for lithium recovery. Chem. Eng. Technol. 43, 1784–1791 (2020).

    Article  Google Scholar 

  54. Zhou, Z. et al. Recovery of lithium from salt-lake brines using solvent extraction with TBP as extractant and FeCl3 as co-extraction agent. Hydrometallurgy 191, 105244 (2020).

    Article  Google Scholar 

  55. Song, J., Huang, T., Qiu, H., Li, X. M. & He, T. Recovery of lithium from salt lake brine of high Mg/Li ratio using Na[FeCl4 2TBP] as extractant: thermodynamics, kinetics and processes. Hydrometallurgy 173, 63–70 (2017).

    Article  Google Scholar 

  56. Li, R. et al. Novel ionic liquid as co-extractant for selective extraction of lithium ions from salt lake brines with high Mg/Li ratio. Sep. Purif. Technol. 277, 119471 (2021).

    Article  Google Scholar 

  57. Shi, C. et al. Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents. Sep. Purif. Technol. 172, 473–479 (2017).

    Article  Google Scholar 

  58. Gmar, S. & Chagnes, A. Recent advances on electrodialysis for the recovery of lithium from primary and secondary resources. Hydrometallurgy 189, 105124 (2019).

    Article  Google Scholar 

  59. Li, X. et al. Membrane-based technologies for lithium recovery from water lithium resources: a review. J. Memb. Sci. 591, 117317 (2019).

    Article  Google Scholar 

  60. Zhao, Z., Liu, G., Jia, H. & He, L. Sandwiched liquid-membrane electrodialysis: lithium selective recovery from salt lake brines with high Mg/Li ratio. J. Memb. Sci. 596, 117685 (2020).

    Article  Google Scholar 

  61. Li, Q. et al. Efficiently rejecting and concentrating Li+ by nanofiltration membrane under a reversed electric field. Desalination 535, 115825 (2022).

    Article  Google Scholar 

  62. Li, Y., Zhao, Y. J., Wang, H. & Wang, M. The application of nanofiltration membrane for recovering lithium from salt lake brine. Desalination 468, 114081 (2019).

    Article  Google Scholar 

  63. He, R. et al. Unprecedented Mg2+/Li+ separation using layer-by-layer based nanofiltration hollow fiber membranes. Desalination 525, 115492 (2022).

    Article  Google Scholar 

  64. Calvo, E. J. Electrochemical methods for sustainable recovery of lithium from natural brines and battery recycling. Curr. Opin. Electrochem. 15, 102–108 (2019).

    Article  Google Scholar 

  65. Battistel, A., Palagonia, M. S., Brogioli, D., La Mantia, F. & Trócoli, R. Electrochemical methods for lithium recovery: a comprehensive and critical review. Adv. Mater. 32, 1905440 (2020). Critical review about electrochemical ion pumping technologies, with suggestions about which experimental parameters need to be assessed. Not all electrochemical technologies are reviewed.

    Article  Google Scholar 

  66. Calvo, E. J. Direct lithium recovery from aqueous electrolytes with electrochemical ion pumping and lithium intercalation. ACS Omega 6, 35213–35220 (2021).

    Article  Google Scholar 

  67. He, L. et al. New insights into the application of lithium-ion battery materials: selective extraction of lithium from brines via a rocking-chair lithium-ion battery system. Glob. Chall. 2, 1700079 (2018).

    Article  Google Scholar 

  68. Liu, D., Xu, W., Xiong, J., He, L. & Zhao, Z. Electrochemical system with LiMn2O4 porous electrode for lithium recovery and its kinetics. Sep. Purif. Technol. 270, 118809 (2021).

    Article  Google Scholar 

  69. Liu, D., Zhao, Z., Xu, W., Xiong, J. & He, L. A closed-loop process for selective lithium recovery from brines via electrochemical and precipitation. Desalination 519, 115302 (2021).

    Article  Google Scholar 

  70. Liu, D., Li, Z., He, L. & Zhao, Z. Facet engineered Li3PO4 for lithium recovery from brines. Desalination 514, 115186 (2021).

    Article  Google Scholar 

  71. Lai, X., Xiong, P. & Zhong, H. Extraction of lithium from brines with high Mg/Li ratio by the crystallization–precipitation method. Hydrometallurgy 192, 105252 (2020).

    Article  Google Scholar 

  72. Mendieta–George, D., Pérez–Garibay, R., Solís–Rodríguez, R., Fuentes–Aceituno, J. C. & Alvarado–Gómez, A. Study of the direct production of lithium phosphate with pure synthetic solutions and membrane electrolysis. Miner. Eng. 185, 107713 (2022).

    Article  Google Scholar 

  73. Cerda, A. et al. Recovering water from lithium-rich brines by a fractionation process based on membrane distillation–crystallization. J. Water Process. Eng 41, 102063 (2021). Membrane distillation-based DLE proposal to recover freshwater during brine concentration from high-salinity brines.

    Article  Google Scholar 

  74. Quist-Jensen, C. A., Ali, A., Mondal, S., Macedonio, F. & Drioli, E. A study of membrane distillation and crystallization for lithium recovery from high-concentrated aqueous solutions. J. Memb. Sci. 505, 167–173 (2016).

    Article  Google Scholar 

  75. Zhou, G. et al. Progress in electrochemical lithium ion pumping for lithium recovery. J. Energy Chem. 59, 431–445 (2021).

    Article  Google Scholar 

  76. Xu, P. et al. Materials for lithium recovery from salt lake brine. J. Mater. Sci. 56, 16–63 (2021).

    Article  Google Scholar 

  77. Wang, J. et al. Electrochemical technologies for lithium recovery from liquid resources: a review. Renew. Sustain. Energy Rev. 154, 111813 (2022).

    Article  Google Scholar 

  78. Sun, Y., Wang, Q., Wang, Y., Yun, R. & Xiang, X. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine. Sep. Purif. Technol. 256, 117807 (2021).

    Article  Google Scholar 

  79. Nie, X.-Y., Sun, S.-Y., Sun, Z., Song, X. & Yu, J.-G. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination 403, 128–135 (2017).

    Article  Google Scholar 

  80. Ding, D., Yaroshchuk, A. & Bruening, M. L. Electrodialysis through nafion membranes coated with polyelectrolyte multilayers yields >99% pure monovalent ions at high recoveries. J. Memb. Sci. 647, 120294 (2022).

    Article  Google Scholar 

  81. Li, Q. et al. Ultrahigh-efficient separation of Mg2+/Li+ using an in-situ reconstructed positively charged nanofiltration membrane under an electric field. J. Memb. Sci. 641, 119880 (2022).

    Article  Google Scholar 

  82. Qiu, Y. et al. Integration of selectrodialysis and selectrodialysis with bipolar membrane to salt lake treatment for the production of lithium hydroxide. Desalination 465, 1–12 (2019).

    Article  Google Scholar 

  83. Palagonia, M. S., Brogioli, D. & La Mantia, F. Lithium recovery from diluted brine by means of electrochemical ion exchange in a flow-through-electrodes cell. Desalination 475, 114192 (2020).

    Article  Google Scholar 

  84. Palagonia, M. S., Brogioli, D. & Mantia, F. L. Effect of current density and mass loading on the performance of a flow-through electrodes cell for lithium recovery. J. Electrochem. Soc. 166, E286–E292 (2019).

    Article  Google Scholar 

  85. Guo, Z.-Y. et al. Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes. J. Clean. Prod. 193, 338–350 (2018).

    Article  Google Scholar 

  86. Zhao, L.-M. et al. Separating and recovering lithium from brines using selective-electrodialysis: sensitivity to temperature. Chem. Eng. Res. Des. 140, 116–127 (2018).

    Article  Google Scholar 

  87. Sharma, P. P. et al. Sulfonated poly (ether ether ketone) composite cation exchange membrane for selective recovery of lithium by electrodialysis. Desalination 496, 114755 (2020).

    Article  Google Scholar 

  88. Chen, Q.-B. et al. Development of recovering lithium from brines by selective-electrodialysis: effect of coexisting cations on the migration of lithium. J. Memb. Sci. 548, 408–420 (2018).

    Article  Google Scholar 

  89. Díaz Nieto, C. H. & Flexer, V. Is it possible to recover lithium compounds from complex brines employing electromembrane processes exclusively? Curr. Opin. Electrochem. 35, 101087 (2022).

    Article  Google Scholar 

  90. Li, X. et al. Highly selective separation of lithium with hierarchical porous lithium-ion sieve microsphere derived from MXene. Desalination 537, 115847 (2022).

    Article  Google Scholar 

  91. Parker SS, et al. Potential lithium extraction in the United States: environmental, economic, and policy implications (The Nature Conservancy, 2022); https://www.scienceforconservation.org/assets/downloads/Lithium_Report_FINAL.pdf.

  92. Arkansas Smackover Project. Standard Lithium https://www.standardlithium.com/projects/arkansas-smackover (2022).

  93. Grant, A. Re-injection enhanced production for direct lithium extraction (DLE) projects. https://www.jadecove.com/research/brinereinjection.

  94. Horne, R. N. Geothermal reinjection experience in Japan. J. Pet. Technol. 34, 495–503 (1982).

    Article  Google Scholar 

  95. Boo, C., Billinge, I. H., Chen, X., Shah, K. M. & Yin Yip, N. Zero liquid discharge of ultrahigh-salinity brines with temperature swing solvent extraction. Environ. Sci. Technol. 54, 9124–9131 (2020).

    Article  Google Scholar 

  96. Deshmukh, A. et al. Thermodynamics of solvent-driven water extraction from hypersaline brines using dimethyl ether. Chem. Eng. J. 434, 134391 (2022).

    Article  Google Scholar 

  97. Panagopoulos, A. Brine management (saline water & wastewater effluents): sustainable utilization and resource recovery strategy through minimal and zero liquid discharge (MLD & ZLD) desalination systems. Chem. Eng. Process. Process Intensif. 176, 108944 (2022).

    Article  Google Scholar 

  98. Al-Ghouti, M. A., Al-Kaabi, M. A., Ashfaq, M. Y. & Da’na, D. A. Produced water characteristics, treatment and reuse: a review. J. Water Process Eng. 28, 222–239 (2019).

    Article  Google Scholar 

  99. Samuel, O. et al. Oilfield-produced water treatment using conventional and membrane-based technologies for beneficial reuse: a critical review. J. Environ. Manag. 308, 114556 (2022).

    Article  Google Scholar 

  100. Arena, J. T. et al. Management and dewatering of brines extracted from geologic carbon storage sites. Int. J. Greenh. Gas Control 63, 194–214 (2017).

    Article  Google Scholar 

  101. Ogden, D. D. & Trembly, J. P. Desalination of hypersaline brines via Joule-heating: experimental investigations and comparison of results to existing models. Desalination 424, 149–158 (2017).

    Article  Google Scholar 

  102. Kaplan, R., Mamrosh, D., Salih, H. H. & Dastgheib, S. A. Assessment of desalination technologies for treatment of a highly saline brine from a potential CO2 storage site. Desalination 404, 87–101 (2017).

    Article  Google Scholar 

  103. Baspineiro, C. F., Franco, J. & Flexer, V. Potential water recovery during lithium mining from high salinity brines. Sci. Total Environ. 720, 137523 (2020).

    Article  Google Scholar 

  104. Sustainable production. SQM https://www.sqmlithium.com/en/nosotros/produccion-sustentable/ (2022).

  105. Sustainability Report (Orocobre, 2021); https://www.orocobre.com/wp/?mdocs-file=7259.

  106. Grant, A. From Catamarca to Qinghai: the Commercial Scale Direct Lithium Extraction Operations. Jadecove https://www.jadecove.com/research/fromcatamarcatoqinghai (2020).

  107. Sustainability report (Livent, 2021); https://livent.com/wp-content/uploads/2022/07/Livent_2021SustainabilityReport-English.pdf.

  108. Park, S. H. et al. Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. J. Memb. Sci. 598, 117683 (2020). Pioneering DLE proposal to recover freshwater during brine concentration via nanofiltration followed by membrane distillation.

    Article  Google Scholar 

  109. Pramanik, B. K., Asif, M. B., Kentish, S., Nghiem, L. D. & Hai, F. I. Lithium enrichment from a simulated salt lake brine using an integrated nanofiltration-membrane distillation process. J. Environ. Chem. Eng. 7, 103395 (2019).

    Article  Google Scholar 

  110. Ko, C.-C. et al. Performance of ceramic membrane in vacuum membrane distillation and in vacuum membrane crystallization. Desalination 440, 48–58 (2018).

    Article  Google Scholar 

  111. Baspineiro, C. F., Franco, J. & Flexer, V. Performance of a double-slope solar still for the concentration of lithium rich brines with concomitant fresh water recovery. Sci. Total. Environ. 791, 148192 (2021).

    Article  Google Scholar 

  112. Ling, Z. et al. Desalination and Li+ enrichment via formation of cyclopentane hydrate. Sep. Purif. Technol. 231, 115921 (2020).

    Article  Google Scholar 

  113. Niu, J. et al. An electrically switched ion exchange system with self-electrical-energy recuperation for efficient and selective LiCl separation from brine lakes. Sep. Purif. Technol. 274, 118995 (2021).

    Article  Google Scholar 

  114. Nie, X.-Y., Sun, S.-Y., Song, X. & Yu, J.-G. Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis. J. Memb. Sci. 530, 185–191 (2017).

    Article  Google Scholar 

  115. Jiang, C., Wang, Y., Wang, Q., Feng, H. & Xu, T. Production of lithium hydroxide from lake brines through electro-electrodialysis with bipolar membranes (EEDBM). Ind. Eng. Chem. Res. 53, 6103–6112 (2014).

    Article  Google Scholar 

  116. Díaz Nieto, C. H., Rabaey, K. & Flexer, V. Membrane electrolysis for the removal of Na+ from brines for the subsequent recovery of lithium salts. Sep. Purif. Technol. 252, 117410 (2020).

    Article  Google Scholar 

  117. Díaz Nieto, C. H. et al. Membrane electrolysis for the removal of Mg2+ and Ca2+ from lithium rich brines. Water Res. 154, 117–124 (2019).

    Article  Google Scholar 

  118. Ji, P.-Y. et al. Effect of coexisting ions on recovering lithium from high Mg2+/Li+ ratio brines by selective-electrodialysis. Sep. Purif. Technol. 207, 1–11 (2018).

    Article  Google Scholar 

  119. Lee, D.-H. et al. Selective lithium recovery from aqueous solution using a modified membrane capacitive deionization system. Hydrometallurgy 173, 283–288 (2017).

    Article  Google Scholar 

  120. Díaz Nieto, C. H., Kortsarz, J. A., Vera, M. L. & Flexer, V. Effect of temperature, current density and mass transport during the electrolytic removal of magnesium ions from lithium rich brines. Desalination 529, 115652 (2022).

    Article  Google Scholar 

  121. Li, X. et al. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources. Chem. Eng. J. 392, 123731 (2020).

    Article  Google Scholar 

  122. Sun, J. et al. Preparation of high hydrophilic H2TiO3 ion sieve for lithium recovery from liquid lithium resources. Chem. Eng. J. 453, 139485 (2023).

    Article  Google Scholar 

  123. Qian, F. et al. Trace doping by fluoride and sulfur to enhance adsorption capacity of manganese oxides for lithium recovery. Mater. Des. 194, 108867 (2020).

    Article  Google Scholar 

  124. Taghvaei, N., Taghvaei, E. & Askari, M. Synthesis of anodized TiO2 nanotube arrays as ion sieve for lithium extraction. ChemistrySelect 5, 10339–10345 (2020).

    Article  Google Scholar 

  125. Qian, F. et al. Highly lithium adsorption capacities of H1.6Mn1.6O4 ion-sieve by ordered array structure. ChemistrySelect 4, 10157–10163 (2019).

    Article  Google Scholar 

  126. Sarmiento, N. et al. A solar irradiation GIS as decision support tool for the Province of Salta, Argentina. Renew. Energy 132, 68–80 (2019).

    Article  Google Scholar 

  127. Dellicompagni, P., Franco, J. & Flexer, V. CO2 emission reduction by integrating concentrating solar power into lithium mining. Energy Fuels 35, 15879–15893 (2021).

    Article  Google Scholar 

  128. Zavahir, S. et al. A review on lithium recovery using electrochemical capturing systems. Desalination 500, 114883 (2021).

    Article  Google Scholar 

  129. Joo, H. et al. Pilot-scale demonstration of an electrochemical system for lithium recovery from the desalination concentrate. Environ. Sci. Water Res. Technol. 6, 290–295 (2020). Pilot-scale demonstration of processing 6 tonnes of brine daily using electrochemical ion pumping.

    Article  Google Scholar 

  130. Song, J. F., Nghiem, L. D., Li, X.-M. & He, T. Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook. Environ. Sci. Water Res. Technol. 3, 593–597 (2017). Thorough review of pilot-scale projects for lithium mining from brines in China.

    Article  Google Scholar 

  131. Yu, C. et al. Bio-inspired fabrication of ester-functionalized imprinted composite membrane for rapid and high-efficient recovery of lithium ion from seawater. J. Colloid Interf. Sci. 572, 340–353 (2020).

    Article  Google Scholar 

  132. Lu, J. et al. Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone. Appl. Surf. Sci. 427, 931–941 (2018).

    Article  Google Scholar 

  133. Ryu, T. et al. Lithium recovery system using electrostatic field assistance. Hydrometallurgy 151, 78–83 (2015).

    Article  Google Scholar 

  134. Sun, Y., Wang, Y., Liu, Y. & Xiang, X. Highly efficient lithium extraction from brine with a high sodium content by adsorption-coupled electrochemical technology. ACS Sustain. Chem. Eng. 9, 11022–11031 (2021).

    Article  Google Scholar 

  135. Torres, W. R., Díaz Nieto, C. H., Prévoteau, A., Rabaey, K. & Flexer, V. Lithium carbonate recovery from brines using membrane electrolysis. J. Memb. Sci. 615, 118416 (2020). A DLE methodology with three consecutive electromembrane processes for the sequential recovery of magnesium, calcium and sodium by-products, together with lithium carbonate and concomitant fresh-water production in a circular economy framework.

    Article  Google Scholar 

  136. Du, X. et al. A novel electroactive λ-MnO2/PPy/PSS core–shell nanorod coated electrode for selective recovery of lithium ions at low concentration. J. Mater. Chem. A 4, 13989–13996 (2016).

    Article  Google Scholar 

  137. Luo, G. et al. Electrochemical lithium ions pump for lithium recovery from brine by using a surface stability Al2O3–ZrO2 coated LiMn2O4 electrode. J. Energy Chem. 69, 244–252 (2022).

    Article  Google Scholar 

  138. Oyarce, E., Roa, K., Boulett, A., Salazar-Marconi, P. & Sánchez, J. Removal of lithium ions from aqueous solutions by an ultrafiltration membrane coupled to soluble functional polymer. Sep. Purif. Technol. 288, 120715 (2022).

    Article  Google Scholar 

  139. Han, H. J., Qu, W., Zhang, Y. L., Lu, H. D. & Zhang, C. L. Enhanced performance of Li+ adsorption for H1.6Mn1.6O4 ion-sieves modified by Co doping and micro array morphology. Ceram. Int. 47, 21777–21784 (2021).

    Article  Google Scholar 

  140. Zhu, X. et al. Study on adsorption extraction process of lithium ion from West Taijinar brine by shaped titanium-based lithium ion sieves. Sep. Purif. Technol. 274, 119099 (2021).

    Article  Google Scholar 

  141. Meng, Z. et al. Highly flexible interconnected Li+ion-sieve porous hydrogels with self-regulating nanonetwork structure for marine lithium recovery. Chem. Eng. J. 445, 136780 (2022).

    Article  Google Scholar 

  142. Xiong, J., Zhao, Z., Liu, D. & He, L. Direct lithium extraction from raw brine by chemical redox method with LiFePO4/FePO4 materials. Sep. Purif. Technol. 290, 120789 (2022).

    Article  Google Scholar 

  143. Vera, M. L. et al. A strategy to avoid solid formation within the reactor during magnesium and calcium electrolytic removal from lithium-rich brines. J. Solid State Electrochem. https://doi.org/10.1007/s10008-022-05219-6 (2022).

    Article  Google Scholar 

  144. Lide, D. R. CRC Handbook of Chemistry and Physics (CRC Press. Boca Raton, 2005).

  145. Neumann, J. et al. Recycling of lithium-ion batteries — current state of the art, circular economy, and next generation recycling. Adv. Energy Mater. 12, 2102917 (2022).

    Article  Google Scholar 

  146. Amici, J. et al. A roadmap for transforming research to invent the batteries of the future designed within the European large scale research initiative BATTERY 2030+. Adv. Energy Mater. 12, 2102785 (2022).

    Article  Google Scholar 

  147. Graedel, T. E. et al. What do we know about metal recycling rates? J. Ind. Ecol. 15, 355–366 (2011).

    Article  Google Scholar 

  148. Kinnunen, P. H.-M. & Kaksonen, A. H. Towards circular economy in mining: opportunities and bottlenecks for tailings valorization. J. Clean. Prod. 228, 153–160 (2019).

    Article  Google Scholar 

  149. Falagán, C., Grail, B. M. & Johnson, D. B. New approaches for extracting and recovering metals from mine tailings. Miner. Eng. 106, 71–78 (2017).

    Article  Google Scholar 

  150. Nwaila, G. T. et al. Valorisation of mine waste — part I: characteristics of, and sampling methodology for, consolidated mineralised tailings by using Witwatersrand gold mines (South Africa) as an example. J. Environ. Manage. 295, 113013 (2021).

    Article  Google Scholar 

  151. Singh, S., Sukla, L. B. & Goyal, S. K. Mine waste & circular economy. Mater. Today Proc. 30, 332–339 (2020).

    Article  Google Scholar 

  152. Purnell, P., Velenturf, A. P. M. & Marshall, R. New Governance for Circular Economy: Policy, Regulation and Market Contexts for Resource Recovery from Waste. (eds. Macaskie, L. E. et al.) Ch. 16 (Royal Society of Chemistry, 2019).

  153. Velenturf, A. P. M. et al. Circular economy and the matter of integrated resources. Sci. Total Environ. 689, 963–969 (2019).

    Article  Google Scholar 

  154. Yang, Y. et al. Research advances in magnesium and magnesium alloys worldwide in 2020. J. Magnes. Alloy. 9, 705–747 (2021).

    Article  Google Scholar 

  155. Løvik, A. N., Hagelüken, C. & Wäger, P. Improving supply security of critical metals: current developments and research in the EU. Sustain. Mater. Technol. 15, 9–18 (2018).

    Google Scholar 

  156. Potash. Albemarle https://www.albemarle.com/businesses/lithium/products/pot-ash (2023).

  157. Production processes. SQM https://www.sqm.com/en/acerca-de-sqm/recursos-naturales/proceso-de-produccion/ (2018).

  158. Thiel, G. P. & Lienhard V, J. H. Treating produced water from hydraulic fracturing: composition effects on scale formation and desalination system selection. Desalination 346, 54–69 (2014).

    Article  Google Scholar 

  159. Shaffer, D. L. et al. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions. Environ. Sci. Technol. 47, 9569–9583 (2013).

    Article  Google Scholar 

  160. Ogunbiyi, O. et al. Sustainable brine management from the perspectives of water, energy and mineral recovery: a comprehensive review. Desalination 513, 115055 (2021).

    Article  Google Scholar 

  161. Kumar, A. et al. Metals recovery from seawater desalination brines: technologies, opportunities, and challenges. ACS Sustain. Chem. Eng. 9, 7704–7712 (2021).

    Article  Google Scholar 

  162. Snæbjörnsdóttir, S. Ó. et al. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 1, 90–102 (2020).

    Article  Google Scholar 

  163. Saccò, M. et al. Salt to conserve: a review on the ecology and preservation of hypersaline ecosystems. Biol. Rev. 96, 2828–2850 (2021).

    Article  Google Scholar 

  164. Chiappero, M. F., Vaieretti, M. V. & Izquierdo, A. E. A baseline soil survey of two peatlands associated with a lithium-rich salt flat in the argentine puna: physico-chemical characteristics, carbon storage and biota. Mires Peat 27, 16 (2021).

    Google Scholar 

  165. Batanero, G. L. et al. Flamingos and drought as drivers of nutrients and microbial dynamics in a saline lake. Sci. Rep. 7, 12173 (2017).

    Article  Google Scholar 

  166. Avila-Arias, H., Nies, L. F., Gray, M. B. & Turco, R. F. Impacts of molybdenum-, nickel-, and lithium-oxide nanomaterials on soil activity and microbial community structure. Sci. Total. Environ. 652, 202–211 (2019).

    Article  Google Scholar 

  167. Robinson, B. H., Yalamanchali, R., Reiser, R. & Dickinson, N. M. Lithium as an emerging environmental contaminant: mobility in the soil–plant system. Chemosphere 197, 1–6 (2018).

    Article  Google Scholar 

  168. Bolan, N. et al. From mine to mind and mobiles — lithium contamination and its risk management. Environ. Pollut. 290, 118067 (2021).

    Article  Google Scholar 

  169. Shokri-Kuehni, S. M. S., Norouzi Rad, M., Webb, C. & Shokri, N. Impact of type of salt and ambient conditions on saline water evaporation from porous media. Adv. Water Resour. 105, 154–161 (2017).

    Article  Google Scholar 

  170. Obaya, M., López, A. & Pascuini, P. Curb your enthusiasm. Challenges to the development of lithium-based linkages in Argentina. Resour. Policy 70, 101912 (2021).

    Article  Google Scholar 

  171. Risacher, F., Alonso, H. & Salazar, C. The origin of brines and salts in Chilean salars: a hydrochemical review. Earth-Sci. Rev. 63, 249–293 (2003).

    Article  Google Scholar 

  172. Corenthal, L. G., Boutt, D. F., Hynek, S. A. & Munk, L. A. Regional groundwater flow and accumulation of a massive evaporite deposit at the margin of the Chilean Altiplano. Geophys. Res. Lett. 43, 8017–8025 (2016).

    Article  Google Scholar 

  173. Vásquez, C., Ortiz, C., Suárez, F. & Muñoz, J. F. Modeling flow and reactive transport to explain mineral zoning in the Atacama salt flat aquifer, Chile. J. Hydrol. 490, 114–125 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

M.L.V. acknowledges a post-doctoral fellowship from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). W.R.T., C.I.G. and V.F. are CONICET permanent research fellows. This work was supported by Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (ANPCyT), AR (grant number PICT 2019–1939).

Author information

Authors and Affiliations

Authors

Contributions

M.L.V., W.R.T., A.C. and V.F. researched data for the article. M.L.V., W.R.T. and V.F. contributed substantially to discussion of the content. All authors wrote the article. V.F. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Victoria Flexer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks D. Alessi, W. Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Brine

Aqueous solutions of extremely high ionic strength, with total dissolved solids values of 100–400 g l−1, most solids are inorganic salts.

Circular economy

A model of production and consumption. Following the European Union definition, it involves sharing, leasing, reusing, repairing, refurbishing and recycling existing materials and products as much as possible.

Continental brines

Continental brines are found in underground reservoirs within salars, typically in locations with arid climates.

Fresh water

Low salinity water, typically <3 g l1 TDS, although this cut-off value varies.

Life-cycle analysis

A quantitative methodology implemented to evaluate the environmental impact of a given product through its entire life cycle, from extraction and processing of raw materials, manufacturing, distribution, use, potential recycling and final disposal.

Lithium Triangle

A region encompassing northwest Argentina, southwest Bolivia and northern Chile, where a large concentration of lithium-rich deposits is found.

Native brines

Real brine samples, continental or geothermal brines as they are pumped from underground reservoirs, before undergoing any processing or chemical treatment.

Oilfield brines

Brines that are found during deep rock penetration by drilling during oil and gas extraction and considered as waste by these industries.

Phreatic evaporation

Refers to evaporation of shallow groundwater into the atmosphere directly from the soil through the porous ground surface.

Salar

Salars (Spanish term for salt lake or salt flat) are endorheic sedimentary basins containing thick sequences of continental evaporites and clastic deposits.

Salar de Atacama

The third largest salar in the Lithium Triangle, located in northern Chile; the two largest facilities for lithium mining from brines are located here.

Spent brines

Brine that has undergone processing via some direct lithium extraction technology; with Li+ concentration largely depleted, but concentrations from other species similar to native brine.

Total dissolved solids

(TDS). The sum, by mass, of all solids dissolved in an aqueous solution, irrespective of their chemical formulae.

Water table

Surface below which water (or brine) fills any spaces between sediments or rocks. At the water table level, water and atmospheric pressure values are equal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vera, M.L., Torres, W.R., Galli, C.I. et al. Environmental impact of direct lithium extraction from brines. Nat Rev Earth Environ 4, 149–165 (2023). https://doi.org/10.1038/s43017-022-00387-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00387-5

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene