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Inconsistent estimates of forest 
cover change in China between 
2000 and 2013 from multiple 
datasets: differences in parameters, 
spatial resolution, and definitions
Yan Li   1,2,3, Damien Sulla-Menashe   4, Safa Motesharrei   2,5, Xiao-Peng Song 6, Eugenia 
Kalnay1,2, Qing Ying6, Shuangcheng Li3,7 & Zongwen Ma8

The Chinese National Forest Inventory (NFI) has reported increased forest coverage in China since 2000, 
however, the new satellite-based dataset Global Forest Change (GFC) finds decreased forest coverage. 
In this study, four satellite datasets are used to investigate this discrepancy in forest cover change 
estimates in China between 2000 and 2013: forest cover change estimated from MODIS Normalized 
Burn Ratio (NBR), existing MODIS Land Cover (LC) and Vegetation Continuous Fields (VCF) products, 
and the Landsat-based GFC. Among these satellite datasets, forest loss shows much better agreement 
in terms of total change area and spatial pattern than do forest gain. The net changes in forest cover 
as a proportion of China’s land area varied widely from increases of 1.56% in NBR, 1.93% in VCF, and 
3.40% in LC to a decline of −0.40% in GFC. The magnitude of net forest increase derived from MODIS 
datasets (1.56–3.40%) is lower than that reported in NFI (3.41%). Algorithm parameters, different 
spatial resolutions, and inconsistent forest definitions could be important sources of the discrepancies. 
Although several MODIS datasets support an overall forest increase in China, the direction and 
magnitude of net forest change is still unknown due to the large uncertainties in satellite-derived 
estimates.

Forest change has broad implications for climate1–3, ecology4–6, hydrology1, 7, and human wellbeing8–10. 
Numerous observational and modeling studies have shown that deforestation and afforestation have significant 
impacts on climate through their direct biophysical effects2, 11–13 and indirect effects on the carbon cycle14–17. 
Monitoring change in forest cover, therefore, is essential to understanding these impacts and is critical to forestry 
policy-making and management.

Forest change can be monitored either through national forest inventories or with remote sensing observa-
tions. The national forest inventories (NFIs), led by governmental organizations, provide systematic and accurate 
information of forest resources over a long time span. For example, in China, there have been eight NFIs imple-
mented by the State Forest Administration18 with data collected from a large number of distributed permanent 
sample plots (4.1 × 105 plots in the 7th NFI19 but these plot-level data are not open to the public). However, NFI 
definitions of forest, sampling standards, and sampling methods vary by country and over time16, 20, 21, which 
could produce inconsistencies in the data.
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Remote-sensing-based methods can provide timely data with high spatial and temporal resolutions to better 
capture forest dynamics such as degradation and forest gain22–24. Satellite data from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) as well as from the Landsat Thematic Mapper (TM) and Enhanced 
Thematic Mapper Plus (ETM+) have been widely used to identify various types of forest changes including 
disturbance, loss, and regrowth25–32. MODIS data have high temporal resolution but relatively coarse spatial res-
olution (250 or 500 m). This resolution makes the data useful for regional and global-scale applications but limits 
their ability to detect finer-scale changes32. In contrast, the higher spatial resolution of Landsat data (30 m) is 
accompanied with large data volumes for which regional to global-scale applications have not been feasible until 
recent improvements in computational resources22, 23. The newly available Global Forest Change (GFC) product33 
based on Landsat imagery is the first high-resolution dataset of this kind that offers global and annual forest cover 
change starting from year 2000.

The information from the NFI and from the remote sensing datasets should complement each other and could 
be combined to better understand forest dynamics (e.g., in estimating forest area34, 35 and biomass36, 37). However, 
in practice, this may not necessarily be the case for forest cover change38, 39 due to the different definitions and 
methodologies employed40, 41. For example, the NFI and GFC datasets show conflicting findings for China’s for-
est cover change during the 2000s (2000–2013). According to the Chinese NFI, national forest coverage has 
increased by 2.15% in the 7th NFI (2004–2008) and by 3.41% in the 8th NFI (2009–2013) when compared to the 
6th NFI (1999–2003). The increases in forest area have been attributed to the successful implementation of several 
afforestation and forest protection programs21, including the Natural Forest Conservation Program (NFCP)42, 
the “Three-North” Shelter forest program43, and the “Grain for Green” program44, 45. By contrast, the GFC dataset, 
which is considered to be more accurate than previous remote sensing datasets due to its unprecedented global 
high spatial resolution, showed that the change in forest area of China between 2000 and 2012 was a net loss of 
38,743 km2, equivalent to a decline of 0.40% in national forest coverage (i.e., forest area divided by the total land 
area of China). This discrepancy could profoundly influence studies that rely on forest change data and represents 
an important source of uncertainty in evaluating the impacts of China’s afforestation efforts. For example, the 
forest increase in NFI has been frequently used to explain the vegetation greening trend observed in China over 
the past several decades46, 47, and its climate impacts have also attracted researchers’ attention3, 48–51. However, the 
conclusions of those studies could be potentially affected if the reported forest increase in NFI was not supported 
by other independent datasets.

In this study, we collected data from multiple sources and compared their estimates of forest cover change 
based on different methodologies to better understand how forest cover has changed in China, and to investigate 
potential sources of disagreement across these datasets. An ideal way to resolve the discrepancies in forest cover 
change would be to directly validate the change in each dataset using ground reference data and give an unbiased 
estimate52. However, this cannot be done currently due to the lack of ground reference data. In addition, it is very 
challenging to validate forest cover change estimates52, 53, especially over large regions22.

Data and Methods
In this work, we used four satellite-derived datasets and one independent statistical forestry inventory dataset 
(Table 1). The satellite datasets included three MODIS-based datasets: (1) forest cover change produced by a new 
algorithm, MODTrendr (MODIS-based detection of Trends in Disturbance and Recovery), using the Normalized 
Burn Ratio (NBR)29; (2) the Collection 5 MODIS land cover product54; (3) the Collection 5 MODIS Vegetation 
Continuous Fields (VCF) product55; as well as (4) the Landsat-derived Global Forest Change product aggre-
gated to 500 m spatial resolution. In addition to these satellite-derived datasets, we used (5) the Chinese Forestry 
Inventory (NFI) dataset, which is in the form of statistical data. It is worth mentioning that forest cover change 
estimates from MODIS NBR and GFC were mapped directly from spectral changes in time series of satellite 
imagery while those estimates from MODIS LC, VCF, and NFI were based on comparing forest map/statistics 
between different periods.

MODIS NBR based on MODTrendr.  MODTrendr was developed based on the LandTrendr algorithm30, 
which uses time-series of Landsat reflectance data to detect forest change, and was adapted to work on MODIS 
surface reflectance data29. The algorithm produces a temporal segmentation of a reflectance time series that can be 

Name Time span Source
Spatial 
resolution Data typea Change detection method

MODIS NBR (based 
on MODTrendr) 2000–2013 Yearly

MODIS

500 m Binary Detect change from time 
series

MODIS LC 2001–2012 Yearly 500 m Binary Change in land cover type 
between two periods

MODIS VCF 2000–2013 Yearly 250 m Numeric Change in fractional tree 
cover between two periods

GFC
2000–2012 Yearly 
for loss and 
aggregated for gain

Landsat 30 m Binary Detect change from time 
series

NFI 1999–2013 Five-
years interval Statistics Provincial Numeric Change in forest area 

between two periods

Table 1.  Overview of different datasets employed for forest cover change estimates. aBinary: Change (loss or 
gain) or no change. Numeric: Change represented in units of area.
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useful to characterize long-term dynamics in forest properties, including disturbance processes (abrupt or grad-
ual) and vegetation growth and recovery29, 30. Here we applied the MODTrendr algorithm to an annual time series 
(2000 to 2013) of the Normalized Burn Ratio (NBR), a spectral index derived from peak-summer observations 
for each year from the MODIS Collection 5 Nadir BRDF-Adjusted Reflectance product (MCD43A4). NBR has 
been proven to be sensitive to various types of forest disturbance (e.g., fire56, insect57, and infrastructure construc-
tion58) and recovery after disturbance56, 59; thus it has been widely applied to the problem of forest change detec-
tion58, 60. Forest cover change (forest loss, gain, or no change) at each pixel can be identified from the segments 
of the NBR time series (i.e., the slope of the segments produced by MODTrendr, Supplementary Fig. S1). Some 
user-defined parameters need to be specified, including an NBR threshold to distinguish forest and non-forest, a 
threshold to distinguish forest cover change from no change, and an independent forest mask to filter out change 
signals that occur in non-forest land cover types (for more details see Supplementary Information). The resulting 
forest cover change estimates are referred to as “MODIS NBR” hereafter. One of the strengths of the MODTrendr 
algorithm is its flexibility; it can be applied to a time series of any spectral band or index at any spatial resolution. 
This feature allowed us to investigate the sensitivity of the results to parameter values that are critical to forest 
cover change detection would not be possible with other existing MODIS products.

MODIS LC.  The MODIS Collection 5 Land Cover (LC) product (MCD12Q1)54 provides annual land cover 
information from 2001 to 2012. The IGBP (International Geosphere-Biosphere Program) classification scheme 
provided by this product consists of 17 land cover types, including five forest classes: evergreen needleleaf, ever-
green broadleaf, deciduous needleleaf, deciduous broadleaf, and mixed forests. These forest classes were grouped 
together to define the “forest” from the MODIS LC product as they all have woody vegetation with stature greater 
than 2 m and coverage greater than 60% at the MODIS pixel scale61. To minimize the artificial interannual var-
iation in land cover types in the MODIS LC product54, we first created two stable land cover maps by using the 
most frequent land cover type at each pixel during two periods, 2001–2003 and 2010–2012. By comparing these 
two stable land cover maps, we defined forest loss as when a forest pixel in the first period was converted to a 
non-forest pixel in the later period. A change in the opposite direction was defined as forest gain. The land cover 
classification accuracy for a single year of MODIS LC is available in ref. 54, however, errors could be inflated by 
such a post-classification change detection method53.

MODIS VCF.  The Collection 5 MODIS Vegetation Continuous Field product (MOD44B)55 provides yearly 
tree cover percentage information at a global scale. The tree cover fraction was interpreted as the proportion of 
forested land in each MODIS pixel. Similar to our pre-processing of the MODIS LC dataset, we removed some 
inter-annual variation in tree cover that did not represent forest cover change31 by creating two maps of average 
tree cover percentage for two periods, 2000–2002 and 2011–2013. Forest gain and loss were defined as an increase 
or decrease in tree cover between these two periods, respectively. The accuracy of VCF data has been reported in 
ref. 62, but similar to MODIS LC, errors could be inflated by post-classification change detection.

GFC data.  The Global Forest Change (GFC) data were produced from Landsat ETM+ time series at 30 m spa-
tial resolution33. These data provide a baseline tree cover percentage in 2000, as well as forest loss and gain labels 
(binary) for each pixel afterwards through 2000–2012. Forest in GFC was defined as all vegetation taller than 5 m 
in stature33. It should be noted that forest loss is provided for each year whereas forest gain is provided over the 
entire period. Therefore, forest loss can be accumulated through the period by labeling any pixels as “forest loss” 
if a loss occurred during any year (similar to the MODIS NBR results). An explicit accuracy assessment of forest 
loss and gain in GFC can be found in ref. 33.

NFI data.  The Chinese National Forest Inventory (NFI) dataset contains the official forestry statistics derived 
from extensive field surveys at five-year intervals, combined with remote sensing technology63. Each inventory 
was conducted over a 5-year period, but for each province the survey could be completed in different years within 
the 5-year span18, 64. Forest in NFI was defined as woodland with canopy coverage greater than 20%. More details 
about the techniques and standards of NFI can be found in refs 63 and 64. To better match the temporal coverage 
of satellite data, we used forest area statistics that were reported in the 6th (1999–2003) and 8th (2009–2013) 
NFI, available at national and provincial levels (http://211.167.243.162:8085/8/chengguobaogao/showpagein-
it?lm=xxxz). The provincial NFI data include forest area for 22 Provinces, 4 Municipalities, and 5 Autonomous 
Regions of China. Hong Kong, Macao, and Taiwan were not included in this analysis because they were not cov-
ered by NFI. Forest change was extracted from the difference in forested area between the two NFIs. The accuracy 
requirement of forest area in NFI was 95% for provinces with forest coverage more than 12% and was 90% for the 
remaining provinces63.

All of the satellite data were analyzed in the 500 m MODIS Sinusoidal projection (an equal-area projection). 
The 500 m spatial resolution was chosen for the analyses because it was the native resolution of two of the three 
MODIS-derived datasets and was also the coarsest of all datasets, which can avoid the uncertainty that would 
be otherwise introduced from downscaling the coarse data to higher resolution. The original 250 m VCF prod-
uct was aggregated to 500 m by averaging each set of four 250 m pixels, and forest loss and gain in GFC were 
aggregated to percentage of change at the 500 m spatial resolution. These aggregations kept the meaning of the 
quantitative information of VCF and GFC (percentage tree cover) the same as in their original resolutions. The 
national total forest change area was calculated as the summed area of each 500 m forest change pixel for MODIS 
NBR and LC datasets, and it was the summed area of sub-pixel fractional change of each forest change pixel for 
MODIS VCF and GFC.

http://S1
http://211.167.243.162:8085/8/chengguobaogao/showpageinit?lm=xxxz
http://211.167.243.162:8085/8/chengguobaogao/showpageinit?lm=xxxz
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Results
Forest cover loss estimates from satellite datasets.  Forest loss estimates derived from different sat-
ellite datasets for the 2000s showed relatively high consistency in both spatial pattern and total area lost (Fig. 1), 
indicating the good agreement of satellite datasets in detecting forest loss. We introduced a quantitative indicator 
to evaluate the spatial agreement of forest cover change among different datasets, defined by the count of datasets 
in which a change was detected for a given pixel. Agreement levels 3–4 and 1–2 were considered as “high” and 
“low” agreement respectively, and level 4 indicated “full” agreement. Most forest loss was concentrated in south, 
southeast, and northeast China, which also corresponded to the regions with high spatial agreement across data-
sets (a change confirmed by at least 3 datasets, blue and red on the map in Fig. 2a). The estimates of total forest 
loss ranged from −0.56% to −0.69% of the total land area of China for three datasets (54,019 km2 in MODIS 
NBR, 65,948 km2 in VCF, and 61,165 km2 in GFC), while MODIS LC gave a larger loss of −1.58% (151,846 km2). 
The differences among forest loss estimates cannot be simply attributed to the difference in the time span of each 
dataset. As shown in the annual forest loss area available in GFC (Supplementary Fig. S2), the area of forest loss 
around 2001 and 2012 was rather low compared to other years, suggesting that the inclusion or exclusion of 
certain years could have some impacts. However, this observation is still not enough to fully explain the discrep-
ancies found across datasets, especially for MODIS LC.

Forest cover gain estimates from satellite datasets.  In contrast to forest loss, forest gain estimates 
showed large discrepancies across datasets in both the spatial pattern and the total change area (Fig. 3). Forest 
gains in the MODIS NBR were mainly observed in north and northeast China, but the MODIS LC showed a 
more widespread pattern throughout the northeast region and most parts of south China. The spatial patterns in 
forest gain for MODIS VCF and GFC were similar to MODIS LC. High agreement in forest gain was observed in 
central south China, and in some parts of northeast China (Fig. 2b). However, the numbers of forest gain pixels 
that highly agree were smaller than the numbers of those for forest loss in 3 out of 4 datasets. In addition, the total 
forest area gained had a much wider range (0.23% to 4.98%) than the total forest area lost (−0.56% to −0.69%, 
and −1.58% for MODIS NBR). The largest increase in forest area was found in MODIS LC, equal to 4.98% 
(478,040 km2) of the total land area of China, while the smallest increase is observed in GFC at merely 0.23% 
(22,405 km2). MODIS NBR (2.12%, 207,639 km2) and VCF (2.61%, 250,919 km2) showed similar overall gains 
despite different spatial patterns.

Net forest cover change estimates from satellite data and forest inventory data.  The net 
change in forest cover (forest gain minus forest loss) from satellite datasets was aggregated to the provincial level 
to compare with the NFI statistical dataset (Fig. 4). According to NFI, China’s forest area has increased from 
1,749,100 km2 in the 6th survey (1999–2003) to 2,076,500 km2 in the 8th (2009–2013) survey, corresponding to a 

Figure 1.  Spatial pattern in forest loss (%) in China between 2000 and 2013 from different satellite datasets. 
These patterns were computed from similar (but not identical) time periods: (a) MODIS NBR for 2000–2013, 
(b) MODIS LC for 2001–2012, (c) MODIS VCF for 2000–2013, (d) Landsat GFC for 2000–2012. The total 
forest loss area was 54,019 km2 in MODIS NBR, 151,846 km2 in MODIS LC, 65,948 km2 in MODIS VCF, and 
61,165 km2 in GFC. The forest change results were aggregated to percentage at 5 km resolution for display 
purposes. The histogram in the inset (lower right of each panel) shows the corresponding count of 5 km pixels 
binned into categories of discrete forest loss percentages. The number in parenthesis after the title for each panel 
shows the corresponding change in national forest coverage based on the country area of 9.6 million km2. Maps 
were created using Python 2.7.11 (https://www.python.org/).

http://S2
https://www.python.org/
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3.41% increase in national forest coverage. Generally, MODIS-based datasets (LC, VCF, NBR) provided increase 
estimates similar to NFI in terms of provincial change. Interestingly, MODIS LC showed a similar change (3.40%) 
to NFI, whereas all other satellite datasets showed a smaller increase (1.56% for MODIS NBR and 2.93% for VCF). 
In contrast, a net decrease in forest cover was observed in GFC (−0.40%) and for all provinces. This is due to the 
lower forest gain estimates from the GFC dataset, while the forest loss estimate remained of similar magnitude to 
the other datasets.

The pair-wise correlations in forest change between each two datasets provide a quantitative way to evaluate 
the consistency of provincial forest cover change estimates across these datasets (Fig. 5). More of these correla-
tions were significant (t-test at 90%) for forest loss than for forest gain (6 for loss versus 3 for gain). In addition, 
correlation coefficients on average were higher for forest loss than for forest gain. A similar figure but displaying 
weighted correlations (forest change area weighted by the amount of forest area, Supplementary Fig. S3) shows 
even more polarized differences between forest loss and gain, indicating that forest loss had similar provicial-level 
spatial patterns between all four satellite datasets while there was very little agreement for forest gain. Specifically, 
forest gain in MODIS NBR was negatively correlated with the other three (Fig. 5b), while the correlations among 
the rest of the datasets (MODIS VCF, MODIS LC, and GFC) were all positive. There were only few significant 
correlations observed in net forest change, which was a consequence of the lack of significant correlations in 
forest gain.

Causes of discrepancies in forest cover change estimates.  It is challenging to identify the specific 
causes for the discrepancies in forest cover change estimates because the satellite products and the NFI statistics 
were developed using different sources, methodologies, and to serve different user communities. Here we focused 
on three key factors: algorithm parameter values29, spatial resolution65, 66, and forest definition40, 67, 68. These three 
factors are not exhaustive but demonstrate their substantial influences on the detection of forest cover change.

Figure 2.  Forest cover change agreement among four satellite datasets: (a) Forest loss agreement and (b) forest 
gain agreement. The quantities represent the number of datasets that agreed in the direction of forest cover change 
among the four datasets. For each pixel, zero (white color) means no change was detected by any dataset whereas 
four means the change was detected by all four datasets. The stacked barplots in the lower right insets show the 
percentage of agreement of each dataset. For MODIS VCF and GFC, pixels with non-zero tree cover change were 
considered to be forest loss or gain. Maps were created using Python 2.7.11 (https://www.python.org/).

http://S3
https://www.python.org/
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First, we used MODIS NBR as an example to investigate the sensitivity of forest cover change results to algo-
rithm parameter values. A range of alternative values were tested for three parameters in MODIS NBR, (1) the 
forest NBR threshold to distinguish forest and non-forest (forest threshold hereafter), (2) the NBR threshold 
to determine change signal (change threshold hereafter), and (3) the forest mask to filter forest change signals. 
With higher NBR thresholds used to define forest or change (Supplementary Fig. S4), the amount of forest gain 
decreased from 3.89% to 0.80% and forest loss also decreased from 0.79% to 0.17%. With a forest mask defined 
by a higher tree cover threshold, forest land area decreased, which decreased the likelihood of forest loss while 
increasing the likelihood of forest gain (Supplementary Fig. S5). Although the amount of detected forest change 
varied greatly, forest gain was consistently higher than loss regardless of the choice of parameter value in MODIS 
NBR.

Second, to demonstrate the influence of spatial resolution, we resampled the satellite datasets from 500 m to 
5 km resolution using different methods and compared the resampled forest cover change results with the original 
500 m results. For MODIS LC and VCF data, we first resampled the forest maps of two periods (2001–2003 and 
2010–2012) to 5 km and then extracted forest cover change from the resampled maps. This method is similar 
to how resolution change would affect satellite images in the real world. We found that changing spatial resolu-
tion (scaling) has noticeable impacts on forest cover change detection (Fig. 6). MODIS LC and VCF were most 
affected by resolution changes. Forest gain (loss) area varied from 3.81–10.03% (0.6–4.94%) in MODIS LC and 
from 1.85–3.16% (0.24–1.15%) in VCF. Note that the bilinear, average, and cubic resampling methods are not 
suitable for categorical MODIS LC data. For MODIS NBR and GFC, we resampled the change maps instead of the 
forest maps, because these two datasets directly provided change estimates at their original resolution. We found 
that the amount of change in these two datasets was least affected by resampling (except for the majority resam-
pling method because the number of changed pixels at 500 m were too few relative to the 5 km pixel size). This is 
understandable because in this case resampling had no impact on the source data at which forest cover change in 
MODIS NBR and GFC was extracted.

Third, we investigated the potential influence of forest definition on forest cover change results by comparing 
total forest area at the beginning of the study period across different datasets using default and modified forest 
definitions (Fig. 7). The modified forest definition for MODIS LC (LC F + W) included the original forest classes 
as well as woody savanna, which contains forest canopy cover between 30% and 60%61. The modified forest 
definitions were also applied to VCF and GFC, by converting their original definition of fractional tree cover 
to a binary forest/non-forest variable using 20% (VCF 20% and GFC 20%) and 30% (VCF 30% and GFC 30%) 
thresholds. For the NFI data, we noticed that the summed provincial forest area (NFI sum) was not the same 
as the reported national value. Their difference (1.5%) was indeed quite large compared to the reported forest 
increase of 3.41%, thus both statistics were included. Results showed that the total forest area varied considerably 
across different datasets and across different definitions (from 11.5% in GFC to 23.2% in VCF 20%, Fig. 7). The 
forest area in satellite data with the default forest definitions (11.5–14.8%) was generally lower than that in the 
NFI data (18.2%), while the area was higher when modified forest definitions were used. The larger forest area 
with the modified definition for MODIS LC (LC F + W) was due to the inclusion of woody savanna, and for the 

Figure 3.  Spatial pattern of forest gain in China between 2000 and 2013 from different satellite datasets. These 
patterns were computed from similar (but not identical) time periods: (a) MODIS NBR for 2000–2013, (b) 
MODIS LC for 2001–2012, (c) MODIS VCF for 2000–2013, (d) Landsat GFC for 2000–2012. The total forest 
gain area was 207,639 km2 in MODIS NBR, 478,040 km2 in MODIS LC, 250,919 km2 in MODIS VCF, and 
22,405 km2 in GFC. The other attributes of these panels were the same as for Fig. 1 but for forest gain. Maps were 
created using Python 2.7.11 (https://www.python.org/).

http://S4
http://S5
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binary VCF and GFC maps was due to forest area being calculated by the total size of forested pixels instead of 
by sub-pixel fractional cover. It appears that the different forest area estimates created by different forest defini-
tions alone had a magnitude comparable to, or larger than69, the amount of actual forest cover change, which 
could potentially influence forest cover change estimate in a similar way to the forest mask in MODIS NBR 
(Supplementary Fig. S5).

Discussion
Our results suggest that estimates of forest gain were the major factor driving the differences in the net forest cover 
change observed among the four satellite datasets and the NFI statistical data during the 2000s (2000–2013). In 
most datasets (except for GFC) the net change in forest cover was dominated by forest gain, therefore, the large 
discrepancies in the magnitude of net change were primarily consequences of the poor agreement in forest gain 

Figure 4.  Net forest cover change from satellite data (a) MODIS NBR, (b) MODIS LC, (c) MODIS VCF, (d) 
Landsat GFC, and (e)the Chinese National Forest Inventory (NFI) data at the provincial level (%). Provincial 
forest change is presented as the area of change relative to the total area of each province (%). The number in 
parentheses next to the title shows the corresponding net change in national forest coverage. Maps were created 
using Python 2.7.11 (https://www.python.org/).

Figure 5.  Correlations at provincial level of (a) forest loss, (b) forest gain, and (c) net forest change between 
the four satellite datasets and the statistical NFI data. Provincial forest change area was divided by the land area 
of each province to convert to forest coverage prior to the correlation calculation. Each box in the correlation 
matrix contains a value of Pearson correlation between two given datasets. The NFI data were only available for 
estimates of the net forest change. Insignificant correlations by t-test at 90% level are presented in grey color. A 
similar figure but for the weighted correlations (forest cover change area weighted by the amount of provincial 
forest area) is provided in Supplementary Fig. S3. The provincial statistics for forest loss, gain, and net change 
are provided in Supplementary Tables S2 to S4.

http://S5
https://www.python.org/
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(Fig. 5). Although the datasets had better agreement in estimates of forest loss, the total magnitude of this change 
was much smaller on average and was not enough to compensate the substantial variance in the estimates of 
forest gain. The lack of consistency among forest gain estimates could reflect the fact that forest growth is a more 

Figure 6.  Forest cover change resampled from 500 m to 5 km spatial resolution for (a) MODIS LC, (b) MODIS 
VCF, (c) GFC, and (d) MODIS NBR using different resampling methods. Five different resampling methods 
were applied to emulate the range in spatial scaling processes available. These include nearest neighbor (near), 
bilinear, average, mode (major), and cubic from the Geospatial Data Abstraction Library. These resampled 
forest change estimates at 5 km were compared against the original forest change area at 500 m.

Figure 7.  The total forest area in China with different forest definitions at the beginning of 2000s. The number 
on top of each bar is the total forest area represented as national forest coverage (%). For MODIS LC, forest 
was defined by the five IGBP forest land cover types in the product, and woody savanna was also included 
as a modified definition (LC F + W). For MODIS VCF and GFC, forest was defined by fractional tree cover 
(VCF, GFC) or by the binary tree cover using the 20% (VCF 20%, GFC 20%) and 30% (VCF 30%, GFC 30%) 
thresholds. Forest area was calculated as the areal sum of all non-zero fractional tree cover (numeric) in MODIS 
VCF and GFC, or the areal sum of forest pixels in MODIS LC and in the binary VCF and GFC. For NFI, forest 
was defined as woodland with canopy coverage >20%. The total forest area was the value reported in the 6th 
NFI. The NFI sum gives the total forest area summed up from the provincial numbers in the 6th NFI.
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gradual24 and complex ecological process, with many characteristics that vary depending on tree species, man-
agement, and climate. This gradual signal is more difficult to detect than forest loss70, 71, which is often an abrupt 
signal that happens in a short time span (note that certain types of forest loss could be a gradual process, e.g., 
loss due to insects58). The lower detectability of forest gain can be seen from the accuracy assessment of remotely 
sensed forest cover change products, in which forest gain usually has a lower accuracy than forest loss23, 33, 70.  
For example, in the GFC product33, the accuracy of forest gain detection was lower than forest loss (73.9–76.4% 
vs. 87.0–87.8%) at the global scale, and the difference was even larger in temperate regions (62.0–76.5% vs. 88.2–
93.9%), where China is located. The environment70 where forest cover change takes place can also influence 
its detectability. Detecting forest growth could be additionally complicated by an overall increase in vegetation 
productivity in these regions induced by climate change72, ecosystem restoration73, and non-forest vegetation 
recovery after disturbance, which could provide false positives in some measurements.

There are several additional factors that could have contributed to the differences in forest cover change 
estimates from satellite data. These include the sensitivity of forest change results to parameter values29, spatial 
resolution65, 66, and forest definition40, 67, 68. We found that by changing parameter values (e.g., the threshold to 
determine forest loss and gain) in the MODIS NBR analysis, the amount of detected forest change varied greatly. 
Interestingly, forest gain was always higher than loss regardless of the choice of parameter value (Supplementary 
Figs S4 and S5). This emphasizes the importance of parameter calibration and training with reliable reference 
datasets23 for the detection algorithm. Similarly, depending on the patch size66, 74 of forest cover change, its detect-
ability can be greatly affected by the difference in spatial resolution because small, sub-pixel changes, which are 
common in these regions, cannot always be captured by data from a coarse resolution sensor23. Therefore, the 
amount of change “seen” by satellite data at different resolutions can be quite variable75 due to information loss 
with reduced spatial resolution (Fig. 6). The factors investigated here can produce uncertainty in the detection of 
forest change of a similar or larger magnitude than the real change signal, which can be subtle in nature.

Perhaps the most important factor driving the inconsistent estimates of forest change across datasets was the 
various definitions for “forest”34, 40, 69, 76 and “forest change”39, 41, 77–79. Some special land cover types included by 
the NFI forest definition in China (e.g., special shrubs64) may not necessarily be defined as forest in remote sens-
ing. Definitions of forest in remote sensing and NFI datasets can lead to discrepancies in forest area far exceeding 
the actual change signal (Fig. 7). Similarly, the inconsistent definition for “forest change” between remote sensing 
and forest inventory datasets weakens comparability of forest cover change across datasets41, 78. For example, the 
high frequency sampling (days to weeks) of remote sensing observations captures changes in forest cover such as 
temporary forest loss due to disturbance or harvest followed by slow regrowth, particularly in MODIS NBR and 
GFC in which forest cover change is detected by spectral trend analysis. These changes, however, do not usually 
result in a change in land use and, therefore, may not be captured by forest inventory77 or from differences in land 
cover between two end dates (e.g., MODIS LC and VCF). Such compatibility issues can also appear in remote 
sensing due to their different data processing procedures and change detection methods (spectral based such as 
NBR and GFC vs. thematic based such as MODIS LC and VCF)22, 59, 79. It is still unclear how much contribution 
each of these two types of changes (temporary vs. permanent) had on the detected forest loss in our analysis. 
Distinguishing these context-dependent terminologies and reconciling their inconsistences can improve the 
characterization of forests40, 68 and the accuracy of forest change monitoring41, 67, 69.

Due to the large discrepancies in forest cover change estimated by these four different satellite datasets, it is 
hard to directly verify the claim of 3.41% increase in forest coverage in China because that quantity is still within 
the variation across these datasets. Although most of the estimates (except GFC) showed a net increase in forest 
cover (from 1.5% to 3.4%), there are other studies that have shown a net decrease in forest cover. For example, 
another Landsat-based forest cover change map, produced by the Global Land Cover Facility, indicated forest loss 
outweighed forest gain in China between 2000 and 200580. According to existing evidence, it seems likely that esti-
mates from the coarse resolution data such as MODIS are more likely to support forest cover increase whereas 
Landsat-based datasets, presumably more accurate due to their high spatial resolution66, 79, 81, provide more incon-
sistent results. These estimates from Landsat data indicated either a net decrease (see ref. 80 and −0.4% in GFC33) or 
a very small net increase (0.02% in ref. 82) in forest cover. This result suggests another possibility that China’s forest 
cover could have stabilized during the 2000s (2000–2013), but further studies are needed to verify this hypothesis.

Conclusion
Our results show varying estimates of forest cover change in China from 2000 to 2013 from multiple satellite and 
forest inventory datasets, suggesting large uncertainty in the direction and magnitude of the net forest change dur-
ing this period. The forest area increase claimed by the National Forest Inventory (NFI) data cannot be directly 
verified by satellite data because of the mixed results caused by different definitions and methodologies, although 
it is in agreement with certain MODIS dataset (i.e., MODIS LC). The inconsistent estimates of forest cover change 
from satellite data could be caused by factors such as algorithm parameters, spatial resolutions of monitoring, 
and forest definition, all of which can strongly influence the estimates with a magnitude comparable to the real 
change signal. Considering the increase in forest cover indicated by the majority of datasets, combined with inde-
pendent evidence from other studies47, 83–85 and the implementation of forest conservation policies21, 42–45, 86,  
a large decrease in China’s forest cover during the study period is less probable. However, we cannot rule out the pos-
sibility that forest cover for this period was relatively stable with comparable magnitudes of forest loss and gain. Thus, 
due to the internal uncertainties and methodological differences, using one of these satellite datasets or the NFI data to 
deduce the “real” forest change must be undertaken with caution. To obtain accurate estimates of forest change, efforts 
must be made to validate and assess satellite data using ground-level field data, to improve methods for detecting forest 
gain, and to reconcile inconsistencies in definitions of forest and forest change using methods such as data fusion67, 87–89.
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