
1Scientific Reports |         (2019) 9:19518  | https://doi.org/10.1038/s41598-019-55972-4

www.nature.com/scientificreports

Prostate Cancer Detection using 
Deep Convolutional Neural 
Networks
Sunghwan Yoo1, Isha Gujrathi1, Masoom A. Haider   1,2,3,4 & Farzad Khalvati1,2,3,5*

Prostate cancer is one of the most common forms of cancer and the third leading cause of cancer death 
in North America. As an integrated part of computer-aided detection (CAD) tools, diffusion-weighted 
magnetic resonance imaging (DWI) has been intensively studied for accurate detection of prostate 
cancer. With deep convolutional neural networks (CNNs) significant success in computer vision tasks 
such as object detection and segmentation, different CNN architectures are increasingly investigated in 
medical imaging research community as promising solutions for designing more accurate CAD tools for 
cancer detection. In this work, we developed and implemented an automated CNN-based pipeline for 
detection of clinically significant prostate cancer (PCa) for a given axial DWI image and for each patient. 
DWI images of 427 patients were used as the dataset, which contained 175 patients with PCa and 252 
patients without PCa. To measure the performance of the proposed pipeline, a test set of 108 (out of 
427) patients were set aside and not used in the training phase. The proposed pipeline achieved area 
under the receiver operating characteristic curve (AUC) of 0.87 (95% Confidence Interval (CI): 0.84–0.90) 
and 0.84 (95% CI: 0.76–0.91) at slice level and patient level, respectively.

Prostate cancer is the most common form of cancer among males in the United States. In 2017, it was the third 
leading cause of death from cancer in men in the United States, with around 161,360 new cases which represented 
19% of all new cancer cases and 26,730 deaths, which represented 8% of all cancer deaths1. Despite the fact that 
prostate cancer is the most common form of cancer, if detected in the early stages, the survival rates are high due 
to slow progression of the disease1. Therefore, effective monitoring and early detection are the key for improved 
patients’ survival.

Currently, accepted clinical methods to diagnose clinically significant prostate cancer (PCa) are a combination 
of the prostate-specific antigen (PSA) test, digital rectal exam, trans-rectal ultrasound (TRUS), and magnetic 
resonance imaging (MRI). However, PSA screening leads to over-diagnosis, which leads to unnecessary expen-
sive and painful needle biopsies and potential over-treatment2. Multiparametric MRI which relies heavily on 
diffusion-weighted imaging (DWI) has been increasingly becoming the standard of care for prostate cancer diag-
nosis in radiology settings where the area under the receiver operating characteristic curve (ROC) varies from 
0.69 to 0.81 for radiologists detecting PCa3. A standardized approach to image interpretation called PI-RADS v24 
has been developed for radiologists, however, there remain issues with inter-observer variability in the use of the 
PI-RADS scheme5.

Machine learning (ML) is a branch of artificial intelligence (AI) that is based on the idea of the system learning 
a pattern from a large scale database by using probabilistic and statistical tools and making decisions or predic-
tions on the new data6–8. In medical imaging field, computer-aided detection and diagnosis (CAD), which is a 
combination of imaging feature engineering and ML classification, has shown potential in assisting radiologists 
for accurate diagnosis, decreasing the diagnosis time and the cost of diagnosis. Traditional feature engineering 
methods are based on extracting quantitative imaging features such as texture, shape, volume, intensity, and var-
ious statistical features from imaging data followed by a ML classifier such as Support Vector Machines (SVM), 
Adaboost, and Decision Trees9–14.

Deep learning methods have shown promising results in a variety of computer vision tasks such as segmen-
tation, classification, and object-detection15–17. These methods consist of convolution layers that are able to 
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extract different features from low-level local features to high-level global features from input images. A fully 
connected layer at the end of the convolutional neural layers converts convoluted features into the probabilities 
of certain labels15. Different types of layers, such as batch normalization layer18, which normalizes the input of 
a layer with a zero mean and a unit variant, and dropout layer19, which is one of regularization techniques that 
ignores randomly selected nodes, have been shown to improve the performance of deep learning-based methods. 
Nevertheless, to achieve convincing performance, an optimal combinations and structures of the layers as well 
as precise fine-tuning of hyper-parameters are required15,17,20. This remains as one of the main challenges of deep 
learning-based methods when applied to different fields such as medical imaging.

With CNNs’ promising results in computer vision field15,21, the medical imaging research community has 
shifted their interest toward deep learning-based methods for designing CAD tools for cancer detection. As a 
widely used approach, most of proposed algorithms require user-drawn regions of interest (ROI) to classify these 
user-annotated ROIs to PCa lesions and non PCa lesions. Tsehay et al.22 conducted a 3 × 3 pixel level analysis by 
5 convolution layers deep VGGNet20 inspired CNN with 196 patients. They fine-tuned their classifier by 
cross-validation method within the training set with 144 patients and achieved area under ROC curve (AUC) of 
0.90 AUC on a separated test set of 52 patients. The result was based on 3 × 3 windows of pixels extracted from 
MRI slices of DWI, T2-weighted images (T2w), and b-value images of 2000s −mm 2.

Le et al.23 conducted two dimensional (2D) ROI classification with combination of fused multimodal Residual 
Network (ResNet)17 and the traditional handcrafted feature extraction method. They augmented the training 
dataset and used the test set for fine-tuning and evaluating their classifier. They achieved ROI-level (lesion-level) 
AUC of 0.91. Liu et al.24 used VGGNet inspired 2D CNN classifier to classify each sample corresponding to a 32 
× 32 ROI (lesion) centered around biopsy location using a dataset, which was part of ProstateX challenge compe-
tition (“SPIE-AAPM-NCI Prostate MR Classification Challenge’’)25. They separated the dataset of 341 patients 
into 3 sets, the training set with 199 patients for training, validation set with 30 patients for fine-tuning, and test 
set with 107 patients for evaluation, and applied data augmentation to all 3 sets. They used 4 different types of 
input images which were generated with different combinations of DWI, apparent diffusion coefficient map 
(ADC), Ktrans from dynamic contrast enhanced magnetic resonance imaging (DCE-MRI), and T2w for their 
study. They achieved AUC of 0.84 with the augmented test test.

Mehrtash et al.26 also used VGGNet inspired 9 convolution layers deep three dimensional (3D) CNN classifier to 
classify 3D PCa lesions vs. non PCa lesions with 32 × 32 × 12 ROI using ADC, high b-value images, and Ktrans 
(DCE-MRI) of ProstateX challenge dataset25. They separated the data set with 341 patients into training set with 201 
patients and test set with 140 patients, and achieved lesion-level performance of 0.80 AUC on their test set. They applied 
cross-validation method within the augmented training set during training. As it will be discussed in Discussion sec-
tion, the proposed method in this paper is superior compared to these ROI-based solutions in terms of robustness and 
applicability in clinical usage since it foregoes the need for manually or automatically generating ROIs.

Slice-level detection algorithms classify each MRI slice into with or without PCa tumors. Ishioka et al.27 per-
formed the slice-level analysis with 316 patients by U-Net28 combined with ResNet. They created non-augmented 
training, validation, and test sets and achieved AUC of 0.79 on the test set, which included only 17 individual 
slices. The proposed algorithm in this paper performs slice-level detection as well using a much larger sample size 
with superior performance compared to that proposed by Ishioka et al.27.

Patient-level algorithms classify patients into with and without PCa. It is generally a challenging task to merge 
ROI-based or slice-level results into patient-level results22–24,26,27. Wang et al.29 compared the performance of deep 
learning-based methods to non-deep learning-based methods on the classification of PCa MRI slices vs non PCa 
MRI slices with 172 patients. They evaluated their VGGNet inspired 7 layers (5 convolution layers and 2 inner 
product layers) CNN classifier’s performance based on cross-validation. First, they classified each slice of a given 
patient and then converted the slice-level results into patient-level results by a simple voting strategy and achieved 
the patient-level AUC of 0.84, positive prediction value (PPV) of 79%, and negative prediction value (NPV) of 
77%. In this work, we achieved similar results with an independent test set and larger sample size.

In this paper, we propose an automated pipeline for two levels of PCa classification: slice level and patient level. 
For slice-level classification, we have proposed a stack of individually trained modified ResNet17 CNNs. We have 
also proposed a novel approach to convert slice-level classification results into patient level using first-order sta-
tistical features extractor, a decision tree-based feature selector, and a Random Forest classifier30,31. For the robust-
ness of the performance, we divided the dataset into three separate sets, the training, validation, and test sets, and 
ensured that the test set was never seen by the classifier during training and fine-tuning6. We also included all 
slices that contain prostate and did not limit the pipeline to slices that have been selected for biopsy. Our proposed 
pipeline’s performance on the independent test set was superior and more robust compared to similar studies that 
proposed CAD tools for PCa detection using CNNs.

Methods
Data.  A cohort of 427 consecutive patients with a PI-RADS score of 3 or higher who underwent biopsy were 
included. Out of 427 patients, 175 patients had clinically significant prostate cancer and 252 patients did not. A total 
of 5,832 2D slices of each DWI sequence (e.g., b0) which contained prostate gland were used as our dataset. We set 
the patient with Gleason score higher than or equal to 7 (International Society of Uropatholgists grade group (GG 
>= 2) as the patient with a clinically significant prostate cancer and patient with Gleason score lower than or equal 
to 6 (GG = 1) or with no cancer (GG = 0) as the patient without a clinically significant prostate cancer.

MRI Acquisition.  The DWI data was acquired between January 2014 to July 2017 using a Philips Achieva 3T 
whole body unit MR imaging scanner. The transverse plane of DWI sequences was obtained using a single-slot 
spin-echo echo-planar imaging sequence with four b values (0, 100, 400, and 1000s mm−2), repetition time (TR) 
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5000~7000 ms, echo time (TE) 61ms, slice thickness 3mm, field of view (FOV) 240 mm × 240 mm and matrix of 
140 × 140.

DWI is an MRI sequence which measures the sensitivity of tissue to Brownian motion and it has been found 
to be a promising imaging technique for PCa detection32. The DWI image is usually generated with different b 
values (0, 100, 400, and 1000s mm−2) which generates various signal intensities representing the amount of water 
diffusion in the tissue and can be used to estimate ADC and compute high b-value images (b1600)33.

In order to use DWI images as input to our deep learning network, we resized all of the DWI slices into 144 × 
144 pixels, and center cropped them with 66 × 66 pixels such that the prostate was covered. The CNNs were mod-
ified to feed DWI data with 6 channels (ADC, b0, b100, b400, b1000, and b1600) instead of images with 3 chan-
nels (red, green and blue.)

Training, validation, and test sets.  We separated 427 patients DWI images into three different sets, the 
training set with 271 patients (3,692 slices), the validation set with 48 patients (654 slices), and the test set with 
108 patients (1,486 slices) where the training/validation/test ratio was 64%, 11%, 25%. The separation procedure 
of the dataset was as follows. First, we separated the dataset into two sets, the training/validation set as 75% and 
the test set as 25% to maintain a reasonable sample size for the test set. Second, we separated the training/valida-
tion set into two sets with training set as 85% of training/validation set and the validation set as 15% of training/
validation set (Table 1). The ratios between the PCa patients and non PCa patients were kept roughly similar 
throughout the data sets.

Data preprocessing.  All of DWI images in the dataset were normalized across the entire dataset using the 
following function.

µ
=

−X X
std (1)i normalized
i

_

 where Xi is the pixels in an individual MRI slice, µ is the mean of the dataset, std is the standard deviation of the 
dataset, and Xi normalized_  is the normalized individual MRI slice.

Pipeline.  The proposed pipeline consists of three stages. In the first stage, each DWI slice is classified using 
five individually trained CNNs models. In the second stage, first-order statistical features (e.g., mean, standard 
deviation, median, etc.) are extracted from the probability sets of CNNs outputs, and important features are 
selected through a decision tree-based feature selector. In the last stage, a Random Forest classifier is used to 
classify patients into groups with and without PCa using these first order statistical features. The Random Forest 
classifier was trained and fine-tuned by the features extracted from the validation set with 10 fold cross-validation 
method. Figure 1 shows the block diagram of the proposed pipeline.

ResNet.  Since ResNet architecture has shown promising performance in multiple computer vision tasks17, we 
chose it as our base architecture for this research. Each Residual Block consists of convolutional layers21 and iden-
tity shortcut connection17 that skips those layers, and their outcomes are added at the end, as shown in Figure 2-a. 
When input and output dimensions are the same, the identity shortcuts, denoted by x, can be directly applied. The 
following formula shows the identity mapping process.

= +y F x W x( , { }) (2)i

 where F x W( , )i  is the output from convolutional layers and x is the input. When the dimension of input is not the 
same as that of the output (e.g., at the end of the Residual Block), the linear projection Ws changes the dimension 
of the input to be same as that of the output which is defined as: 

= + .Y F x W Wx( , { }) (3)i s

To improve the performance of the architecture, we implemented a fully pre-activated residual network34. In 
the original ResNet, batch normalization and ReLU activation layers were followed after the convolution layer, but 
in pre-activation ResNet, batch normalization and ReLU activation layers comes before the convolution layers. 
The advantage of this structure is that the gradient of a layer does not vanish even when the weights are arbitrarily 
small34. Instead of 2-layer deep ResNet block, we implemented a 3-layer deep "bottleneck" building block since it 
significantly reduces training time without sacrificing the performance17 (Figure 2-b).

Data Set
Patients 
with PCa

Patients 
without PCa

Slices with 
PCa tumors

Slices without 
PCa tumors

Training Set 105 166 439 3,253

Validation Set 18 30 66 588

Test Set 52 56 226 1,260

Table 1.  Number of patients and slices with and without PCa for training, validation, and test sets.
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CNNs architecture and training.  A 41 layers deep ResNet was created for the slice-level classification. The archi-
tecture is composed of 2D convolutional layers with a 7 × 7 filter followed by a 3 × 3 Max pooling layer and resid-
ual blocks (Res Block). The depth of 41 layers were found to be optimal through hyper-parameter fine-tuning 
procedure using the validation set. Since the input images were small (66 × 66 pixels) and the tumorous regions 
were even smaller (e.g., 4 × 3 pixels), additional ResNet blocks or deeper networks were needed. The first ResNet 
Block (ResNet Block1 in Table 2) is 3-layer bottleneck blocks with 2D CNN layers with filter sizes 64, 64 and 256 
which is stacked 4 times. The second ResNet Block (ResNet Block2 in Table 2) is 3-layer bottleneck blocks with 
2D CNN layers with filter sizes 128, 128, and 512 which is stacked 9 times. 2 × 2 2D Average Pooling, Dropout 
layer, and 2D Fully connected Layer with 1000 nodes for two probabilistic outputs are followed by the end of Res 
Blocks. Table 2 shows the overview of the proposed CNNs architecture.

Stochastic Gradient Decent35 was used as the optimizer with the initial learning rate of 0.001, and it was 
reduced by a factor of 10 when the model stopped improving after iterations. The model was trained with the 
batch size set to 8. Dropout rate was set to 0.90. We used a weight decay of 0.000001 and a momentum of 0.90. 
Since the dataset is extremely unbalanced, binary cross entropy36 was used as the loss function.

Stacked generalization.  Due to the randomness in training CNNs (for instance, at the beginning of train-
ing CNNs, weights are set to arbitrary random numbers), each CNN may be different despite identical set of 
hyper-parameters and input datasets. This means each CNN may capture different features for the patient-level 
classification. Stacked generalization37 is an ensemble technique that trains multiple classifiers with the same 
dataset and makes a final prediction using a combination of individual classifiers’ predictions. Stacked generaliza-
tion typically yields better classification performance compared to a single classifier37. We implemented a simple 
stacked generalization method using five CNNs. The number of stacked CNNs was selected based on the best 
performance and increasing the number of CNNs did not show improvement on the patient-level performance. 
Since there is a limited sample size for patient level (48 patients for validation, which was used to train Random 
Forest classifier for patient-level detection), increasing the number of CNNs, which leads to an increased num-
ber of patient-level features (as discussed in the next section), increases the likelihood of overfitting and hence, 
decreases the model’s robustness38. All the slice-level probabilities generated by the five CNNs were fed into a 
first-order statistical features extractor to generate one set of features for each patient. In the proposed pipeline, 
the patient-level performance significantly improved (2-tailed P = 0.048) using five CNNs compared to a single 
CNN (AUC: 0.84, CI: 0.76–0.91, vs. AUC: 0.71, CI: 0.61–0.81).

First order statistical feature extraction.  Let pij and nij be the probabilities of a MRI slice associated with PCa and 
non PCa, respectively, where i represents one of five individually trained CNNs and j represents each MRI slice of 
a patient. Each CNN produces two probability sets, = ...P p p{ , , }i i iN1  and = ...N n n{ , , }i i iN1  where N  is the total 
number of MRI slices for each patient. Within the probability sets, top five probabilities which are higher than 
0.74 were selected ( ́Pi and ́Ni). This was done to ensure less relevant probabilities at slice level were not used for 

Figure 1.  Block diagram of the proposed pipeline for prostate cancer detection. The inputs to each CNN are  
66 × 66 × 6 (ADC, b0, b100, b400, b1000, b1600) MRI slices. The output is the slice level and patient level results.
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patient-level classification. The probability cutoff of 0.74 was selected by grid-search using the validation set. 
Next, from the new probability sets, ́Pi and ́Ni, the first-order statistical features set, = ...F f f{ , }i i iK1  where K rep-
resents the total number of statistical features, were extracted for each patient. Next, the important features, ́Fi 
were selected by a decision tree-based feature selector39. The final feature set was constructed by combining 
important features, ́Fi, for all five CNNs where ́ ́= . . .F F F{ , }1 5 .

Figure 2.  The structural difference between original residual network and fully pre-activated residual network.

Layer Name Details about the layer

Conv layer 2D Convolutional Layer (7 × 7, 64, stride 2)

Max Pool 3 × 3 max pool, stride

ResNet Block 1








×
×
×








×

1 1, 64
3 3, 64
1 1, 256

4

ResNet Block 2








×
×
×








×

1 1, 128
3 3, 128
1 1, 512

9

Ave Pool 2D Average Pooling (7 × 7)

FC Fully Connected Layer (2D, softmax)

Table 2.  The Architecutre of the proposed CNNs.
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We extracted nine first-order features which are the mean, standard deviation, variance, median, sum, min-
imum (only from non PCa class), maximum (only from PCa class), skewness40, kurtosis40, and range from the 
minimum to maximum from each probability set. This produced 90 features for each patient (9 features for PCa 
and 9 features for non PCa class for each CNN). We selected 26 best features using the decision tree-based fea-
ture selector39. The decision tree based-feature selector was fine-tuned and trained with 10 fold cross-validation 
method using the validation set (Fig. 3).

Once first-order statistical features were extracted for each patient, a Random Forest classifier30,31 was trained 
using the validation set and tested on the test set for patient-level classification.

Computational time.  The CNNs were trained using one Nvidia Titan X GPU, 8 cores Intel i7 CPU and 32 GB 
memory. It took 6 hours to train all five CNNs with up to 100 iterations, less than 10 seconds to train the Random 
Forest classifier, and less than 1 minute to test all 108 patients.

Ethics approval and consent to participate.  The Sunnybrook Health Sciences Centre Research Ethics 
Boards approved this retrospective single institution study and waived the requirement for informed consent.

Results
The AUC and ROC curve41 were used to evaluate the performance of the proposed pipeline. A ROC curve is a 
commonly used method to visualize the performance of a binary classifier by plotting true positive rates and false 
positive rates with different thresholds, and an AUC summarizes its performance with a single number. The great 
advantage of AUC is its validity in an unbalanced dataset. Since only a small number of DWI slices have PCa 
tumor (e.g., average of 1 to 3 slices per patient where the total number of slices are an average of 14), AUC is the 
best way to evaluate the performance of the pipeline. In addition, ROC curve allows us to pick desired specificity 
and/or sensitivity of the classifier through the threshold. This evaluation method is applied to slice-level and 
patient-level classifications using the test set with 108 patients (1,486 slices).

Slice-level performance.  Since the pipeline contains five individually trained CNNs, there are five different 
test results at slice level. Table 3 shows individual performance on the test set for each CNN. Our best CNN 
(CNN1) achieved the DWI slice-level AUC of 0.87 (95% Confidence Interval (CI): 0.84–0.90). Figure 4 shows the 
ROC curve of CNN1 performance.

Patient-level performance.  The patient-level AUC by our Random Forest classifier with the features 
extracted through CNNs was 0.84 (95% CI: 0.76–0.91) (Fig. 5).

Discussion
In the literature, several PCa classification methods for MRI images have been developed to address the inher-
ent challenges of CAD tools for cancer detection, which can be categorized into two classes: radiomics-driven 
feature-based methods9–12,42,43 and deep learning-based methods22–24,26,27,29.

Radiomics-driven feature-based methods consist of two stages: extraction of hand crafted features and classi-
fication based on these features. These methods require a comprehensive set of radiomic features, which include 

Figure 3.  Block diagram of the proposed first-order statistical feature extractor. PCa Set: probabilistic output 
set from each CNN which is associated with PCa class. Non PCa Set: probabilistic output set from each CNN 
which is associated with non PCa class.

Architecture Test AUC (95 % CI)

CNN1 0.87 (0.84–0.90)

CNN2 0.87 (0.84–0.90)

CNN3 0.86 (0.83–0.89)

CNN4 0.85 (0.82–0.88)

CNN5 0.85 (0.82–0.88)

Table 3.  Slice-level performances of five individually trained CNNs.
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first- and second-order statistical features, high-level features such as morphological features9, and voxel-level fea-
tures10. For the classification using radiomic features, several approaches have been proposed. Different machine 
learning classifiers6 such as naive Bayesian classifier9, SVM42,43, and Random Forest classifier10 have been used. 
However, it has been shown that deep learning methods are superior to radiomics-driven feature-based methods 
in classification of PCa29.

ROI is one of commonly used data structures in medical image analysis. Usually delineated by the user, ROIs 
are samples within medical images identified for a particular purpose44, which often contain cancer tumors. 
ROI-based methods directly compare and only classify regions or bounding boxes that contains tumors over 
healthy tissues. ROI-based methods have been used in both radiomics-driven and CNN-based methods for PCa 
CAD tool design. In CNN-based methods, Liu et al24, Tsehay et al22, and Le et al.23 used 2D ROIs of cancer tumors 
and Mehrtash et al26 and used 3D ROIs of cancer tumors as their data structures (eg. × ×32 32 12 ROI).

ROI-based CAD algorithms have several limitations. First, ROI-based algorithms require a time consuming 
manually generated (by expert reader) or automatically generated segmentation of ROI as a part of the pipeline to 
generate ROI-based dataset. If it is a manually generated segmentation, the application for clinical use is limited 
because it ultimately relies on the clinician’s review and expertise and hence, it is not fully automated. If, on the 
other hand, it is an automatically generated segmentation, the result of classification depends on the performance 
of the segmentation algorithm, and inaccuracies from ROI segmentation algorithm can lead to poor PCa detec-
tion performance. Moreover, most of ROI-based methods use sliding windows of pixels as data structures to 
feed the CNNs, which makes it a challenging task to achieve an acceptable performance on classification of PCa 
at patient level due to the fact that each patient’s MRI data constitutes several thousands of windows of pixels. 
Therefore, ROI-based methods22,24,26 struggle to merge individual ROI-based results into patient-level classifica-
tion and they usually rely on basic merging methods such as simple voting29, which makes it a challenging task to 
achieve acceptable performance at patient level.

Figure 4.  Slice-level ROC curve of the proposed ResNet inspired deep learning architecture (AUC: 0.87, CI: 
0.84–0.90).

Figure 5.  Patient-level ROC curve of the proposed pipeline: Random Forest classifier trained on the features 
extracted by the CNNs (AUC: 0.84, CI: 0.76–0.91).

https://doi.org/10.1038/s41598-019-55972-4


8Scientific Reports |         (2019) 9:19518  | https://doi.org/10.1038/s41598-019-55972-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

In this work, instead of feeding ROIs into CNNs, we used automatically center-cropped DWI images with the 
only user intervention being to indicate the first and last slice that contained prostate gland. This is advantageous 
because it does not require generation of ROIs by either hand or segmentation algorithms. Thus, the proposed 
pipeline performance is independent of ROI generation method. In other words, our pipeline is able to perform 
PCa diagnosis on patients without the aid of expert readers. A similar approach was taken by Liu et al.24 where 32 
× 32 ROIs were constructed around biopsy locations. The main difference between this approach and ours is that 
in the former, only slices with biopsy were used and the remaining of slices, which are the majority of them, were 
excluded from the model. In our pipeline, we built the ROI around the prostate with no a priori knowledge on the 
biopsy locations, which makes our approach independent of radiologists. Although the result for Liu et al. 
approach24 was reported for augmented test set and only for slices with biopsy, our pipeline AUC was superior 
(AUC of 0.87 vs. 0.84).

There are other studies in the literature that proposed slice-based analysis27,29, but our slice-level performance 
(AUC: 0.87) and the sample size of the test set (108 patients or 1,486 slices), were significantly superior to their 
performance and sample size. For example, Ishioka et al.27 proposed a slice-level algorithm using 316 patient data 
for training and validation. The test set was only 17 slices withe AUC of 0.79. Furthermore, we used the results 
generated by CNNs as features for classifying PCa at patient level, which was not the case with these previous 
works on slice-level algorithms.

Completely isolating test data from training and validation is crucial to measure true performance of a (deep) 
machine learning-based classifier. Cross-validation is a well-known method to evaluate the performance of the 
classifier29. However, it is only relevant for optimizing or fine-tuning the model because there is a possibility that 
cross-validation leads to a model that overfits. Fine-tuning the classifier based on the performance of the test set 
(e.g., adopted in23) makes the test set not independent from the trained and optimized classifier, and hence, the 
performance achieved is optimistic and not realistic. The fine-tuning and optimization of the model must be done 
through a validation set, which is separate than both training and test sets as adopted in our work in this paper 
and those of22,26,27. Moreover, the test set should not be augmented (e.g., adopted in24) to keep the robustness of 
the results. Due to test data cross-contamination with training or validation sets via cross-validation or data aug-
mentation, the performance of some of the proposed models in the literature is rather optimistic.

In this work, we divided the entire dataset into three different sets, training, validation, and test set. In the 
slice-level analysis, the training set was used to train the model, and the validation set was used to fine-tune 
and optimize our CNNs architecture, and the test set was used to evaluate the performance of the CNNs. In the 
patient-level analysis, cross validation was used within the validation set to fine-tune and optimize our decision 
tree-based feature selector and Random Forest classifier, and tested on the test set. As a result, our classifier’s 
results were more robust compared to studies that used cross-validation as a measure of performance29 or train-
ing deep learning classifier without the validation set23. For the studies that used independent test set24,26,27, our 
results are superior. For example, Liu et al.24 conducted 2D ROI slice-level analysis and achieved 0.84 AUC for 
ROC-based (centered around biopsy location) classification only compared to 0.87 AUC for our proposed pipe-
line for slice-level classification.

Turning ROI-level results or the slice-level results of MRI data into patient-level result has been a major chal-
lenge in PCa classification via deep learning22–24,26,27. This is due to the fact that the 3D MRI volume of each 
patient may have hundreds or thousands of ROIs. Wang et al.29 converted their slice-level result into patient-level 
by averaging all of the slice-level probabilities for patient and thresholding the average probabilities to classify 
PCa at patient level. Although this method achieved patient-level performance similar to our proposed pipeline’s 
results (AUC: 0.84), it is based on cross validation, which makes it an optimistic result. In contrast, the results 
presented in this paper is based on a test set which is completely separate than the training and validation sets. 
Moreover, our test data contained 108 patients, which is significantly larger than the dataset with 17 patients for 
each fold29.

The main limitation of this work is the fact that similar to CAD papers, the data is inherently biased; those 
patients are sent to MRI who have an indication of prostate cancer (e.g., higher PSA). Thus, the dataset is not 
a true reflection of the population. In addition, the labels for the data are based on biopsy locations, which are 
determined by radiologists. In other words, slices with no biopsy are assumed to be negative, based on radiology 
reports. However, the positive slices are based on pathology (biopsy) reports. Finally, an external validation with 
a dataset from a different institute is required to verify the performance and robustness of the proposed pipeline 
across scanners and institutions.

Conclusion
In this work, we built a two step automated deep learning pipeline for slice-level and patient-level PCa diag-
nosis using DWI images. Instead of manual ROI annotation, automated center-cropping was used to maintain 
independence from expert readers’ intervention. A stack of five CNNs were used to produce improved classifi-
cation results at slice level. First-order statistical features were extracted from slice-level probabilities to compile 
slice-level classification results into patient level. The pipeline was tested on an independent test set of 108 patients 
and the results at both slice level and patient level was superior to the state-of-the-art. As future work, other CNN 
architectures such as 3D CNNs (to feed the 3D DWI) and recurrent neural networks45 (to account for sequential-
lity of lesions in neighboring slices) will be used.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author on 
reasonable request pending the approval of the institution(s) and trial/study investigators who contributed to the 
dataset.
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