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Monitoring the long term 
vegetation phenology change in 
Northeast China from 1982 to 2015
Lingxue Yu1, Tingxiang Liu2, Kun Bu1, Fengqin Yan1, Jiuchun Yang1, Liping Chang1 &  
Shuwen Zhang1

Global warming has contributed to the extension of the growing season in North Hemisphere. In this 
paper, we investigated the spatial characteristics of the date of the start of the season (SOS), the date 
of the end of the season (EOS) and the length of the season (LOS) and their change trends from 1982 
to 2015 in Northeast China. Our results showed that there was a significant advance of SOS and a 
significant delay of EOS, especially in the north part of Northeast China. For the average change slope 
of EOS in the study area, the delay trend was 0.25 d/y, which was more obvious than the advance trend 
of −0.13 d/y from the SOS. In particular, the LOS of deciduous needleleaf forest (DNF) and grassland 
increased with a trend of 0.63 d/y and 0.66 d/y from 1982 to 2015, indicating the growth season 
increased 21.42 and 22.44 days in a 34-year period, respectively. However, few negative signals were 
detected nearby Hulun Lake, suggesting that the continuous climate warming in the future may bring 
no longer growing periods for the grass in the semiarid areas as the drought caused by climate warming 
may limit the vegetation growth.

Vegetation phenology is an important indicator for monitoring changes in the climate and natural environ-
ment1–3. Studies of vegetation phenology are of great significance to understand the change trend of natural 
seasonal phenomena and serve for agricultural production and global change studies4–6. Vegetation phenology 
is very sensitive to climate fluctuation1,2. Climate change directly affects the growth and development of plants as 
well as the geographical distribution patterns of plants7–9. In addition, vegetation phenology is also an important 
parameter for land surface process models and the global carbon cycle10. Accurate monitoring of the vegetation 
phenology can help explore the evidence for a response of the vegetation to climate change, enhance the under-
standing of the material and energy exchange between the vegetation and climate and accurately evaluate the 
vegetation productivity and global carbon budget11,12.

At present, the phenological observation methods mainly include ground observation and remote sensing 
monitoring13,14. Though traditional ground observation is objective and accurate, it cannot generate large-scale 
continuous surface observation data15. The satellite multispectral sensor can perform repeated observations in a 
short time period, which provides a data source for vegetation phenology research at both the community and 
regional scale16. The normalized difference vegetation index (NDVI) derived from remote sensing data can reflect 
the greenness, metabolic intensity and seasonal and interannual variation of vegetation, and it has been widely 
used for indicating vegetation characteristics such as vegetation coverage, vegetation type, and leaf area index as 
well as for monitoring the seasonal variation of vegetation and land cover changes17,18. The methods used to detect 
the start and end of the growing season based on time series NDVI data mainly contains the following catego-
ries: dynamic or static threshold method19,20, maximum slope method21, curve fitting method22,23 and empirical 
regression equation method24. Among these methods, some are difficult to apply on the regional scale and are 
limited by the local experience parameters of the study area, while others lack of enough analysis of the pheno-
logical patterns for specific ecosystems but can obtain regional and even global-scale phenological patterns25.

The temperature records of the 20th and 21st centuries show that global temperatures have clearly increased 
since the 1970s, especially in the middle and high latitudes areas of the Northern Hemisphere26. The increase 
of temperature has led to the advanced spring phenology, postponed autumn phenology, and extension of the 
growing season in this region27–29. Northeast China, and more generally, the northern part of China, is extremely 
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sensitive to the global climate change4,30. Previous studies have shown that the phenology of typical vegetation 
such as forests and crops in Northeast China has changed. These studies only illustrated the phenological var-
iation characteristic for each typical type but lack a spatial comparative analysis across the study area, which is 
essential as northeast China covers cold, middle and warm temperate zones and heterogeneous vegetation types. 
It is of great significance to describe the changes in the vegetation phenology in a continuous regional space for 
studying the response of vegetation phenology to global climate change.

In this paper, we first extracted the vegetation phenological variables using a double logistic model based on 
the GIMMS NDVI dataset and the phenological field observation data, and then we used the linear regression 
and least square method to extract the change trend for the phonological parameters such as SOS, EOS and LOS. 
Finally, on the basis of land cover data, we calculated and compared the vegetation phenology change between 
different vegetation types through statistical analysis. Our study not only illustrated the spatial variation trend 
of the vegetation phenology but also clarified the vegetation phenological characteristics for different vegetation 
types in Northeast China. This study can provide definite evidence for global climate change and natural envi-
ronment change.

Results
Validation of the extracted vegetation phenology parameters.  Based on the long-term phenologi-
cal observation records of 8 stations from 1982 to 2008, we compared the SOS and EOS of the observation values 
with the simulated results. A function y = x was used to evaluate the accuracy of the results and the bias error31. 
To make the results more comparable, we selected nearly pure pixels for different vegetation types around the 
stations to calculate and evaluate.

The root mean square error of the simulated SOS and EOS were 3.14 days and 3.90 days. As the resolution in 
our study was 8 km, the scale mismatch between 8 km resolution and point may be the main error source. As most 
of the stations located in the center of the city, it was difficult to find the pure pixels there because of the significant 
heterogeneity of land cover at 8 km resolution. As a result, we selected the nearest pure pixels around the stations 
but may bias from the center of the city where under the influence of an urban heat island effect, i.e., a cooling 
effect, may be observed from the pure pixels and their nearest stations32,33. In our results, the extracted SOS were 
slightly higher, and the extracted EOS were slightly lower than were those from stations, suggesting that the 
extracted growing season was shorter than that from the stations, which was consistent with the above analysis.

Nonetheless, both the point pairs in the SOS and EOS are similar to the function y = x, which indicates good 
consistency between the simulated and observed data. Meanwhile, we analyzed the bias error in different years 
and found that there was no trend for the root mean square error from 1982 to 2008. Therefore, we assume that 
our vegetation phenology extraction model and threshold can obtain relatively accurate SOS and EOS values in 
Northeast China.

Vegetation phenology characteristics in Northeast China.  Based on the vegetation phenology 
extraction model, the spatial distribution of the SOS, EOS and LOS were obtained from 1982 to 2015 in northeast 
China. To eliminate the effect of mutation data years on the results, we averaged the SOS, EOS and LOS from 1982 
to 2015 to express the characteristics for the vegetation phenology in Northeast China (Fig. 1).

The spatial distribution characteristics for the vegetation phenology are illustrated in Fig. 1. All three phenol-
ogy parameters (SOS, EOS and LOS) showed significant spatial heterogeneity as well as differences between each 
other. In general, the SOS in Northeast China from 1982 to 2015 ranged from the 100th day to the 140th day of the 
year, respectively, representing April 10th and May 20th. Similarly, the EOS in Northeast China from 1982 to 2015 
ranged from the 280th day to the 320th day in the year, respectively representing October 7th and November 16th. 
As a result, the average LOS ranged from 115 days to 195 days. In addition, the results suggested that there existed 
some relationship between phonological parameters and land cover types.

Vegetation phenology changes in Northeast China.  The change trends for the SOS, EOS and LOS 
and the corresponding confidences from 1982 to 2015 were extracted based on the multi-SOS, multi-EOS and 
multi-LOS layers (Fig. 2). In the results, only the change trends lying inside the 90% confidence interval were 
shown in the slope maps, and the trends without significance were set to zero in the slope maps.

The SOS_slope and SOS_p shown in Fig. 2 illustrated that there are significant advances in the growth season, 
especially in the north part of Northeast China. Forests on both sides of Greater Khingan Mountain, the grassland 
in Hulun Buir and the farmland at the northern Nenjiang plain showed a −0.25 d/y or more negative trend. The 
natural climate change has been proven to be the dominant factor for the advance in SOS27,28. The north part of 
Northeast China was the most significant region for climate warming4, which contributed to the significant earlier 
trend in the SOS. The EOS_slope and EOS_p showed a postponement trend of the growing season in most parts 
of Northeast China, especially for the northernmost part, which was similar to the SOS but with a larger extent. 
The climate warming in autumn may lead to the later EOS for larger areas as well as more types. The changes in 
SOS and EOS contributed to the changes in LOS. The LOS in Northeast China showed an obvious increase in 
most parts of the study area. In the northern part of the study area, the LOS increased with a trend larger than 1 
d/y, i.e., the growth season increased by more than 30 days during 1982 to 2015. As a result, the farmland at the 
northern Nenjiang plain converted its crops from soybean to corn in 2010 34, which can provide evidence for the 
increase of the LOS in the northern Songnen Plain.

In addition, there are areas with a shorter LOS that are centrally distributed at Songnen and Liaohe Plain. 
The overlay analysis between LOS_slope and land cover maps indicated that the LOS with significant decreasing 
trends were mainly located at the transition zone between farmland and grassland. The conversion from grassland 
to farmland due to human activities in these areas during 1982 to 2015 may be the main reason for these results. 
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The land use change study in northeast China from Zhang et al. (2006) and Wang et al. (2009) indicated that the 
conversion dominated the change35,36.

Based on the land cover maps, we extracted the change characteristics for the six main types to clarify the 
relationships between vegetation cover types and the change slope of the SOS, EOS and LOS at a confidence level. 
To eliminate the influence from mix pixels on the results, the near pure pixels with the area percentage higher 
than 80% were utilized in the statistics and analysis. The values lying outside the 90% confidence interval were 
set to zero in the statistics. The number of grids involved in the operation, the average slope and the percentages 
of the grids with significance at P < 0.1 for the SOS, EOS and LOS for each land cover type were then calculated 
and are shown in Table 1.

The near pure pixels for each land cover were analyzed in this section, including 1279 grids for DNF, 1583 
grids for DBF, 749 grids for MF, 975 grids for Grass, 3464 grids for Farmland and 37 grids for swamp. The number 
of the pixels can not only reflect the area and fragmentation degree for each land cover to a certain extent but can 
also show the rationality of the statistic as there is no statistical significance if the sample is too small37. In this 
study, the swamp pixels were relative small and were not considered as a primary object in the analysis.

Figure 1.  The spatial distribution of the averaged SOS (SOS_avg), averaged EOS(EOS_avg) and averaged 
LOS(LOS_avg) from 1982 to 2015. (This figure was drawn by ArcGIS10 http://www.esri.com/arcgis/).

http://www.esri.com/arcgis/
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The SOS for each land cover type showed an advanced trend. The change slope for grassland was lowest, with 
0.28 days advanced per year and 58.87% significant pixels. The deciduous needleleaf forest changed at a rate of 
−0.24 d/y, in which 78.58% pixels were significant at P < 0.1. The other types showed a slower decrease trend as 
well as a higher percentage of pixels with no significance. In contrast to the SOS, the EOS indicated a delay trend 
and a higher change rate. The EOS for DNF was delayed at a rate of 0.36 d/y, in which 92.26% pixels were signif-
icant at a 90% confidence interval, i.e., the EOS of DNF in the study area extended approximately 12 days for the 

Figure 2.  The slope of the SOS(SOS_slope), slope of the EOS(EOS_slope), and slope of the LOS(LOS_slope) 
and the corresponding confidences of the change trend for SOS, EOS and LOS (SOS_p, EOS_p, LOS_p, 
respectively) from 1982 to 2015 in northeast China (a trend of zero lies outside the 90% confidence interval). 
(This figure was drawn by ArcGIS10 http://www.esri.com/arcgis/).

http://www.esri.com/arcgis/
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EOS from 1982 to 2015. The EOS for MF and Grassland also showed an obvious increasing trend, respectively 
0.35 d/y and 0.28 d/y. The change rate for the EOS of farmland and the DBF was higher than that for the SOS. In 
addition, the grid proportions with significance for the EOS were higher than those of the SOS for each land cover 
type, suggesting a stronger change trend and higher significance for the EOS. As a result, the growing season 
became longer, with a higher change rate and significance. The LOS of DNF increased with a trend of 0.63 d/y 
from 1982 to 2015, indicating that the growth season increased 21.42 days in a 34-year period. Meanwhile, 95% 
of pixels were significant at the 95% confidence level. The average slope of the LOS for grassland was 0.66 d/y, 
approximately 22.44 days longer in 2015 than in 1982. The increase trends for DBF, MF and farmland were 0.28 
d/y, 0.31 d/y and 0.15 d/y respectively, and more than 40% of pixels were significant at P < 0.1.

Discussion
Many previous studies have reported an earlier SOS, delayed EOS and longer LOS in the Northern 
Hemisphere38–40. Our results showed similar trends at longer temporal scales from 1982 to 2015. In Europe, the 
trends for an earlier SOS were 0.56 days per decade, and the delayed EOS was 9.6 days per decade during the 
period from 1982–2001 that was investigated by Stockli and Vidale39. The study from Chen (2005) also showed 
an apparent extension of the growing season, with 1.4 days per year across temperate eastern China during 1982–
1993 41. Our studies showed less of an increasing trend for the growing season from 1982 to 2015, which suggested 
that the increase trend for the growing season was slowing at some times during our study periods. It is interest-
ing that the study from Jeong showed that the SOS advanced by 5.2 days during 1982 to 1999 but advanced by 
only 0.2 days during 2000 to 2008 in the north hemisphere40, indicating a lower increasing trend since 2000. To 
clarify the difference in the change trajectory for the growing season during different periods, the temperature 
and precipitation trends should be incorporated into further studies.

The vegetation phenology was different for different ecosystems25. The previous change trend studies for the 
growing seasons focused mainly on the regional averaged trend12,42 while ignoring the inner spatial diversity 
between ecosystems. In our study, we analyzed and distinguished the change trend for each land cover type, 
which showed great diversity between different types. It should be noted that in the United States, the growing 
season for the forest whose growth is normally limited by low temperatures and short growing seasons appears to 
be increasing, while the semiarid forest seems to be decreasing due to the longer drought and warm periods27,43,44. 
In Northeast China, the change trend of the LOS for almost all the forests was positive, which may have contrib-
uted to the geographical conditions because the forests in this area grew up in relatively humid areas31. Even the 
change trend for grassland in the semiarid areas did not show obvious negative signals, indicating that the rising 
temperature was beneficial for the growth of most forages. However, few negative signals were detected nearby 
Hulun Lake, suggesting that the continuous climate warming in the future may bring no longer growing periods 
for the grass in the semiarid areas as the drought caused by climate warming may limit the vegetation growth.

From another prospective, compared with previous phenology studies in Northeast China4,11,25, this study 
calculated the change slope for each nearly pure pixel and estimated the change trend for each land cover type 
based on a spatial statistics analysis, which was more credible for illustrating the spatial variation characteristics 
of the vegetation phenology. The results showed that higher change slope and change confidence of LOS in the 
regions with less human disturbance, suggesting the climate change was the dominant contributor for the phe-
nology changes, which was consistent with the studies from Tang5 and Chen41. However, according to the results 
in Table 1, the change slopes of many pixels were not significant. Is the vegetation itself not changed significantly, 
or was the difference caused by external factors? For example, this uncertainty may have contributed to the land 
cover changes from natural vegetation to cultivated vegetation during 1982 to 2015 as the human activity was 
obvious in this period34,45. This hypothesis can help explain why the pixel numbers with a significant change in 
the farmland were lower than for other types, but further study is required in the future.

Materials and Methods
Study area.  Northeast China is located in the eastern margin of the Eurasian continent, which ranges from 
115°05′E to 135°02′E in longitude and from 38°40′N to 53°34′N in latitude, including Liaoning province, Jilin 
province, Heilongjiang province and 5 Cities of Inner Mongolia (eastern Mongolia). The study area is located in 
the temperate and monsoon climatic zone with a typical continental climate. The average annual precipitation 
and temperature are respectively approximately 400–700 mm and −1.1 °C–4.4 °C, with a long, extremely cold, 
and dry winter and a short, mild and moist summer. The coexistence of forest, pasture and agricultural land 

Type Count Sos_slope Sos_per Eos_slope Eos_per Los_slope Los_per

DNF 1279 −0.24 78.58 0.36 92.26 0.63 95.00

DBF 1583 −0.09 35.38 0.17 53.19 0.28 57.74

MF 749 −0.04 19.63 0.35 55.01 0.31 45.39

Grass 975 −0.28 58.87 0.28 74.87 0.66 73.95

Farm 3464 −0.02 39.67 0.13 46.13 0.15 46.33

Swamp 37 −0.12 29.73 0.23 59.46 0.31 51.35

Table 1.  The change trend of the SOS, EOS and LOS (*_slope) for six land cover types (Deciduous Needleleaf 
Forest (DNF), Deciduous Broadleaf Forest (DBF), Mixed Forest (MF), Grass, Farm and Swamp) and the 
corresponding grid proportions with significance at P < 0.1(*_per).
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exhibits a mosaic and fragmental pattern of land use (Fig. 3), making the study area very sensitive to climate 
change.

Methods for extracting the vegetation phenology.  In this study, we used double logistic functions to 
fit the local seasonal variation of the vegetation. The local model functions can be expressed as follows:

f t c c g t x( ) ( ; ) (1)1 2= +

where the linear parameters c1 and c2 determine the base level and the amplitude of the fitting model, respectively. 
The on-linear parameters x(x x x x, , ,1 2 3 4) determine the shape of the basis function g(t; x x x x, , ,1 2 3 4). The basis 
function is a double logistic function46:
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where x1 and x3 determine the position of the left and right inflection point respectively, while x2 and x4 give the 
rate of change at the corresponding inflection points. The unknown parameters c(c1, c2) and x(x x x x, , ,1 2 3 4) can 
be obtained through separable non-linear least-squares fits. Given a set of data points (ti, yi), i = n1,…n2 that is 
located in an interval around the inflection points, the parameters c and x are obtained by minimizing the merit 
function:
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where wi is the weight of the data point. In this study, wi is extracted from the percentile file containing the data 
quality information. We set the wi to 1 when the data point is an acceptable value, 0.5 when the data point is an 
interpolation value and 0.1 when the data point is a seasonal extraction value.

The local model functions were merged at the full interval to generate the global function, which can realize 
the fitting of the long time series data. In this study, we used TIMESAT3.2 to conduct the time series fitting and 

Figure 3.  The land cover status of 2015 for 8 phenology observation sites in Northeast China (this figure was 
drawn by ArcGIS10 http://www.esri.com/arcgis/).

http://www.esri.com/arcgis/
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the output of the phenological parameters. For the fitted time series, a dynamic threshold of 0.2 was used to 
extract the SOS, EOS, and LOS.

Methods of analysis.  For the long time series vegetation phenological parameters, we used the linear 
regression method to analyze the spatial variation characteristics. During the linear regression, the least square 
method was used to find the best match function for the data through minimizing the sum of the squared error. 
The slope of the fitting function can be expressed as follows:
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where VPPi is the vegetation phenological parameter value for year i, and n is the years during the monitoring 
period. S is the slope for the changing tendency during the study period. S greater than 0 indicates an increase 
trend, while less than 0 indicates a reduction trend. We conducted statistical tests based on variance analysis, and 
only the change trend is significant (with P < 0.1) and can be illustrated and analyzed. The data process was based 
on the R software. Figures 1, 2 and 3 were drawn by ArcGIS10 (http://www.esri.com/arcgis/).

Data acquisition and availability.  The GIMMS (Global Inventory Modeling and Mapping Studies) NDVI 
(normalized difference vegetation index) time series data were used to extract the vegetation phenology infor-
mation. The GIMMS NDVI dataset is a global vegetation index dataset available for a 35-year period spanning 
from July in 1981 to December, 2015. The dataset was derived from Advanced Very High Resolution Radiometer 
(AVHRR) images that have been corrected for calibration, view geometry, volcanic aerosols, and other effects not 
related to vegetation change. The time resolution is 15 days, and the spatial resolution is 8 km. In this study, we 
used the GIMMS data (version 3 g.v1; https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/) from 1982 to 2015. 
The 3 g.v1 data contains the NDVI as well as the percentile information. The actual NDVI value can be extracted 
by DN/10000. In the percentile layer, the flags equal to 0 represented the data points that were acceptable values, 
flags equal to 1 represented the data points that were obtained through a spline interpolation, and flags equal to 
2 represent the data points that were obtained from seasonal profiles. The flag data were used to determine the 
fitting weight in the vegetation phenology extraction model. The projection was finally transferred to Albers from 
WGS84 after the extraction of vegetation phenology parameters.

The land cover data used in this study were obtained through human-computer interactive interpretation 
based on Landsat 8 images with an overall accuracy above 90%. The classification system for this dataset includes 
7 first classes, including forest, grassland, farmland, built-up, wetland, water and other land, and 28 secondary 
classes. In northeast China, the land cover types cover all the first classes and 25 secondary classes. As the spatial 
resolution for this dataset was 30 meters and was 8 km for the GIMMS data, mixed pixels at 8 km resolution 
were inevitable. Therefore, we extracted the percentage for each land cover type at 8 km, and only the percentage 
greater than 80% can be used to analyze the phenological characteristics for different vegetation types. Then, 
only the main types can be used to analyze the relationship between vegetation types and phenological variables. 
To make the results statistically significant, we chose the land cover types with more than 100 high percentage 
(greater than 80%) pixels as the main types.

The phenological observation data are from the long-term observation records of 44 typical stations from the 
Chinese Phenological Observation Network (http://www.geodata.cn). The representative plants in each station 
were selected according to the principle of representative species, long observation time and good continuity to 
record the typical phenological period. The following 8 typical stations covering the study area from 1982 to 2008 
were available for our study: Haerbin, Jiamusi, Mudanjiang, Nenjiang, Dedu, Changchun, Shenyang and Gaizhou. 
We set the beginning date of leaf expansion and leaf fall as the start and end times of the season, respectively. The 
phenological observation data were used to validate the accuracy of extracting phenological variables.
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