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Understanding climate change impacts on drought in China
over the 21st century: a multi-model assessment from CMIP6
Feng Xu1,10, Yanping Qu2,10, Virgílio A. Bento3, Hongquan Song4, Jianxiu Qiu 5, Junyu Qi6, Lingling Wan1, Rongrong Zhang1,
Lijuan Miao7, Xuesong Zhang 8 and Qianfeng Wang 1,9✉

The future state of drought in China under climate change remains uncertain. This study investigates drought events, focusing on
the region of China, using simulations from five global climate models (GCMs) under three Shared Socioeconomic Pathways (SSP1-
2.6, SSP3-7.0, and SSP5-8.5) participating in the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3b). The daily
Standardized Precipitation Evapotranspiration Index (SPEI) is employed to analyze drought severity, duration, and frequency over
three future periods. Evaluation of the GCMs’ simulations against observational data indicates their effectiveness in capturing
historical climatic change across China. The rapid increase in CO2 concentration under high-emission scenarios in the mid- and late-
future century (2040–2070 and 2071–2100) substantially influences vegetation behavior via regulation on leaf stomata and canopy
structure. This regulation decelerates the increase in potential evapotranspiration, thereby mitigating the sharp rise in future
drought occurrences in China. These findings offer valuable insights for policymakers and stakeholders to develop strategies and
measures for mitigating and adapting to future drought conditions in China.
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INTRODUCTION
Drought, a phenomenon that occurs globally, is a widespread
natural disaster known for being among the most damaging and
economically challenging of all natural events. Its effects can be
disastrous for agriculture, the economy, and society at large1–3. In
the 21st century, the estimated annual economic loss caused by
drought ranges between $6 billion and $8 billion, surpassing any
other climate disaster4–7. In China, drought also represents a major
natural disaster, causing significant socioeconomic losses, parti-
cularly in the agriculture sector8–10. From the 1950s to the early
21st century, there has been a notable rise in the average annual
crop yield losses due to drought, escalating from 4.35 to 34.9
million tons11. Thus, understanding the anticipated changes in
drought is crucial for developing prompt early warning and
mitigation policies.
Effective drought indices are crucial for the monitoring and

evaluation of drought. There are multiple indices available that
offer diverse perspectives in characterizing drought condi-
tions4,8,12,13. Commonly used indices include the Palmer Drought
Severity Index (PDSI), the self-calibrating Palmer Drought Severity
Index (scPDSI), and the Standardized Precipitation Index (SPI)14–16.
However, the PDSI and scPDSI have issues with fixed timescales,
inadequate data-related calibration, and limited spatial compar-
ability17. While the SPI can detect and evaluate drought at various
scales, it accounts solely for precipitation and neglects the impacts
of other meteorological factors such as evapotranspiration18. By
integrating the strengths of PDSI and SPI, the Standardized
Precipitation Evapotranspiration Index (SPEI) offers a

comprehensive approach to drought characterization19,20. It
possesses the capacity to recognize droughts at various timescales
as well as accounting for the influence of evapotranspiration on
drought20. Consequently, SPEI represents a superior tool for
investigating the progression of dryness under future climate
change.
The SPEI is extensively used for drought monitoring and

characterization. Nonetheless, prior research has often depended
on monthly SPEI, which comes with its own set of inherent
limitations21. Even several days of drought can have serious
consequences during the critical period of vegetation growth22–24.
Since the monthly SPEI cannot identify droughts lasting less than
1 month, it tends to overlook the impacts of short and sudden
droughts, such as flash drought20. Therefore, the recent develop-
ment of the daily SPEI effectively addresses this research gap22,25.
The calculation and application of the daily SPEI follow a similar
approach to that of the monthly SPEI19,20. It facilitates drought
monitoring and assessment across various timescales, enabling
precise identification of drought onset and cessation dates, along
with the duration of drought events22,26. Unlike the monthly SPEI
commonly utilized in past research, the daily SPEI more accurately
detects short-term drought events, enhancing the accuracy of
drought monitoring and assessment20,21. Therefore, the use of the
daily SPEI emerges as a more advantageous approach.
Conventional models used for calculating potential evapotran-

spiration (PET), which do not take into account the effects of CO2

on vegetation, could result in an overestimation of future PET and
drought conditions. Two widely used Penman-Monteith models
include the open-water Penman model (Penman-ow)27 and the
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reference crop Penman-Monteith model (PM-RC)28. While these
models fully account for the impact of radiative and aerodynamic
components, they ignore the response of vegetation to climate
change. Particularly, they do not consider the effects of CO2, which
may result in an overestimation of PET and future droughts29–31.
Recognizing this limitation, Yang32 proposed a method that
considers changes in surface resistance to atmospheric CO2

uptake in a warming climate within the Penman-Monteith method
(PM-CO2). This approach addresses the problem of conventional
models overlooking the impact of CO2 on vegetation. Conse-
quently, the PM-CO2 model offers a more comprehensive
evaluation of future drought conditions in China.
The most advanced GCMs within the Coupled Model Inter-

comparison Project Phase 6 (CMIP6) present significant opportu-
nities for improving the prediction capabilities of future drought.
GCMs from CMIP6 have been extensively employed in previous
research33–37, and have demonstrated their robust capacities to
capture drought characteristics18,36,38. Many research projects
have used CMIP6 to forecast droughts on both global and regional
scales. These studies generally indicate a trend toward more
severe droughts in most areas, with China notably identified as a
hotspot for these intensified conditions2,17,39,40. CMIP6, with its
enhanced resolution and more extensive range of parameters, has
demonstrated improved capabilities in simulating temperature
and precipitation patterns34,41–45. Furthermore, CMIP6 has incor-
porated the representative concentration pathways into shared
social economic pathways (SSPs), making it well-suited for future
climate change research and drought prediction in China46,47.
In this study, we used the enhanced PET model to calculate

daily SPEI for assessing potential changes in meteorological
droughts across China. We selected five GCMs from the Inter-

Sectoral Impact Model Intercomparison Project (ISIMIP3b) to
analyze and evaluate the characteristics of drought in China over
three future periods: the early (2015–2040), middle (2041–2070),
and late (2071–2100) 21st century. Furthermore, we examined the
efficacy of these five GCMs in predicting future droughts under
three extreme scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5). This
study presents state-of-the-art research into the future of drought
events in China, by using the daily SPEI. It not only offers valuable
insights into the potential changes in drought patterns but also
establishes methodological frameworks for future drought
research in China.

RESULTS
Model performance evaluation
Although bias-adjusted data from the ISIMIP3b GCMs are widely
documented as being suitable for various global regions48,49, it is
still essential to evaluate the performance of simulations
conducted by these five GCMs within our specific study area.
The assessment results (Fig. 1) demonstrate that the simulated
climate variables from the five GCMs, after bias adjustment, align
well with the measurements (W5E5 v2.0), particularly for
meteorological factors such as temperature and radiation. This
result indicates that the chosen GCMs possess a robust capability
to accurately represent climate change in China. As such, using
these five GCMs to explore future drought conditions in the region
is a viable approach.

Projected changes in key climate variables
The analysis of the time series for crucial climate variables
spanning from 2015 to 2100 (Fig. 2) reveals that under the high-

Fig. 1 Taylor diagrams for climate variables across China (1980-2014). Taylor diagrams of simulated a temperature, b precipitation,
c downward longwave radiation, d relative humidity, e downward shortwave radiation, and f wind speed by 5 GCMs across China for the
period of 1980–2014 against observed data. The dashed green line is the root mean square deviation (RMSD).
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Fig. 2 Time series of precipitation and PET under different scenarios. Time series of precipitation under a SSP1-2.6 and b SSP5-8.5, PET
calculated from PM-CO2 under c SSP1-2.6 and d SSP5-8.5 by five GCMs. The solid line represents the annual mean of all global grids, while the
shades represent the lower (25th percentile) and upper limits (75th percentile).

Fig. 3 Interannual variation of daily SPEI under different scenarios. Interannual variation of daily SPEI (PET calculated from PM-CO2) under
a SSP1-2.6 and b SSP5-8.5. The solid line represents the annual mean of all global grids, while the shades represent the lower (25th percentile)
and upper limits (75th percentile).
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emission scenario, there is a more pronounced reduction in
precipitation and PET compared to the low-emission scenario.
Additionally, this decrease becomes progressively more intense
from the early through the middle to the late period. The rainfall
predictions generated by the five GCMs display significant
consistency across both the low and high-emission scenarios.
For the SSP1-2.6 scenario, the IPSL-CM6A-LR model simulated the
highest PET values, whereas the MPI-ESM2-0 model simulated the
lowest. Similarly, under the SSP5-8.5 scenario, the PET values
simulated by MPI-ESM2-0 were also on the lower side. Analyzing
PET values from different methods (Fig. 2 and Supplementary Fig.
1) shows that under the SSP1-2.6 scenario, PET computed using
both methods were almost the same. In contrast, under the SSP5-
8.5 scenario, the conventional PM-RC method estimated higher
PET with a noticeable increasing trend, whereas the PM-CO2

method estimated lower PET, showing a declining trend in the
middle and late periods. This discrepancy is mainly attributed to
the swift rise in CO2 concentrations (Supplementary Fig. 2) under
the high-emission scenario. This increase in CO2 significantly
influenced vegetation behavior, leading to a slowed growth rate
of PET.

Projected changes in daily SPEI
By examining the SPEI series from 2015 to 2100 (Fig. 3), we
observed that under the SSP1-2.6 scenario, daily SPEI shows a
slight decreasing trend. Conversely, under the SSP5-8.5 scenario,
daily SPEI displays a fluctuating upward trend, particularly in the
late 21st century, with a notable increase. When comparing SPEI
derived from different methodologies (Fig. 3 and Supplementary
Fig. 3), it’s evident that under SSP1-2.6, the SPEI values calculated
by both methods are almost the same. However, under SSP5-8.5,

the SPEI values calculated using the conventional PM-RC method
show a significant decline, particularly in the middle and late
periods.

Projected changes in drought event characteristics
The total annual drought severity (TADS) is an important metric for
assessing drought severity. Figure 4 illustrates TADS during the
baseline period and over three future periods under two
scenarios. In the future projections, the TADS values projected
by GFDL-ESM4 and MPI-ESM2-0 increase, with a more pronounced
change under the SSP1-2.6 scenario. Conversely, the TADS values
projected by MPI-ESM1-2-HR exhibit a decline, whereas those by
IPSL-CM6A-LR and UKESM1-0-LL remain relatively stable. Overall,
there is no significant shift in drought severity across the three
future periods. Pairwise comparisons of the five GCMs’ TADS
projections for the future three periods revealed statistically
significant differences (p < 0.05). The comparison of drought
severity as simulated by the two methods for PET (Fig. 4 and
Supplementary Fig. 4) suggests minimal difference in drought
severity between the baseline, early, and middle periods.
However, in the late period, particularly under the SSP5-
8.5 scenario, the drought severity simulated by the conventional
PM-RC method is significantly higher than that of the method
considering vegetation-CO2 interaction.
The total annual drought duration (TADD) illustrates the extent

of drought durations. Figure 5 displays the TADD values during
the base period and over three future periods under two
scenarios. In future projections, TADD projected by GFDL-ESM4
becomes longer under SSP1-2.6 and shorter under SSP5-8.5. MPI-
ESM2-0 projects a longer TADD in the future, with more
pronounced changes in SSP1-2.6. In contrast, future TADD

Fig. 4 Total annual drought severity under different scenarios and time periods. TADS (PET calculated from PM-CO2) for the base period
(1980–2014) and three future periods (2015–2040, 2041–2070, and 2071–2100) under a SSP1-2.6 and b SSP5-8.5. Significance levels are
indicated by **** for p ≤ 0.0001, *** for p ≤ 0.001, ** for p ≤ 0.01, and * for p ≤ 0.05. The lower green sign indicates the p-value between two
GCMs, and the upper **** sign represents that the p-value between all two GCMs, except the lower green one, is ≤0.0001.
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projected by MPI-ESM1-2-HR becomes shorter in both scenarios.
TADD projected by IPSL-CM6A-LR and UKESM1-0-LL shows no
significant changes. Overall, there is no substantial extension in
drought duration across the three future periods. The pairwise
comparisons among the five GCMs’ TADD projections over three
future periods generally demonstrated statistically significant
differences (p < 0.05). The drought durations simulated by the
two methods for PET (Fig. 5 and Supplementary Fig. 5) showed
minimal difference under the SSP1-2.6 scenario. However, under
SSP5-8.5, the drought durations simulated by the conventional
PM-RC algorithm exhibit lower values in the early period but
significantly higher in the later period compared to those
estimated by the method considering vegetation-CO2 interactions.
The total annual drought frequency (TADF) measures the

frequency of drought occurrences. Figure 6 illustrates the changes
in TADF. In the low-emission scenario, the drought frequency does
not exhibit any significant change over the three future periods.
However, in the high-emission scenario, there appears to be a
trend toward a decrease in drought frequency. Overall, there is no
significant shift in drought frequency over the three future
periods. Pairwise comparisons among the five GCMs’ TADF
projections over the future three periods mostly revealed
statistically significant differences (p < 0.05). When comparing
the drought frequency derived from the simulation of the two
methods for PET (Fig. 6 and Supplementary Fig. 6), it is evident
that the frequencies calculated by both methods are similar,
indicating minimal difference.

Trends in drought event characteristics
The analysis of TADS trends aids in determining whether the
severity of droughts across China is weakening or intensifying.
Figure 7 illustrates the spatial pattern of TADS trends across China.

Under the SSP1-2.6 scenario, most regions of China exhibit a
decreasing trend in drought severity, though this trend is not
statistically significant. In contrast, under SSP5-8.5, the drought
severity decreases in much of southwest China but increases
significantly in central and southeast China. The significant
upward trend in drought severity projected by GFDL-ESM4 under
SSP1-2.6 is widely distributed. Nationwide, the drought severity
projected by MPI-ESM1-2-HR under SSP5-8.5 shows a decreasing
trend, though not significant. In general, future drought severity in
China exhibits a significant upward trend in only a few regions
and a downward trend in most regions. When comparing the
drought severity trends using the two different PET estimation
methods (Fig. 7 and Supplementary Fig. 7), the spatial patterns
under SSP1-2.6 are similar between the methods. However, under
SSP5-8.5, the trends calculated by the conventional PM-RC
algorithm exhibit a more widespread and significant increase in
severity.
Based on the analysis of TADD trends, the duration of droughts

across China is observed to either shorten or lengthen. Figure 8
illustrates the spatial pattern of TADD trends across China. Under
the SSP1-2.6 scenario, most areas in China show a trend towards
shorter drought durations, though these trends are not statistically
significant. Conversely, under SSP5-8.5, the duration of droughts
tends to decrease in the majority of southwest China, while
increasing significantly in central and southeast China. The most
extensive increase in drought duration under the low-emission
scenario is projected by GFDL-ESM4. In contrast, the drought
duration projected by MPI-ESM1-2-HR under the high-emission
scenario predominantly follows a downward trend nationwide,
though not significant. In general, future drought duration in
China is projected to experience a significant upward trend in only
a few regions, and a downward trend in most regions. When

Fig. 5 Total annual drought duration under different scenarios and time periods. TADD (PET calculated from PM-CO2) for the base period
(1980–2014) and three future periods (2015–2040, 2041–2070, and 2071–2100) under a SSP1-2.6 and b SSP5-8.5. Significance levels are
indicated by **** for p ≤ 0.0001, *** for p ≤ 0.001, ** for p ≤ 0.01, and * for p ≤ 0.05. The lower green sign indicates the p-value between two
GCMs, and the upper **** sign represents that the p-value between all two GCMs, except the lower green one, is ≤0.0001.
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comparing the drought duration trends using two different PET
estimation methods (Fig. 8 and Supplementary Fig. 8), the spatial
patterns under SSP1-2.6 are almost the same. However, under
SSP5-8.5, the trends calculated using the conventional PM-RC
algorithm show a more extensive distribution of significant
increases in drought duration.
The analysis of TADF trends is instrumental in understanding

the shifts in the frequency of future drought events. The spatial
patterns of TADF trends, as projected by the five GCMs, are largely
consistent (Fig. 9). Most areas in China exhibit a slight downward
trend, while certain areas show a significant upward trend. When
comparing drought frequency trends using two different PET
estimation algorithms (Fig. 9 and Supplementary Fig. 9), under the
SSP1-2.6 scenario, the spatial patterns produced by both methods
are almost identical. However, under the SSP5-8.5 scenario, the
drought frequency trends simulated by the conventional PM-RC
algorithm tend to be more widely distributed in the areas with
significant increases.

DISCUSSION
Grasping the future dynamics of drought in the context of climate
change remains challenging, owing to the intricate interactions
between drought and a range of climatic elements. As a result,
this research delves into examining the characteristics of drought
events as projected by five GCMs under three different emission
scenarios. This study analyzes these projections over three future
periods (2015–2040, 2041–2070, 2071–2100), utilizing the daily
SPEI. Unlike the more commonly employed monthly SPEI, the daily
SPEI offers a more precise depiction of short-term drought events,
enhancing the accuracy of drought monitoring and assessment.
This approach is widely adopted and has been validated in

previous studies20,26,50,51. Employing the daily SPEI provides a
higher temporal resolution analysis, thereby enabling a more
accurate detection of short-term changes in precipitation and
evapotranspiration. This is particularly beneficial for the forecast-
ing of drought events, especially in regions prone to short-term
droughts under future climate change scenarios. The availability of
detailed data is essential for swiftly initiating responsive actions
and timely interventions to alleviate drought, thus mitigating
potential adverse effects in the future. However, it’s important to
acknowledge that computing daily SPEI necessitates a substantial
volume of data for PET calculations, which might be constrained
by data availability, particularly over shorter timescales.
The results of our study show that the bias-adjusted data from

the ISIMIP3b GCMs demonstrate robust capabilities to capture
historical climate change in China. This increases the fidelity of
using this dataset for examining future drought conditions in
China. When comparing PET values calculated using different
methods, we found that the conventional PM-RC model tends to
overestimate future PET, particularly in the middle and late
periods under high-emission scenarios (SSP3-7.0 and SSP5-8.5).
This overestimation is primarily due to the rapidly increasing CO2

concentrations, which affect vegetation behavior and result in a
decelerated growth rate of PET29. Under a warming climate, the
increase in drought severity, duration, and frequency in China is
modest31,52. These results are at odds with some existing studies
that suggest a dramatic increase in droughts over China53,54.
When analyzing future drought events as simulated by the two
PET methods, there is almost no distinction in their characteristics
under the low-emission scenario. Similarly, under the high-
emission scenarios, the characteristics of drought events for the
baseline, early, and middle periods also show small differences
between the two methods. However, in the late period under the

Fig. 6 Total annual drought frequency under different scenarios and time periods. TADF (PET calculated from PM-CO2) for the base period
(1980–2014) and three future periods (2015–2040, 2041–2070, and 2071–2100) under a SSP1-2.6 and b SSP5-8.5. Significance levels are
indicated by **** for p ≤ 0.0001, *** for p ≤ 0.001, ** for p ≤ 0.01, and * for p ≤ 0.05. The lower green sign indicates the p-value between two
GCMs, and the upper **** sign represents that the p-value between all two GCMs, except the lower green one, is ≤ 0.0001.
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high-emission scenarios, the drought events simulated by the
conventional PM-RC method are significantly more intense
compared to those simulated by the method considering
vegetation-CO2 interactions.
The discrepancies are likely caused by the failure of the

conventional PM-RC model to consider how vegetation responds
to climate change, especially in terms of CO2 effects. The
conventional method was more suited to historical and earlier
periods when CO2 concentrations were relatively stable or slightly
increasing. In contrast, during later periods, the rapidly increasing
CO2 concentrations have a substantial effect on vegetation
behavior via leaf stomata and canopy structure55,56. High CO2

concentrations allow plants to absorb CO2 more efficiently,
thereby reducing the frequency and duration of stomatal open-
ings, and enhancing the plant’s water use efficiency, leading to a
decrease in water demand and a slower rate of evapotranspiration
from the plant57,58. Plants regulate their water and gas exchange
via stomata. In conditions of heightened CO2, plants may reduce
stomatal conductance due to more efficient carbon dioxide
acquisition, which consequently leads to a reduction in water
release31,59. The PM-CO2 equation considers the effects of both
stomata and canopy structure, offering better results than
conventional models, particularly in the context of analyzing
climate change impacts.

It’s important to note that there are considerable differences in
drought projections among the five GCMs in this study54,60. These
differences among the GCMs can be attributed to a range of
factors such as differences in model structure, parameter
configurations, boundary conditions, and variations in physical
and numerical schemes38,61,62. To enhance our understanding and
clarify these discrepancies, further research and validation using
observational data are crucial.

METHODS
Data collection
To project future drought conditions in China, we used the output
of GCMs within the CMIP6 framework (https://esgf-node.llnl.gov/
search/cmip6/, last access: Nov. 3, 2023). However, the spatial
resolution of the CMIP6 output was coarse and systematically
biased, prompting Lange63 to employ a trend-holding-based
parameter quantile mapping method to correct the bias and
subsequently release the ISIMIP3b dataset (https://data.isimip.org/
search/tree/ISIMIP3b/, last access: November 3, 2023). The
ISIMIP3b comprises outputs from five GCMs: GFDL-ESM4, IPSL-
CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESm1-0-LL. In
terms of the oceanic and atmospheric modular components,
these five GCMs are structurally independent, and their repre-
sentation for biogeography process ranges from fair (IPSL-CM6A-

Fig. 7 Trends of TADS (PET calculated from PM-CO2) from 2015–2100 by five GCMs under two SSP scenarios (spatial pattern).
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LR, and MPI-ESM1-2-HR) to good (GFDL-ESM4, and MRI-ESM2-0,
UKESM1-0-LL) as indicated by informal surveys from experts
involved in the Coordinated Research in Earth Systems and
Climate: Experiments, kNowledge, Dissemination and Outreach
(CRESCENDO) project64,65. Regarding climate sensitivity, the
dataset encompasses three GCMs characterized by low climate
sensitivity (GFDL-ESM4, MPI-ESM1-2-HR, and MRI-ESM2-0) and two
GCMs with high climate sensitivity (IPSL-CM6A-LR and UKESM1-0-
LL). Together, these models represent the full spectrum of climate
sensitivity within the CMIP6 ensemble66. To investigate variations
in future drought conditions in China under different emission
scenarios, we used the GCMs output under three scenarios: SSP1-
2.6, SSP3-7.0, and SSP5-8.5.
In this research, we gathered datasets encompassing precipita-

tion, temperature, downward shortwave radiation, downward
longwave radiation, relative humidity, and wind speed data were
collected for the period from 1980 to 2100, considering three
emission scenarios and five GCMs under ISMIP3b. The datasets are
available at a daily temporal resolution and possess a spatial
resolution of 0.5° × 0.5°. To evaluate the performance of GCMs, we
used version 2.0 of WFDE5 over land merged with ERA5 over the
ocean (W5E5 v2.0) dataset, used for bias adjustment in ISIMIP3b as
observational data (https://data.isimip.org/search/, last access:
November 3, 2023)67. To calculate net radiation (as detailed in
Supplementary Method 1), we used uncorrected data including

downward upward shortwave radiation, downward longwave
radiation, upward longwave radiation, and temperature from
CMIP6. Within CMIP6, CO2 concentrations are determined by
shared socioeconomic pathways (SSPs). Each SSP scenario
corresponds to a specific set of CO2 concentration pathways. To
calculate PET, we compiled monthly CO2 data from CMIP6. The use
of monthly CO2 data was due to the data availability.

Drought index calculation
We used the daily SPEI from our recent study to assess
droughts20,26,50. The methodology for the calculation of the daily
SPEI was similar to that described by Wang et al.20. To investigate
meteorological drought in China, we computed daily SPEI for a 30-
day cumulative water deficit (D), derived by subtracting PET from
precipitation (P) (i.e., D= P-PET)19,68. The SPEI series was obtained
by standardizing the D series via the generalized extreme value
(GEV) distribution, generally recognized as the best-suited method
for calculating SPEI22,69. For detailed calculation procedures and
additional references, please refer to Wang et al.20 and Mann
(1945). The wet and dry grading employed in this study was based
on previous research14,20,50. In this study, we used the PM-CO2

model (as detailed in Supplementary Method 3) to calculate PET,
and for a comprehensive comparative analysis, we also used the
PM-RC model (as detailed in Supplementary Method 2) to evaluate
the PET and drought event characteristics of the five GCMs under

Fig. 8 Trends of TADD (PET calculated from PM-CO2) from 2015–2100 by five GCMs under two SSP scenarios (spatial pattern).
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the three scenarios. As the PM-RC equation was developed at a
constant surface resistance (rs) of 70 s m-1, the PM-CO2 equation
may overestimate PET when plants reduce stomatal conductance
and enhance water use efficiency in response to increased CO2

concentrations27,70. Yang et al. (2019)32 addressed this issue by
quantifying the general sensitivity of rs to CO2.

Drought event identification
The run theory introduced by Evjevich (1967), was employed to
identify the characteristics of drought events. The duration of a
drought is defined as the number of days between the onset and
the cessation of the event. The severity of drought is quantified as
the integrated area between the SPEI value falling below –0.5 in

Fig. 9 Trends of TADF (PET calculated from PM-CO2) from 2015–2100 by five GCMs under two SSP scenarios (spatial pattern).

Fig. 10 Illustrative diagram of drought events and three characteristics (including severity, duration, and frequency) defined by SPEI.
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absolute terms and the horizontal axis for the event’s duration20.
Drought frequency denotes the cumulative count of events
occurring within a specified time. Figure 10 illustrates the
definition and three characteristics of drought events.
To assess and compare drought event characteristics in China,

severity, duration, and frequency were aggregated annually,
yielding total annual drought severity (TADS), total annual drought
duration (TADD), and total annual drought frequency (TADF),
respectively20,26. These three metrics facilitate the comparison and
analysis of drought events.

Statistical methods
We used the Taylor Diagram to evaluate the performance of the
five GCMs. The Taylor Diagram is a versatile graphical tool
frequently utilized in meteorology to illustrate the resemblance
between models and observations71,72. It integrates three evalua-
tion metrics, the correlation coefficient (CC), root mean square
deviation (RMSD), and standardized deviations (SD), within a polar
graph. This graphical representation facilitates a more detailed
evaluation of the model’s performance.
To examine significant differences in projected drought among

the five GCMs across the three future periods, we employed the
nonparametric Wilcoxon test. This selection was based on the fact
that the attributes of the simulated drought events do not
conform to a normal distribution73. A p-value lower than 0.05
indicates a statistically significant difference in the predicted
results of the two GCMs.
To identify trends and their significance in drought event

characteristics, we employed the nonparametric Mann-Kendall
(MK) test. This test does not demand the data to follow a normal
distribution74 and is widely used to analyze drought time
series20,75–77. A p-value of lower than 0.05 indicates the presence
of a significant trend.
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