Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

New reptile shows dinosaurs and pterosaurs evolved among diverse precursors

Subjects

Abstract

Dinosaurs and pterosaurs have remarkable diversity and disparity through most of the Mesozoic Era1,2,3. Soon after their origins, these reptiles diversified into a number of long-lived lineages, evolved unprecedented ecologies (for example, flying, large herbivorous forms) and spread across Pangaea4,5. Recent discoveries of dinosaur and pterosaur precursors6,7,8,9,10 demonstrated that these animals were also speciose and widespread, but those precursors have few if any well-preserved skulls, hands and associated skeletons11,12. Here we present a well-preserved partial skeleton (Upper Triassic, Brazil) of the new lagerpetid Venetoraptor gassenae gen. et sp. nov. that offers a more comprehensive look into the skull and ecology of one of these precursors. Its skull has a sharp, raptorial-like beak, preceding that of dinosaurs by around 80 million years, and a large hand with long, trenchant claws that firmly establishes the loss of obligatory quadrupedalism in these precursor lineages. Combining anatomical information of the new species with other dinosaur and pterosaur precursors shows that morphological disparity of precursors resembles that of Triassic pterosaurs and exceeds that of Triassic dinosaurs. Thus, the ‘success’ of pterosaurs and dinosaurs was a result of differential survival among a broader pool of ecomorphological variation. Our results show that the morphological diversity of ornithodirans started to flourish among early-diverging lineages and not only after the origins of dinosaurs and pterosaurs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Skeletal anatomy of V. gassenae gen. et sp. nov. (CAPPA/UFSM 0356).
Fig. 2: Results of phylogenetic and biogeographical analyses.
Fig. 3: Morphological disparity between early ornithodirans.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its Supplementary Information files. The datasets for phylogenetic, disparity and biogeographic analyses are deposited in figshare (https://doi.org/10.6084/m9.figshare.23508870, https://doi.org/10.6084/m9.figshare.23508858 and https://doi.org/10.6084/m9.figshare.23508849). This publication and associated nomenclatural acts have been registered in ZooBank as urn:lsid:zoobank.org:pub:922F8C41-84E3-46D7-9325-74BCC0D7A7B4.

Code availability

The custom codes used for disparity and biogeographic analyses are deposited in figshare (https://doi.org/10.6084/m9.figshare.23508858 and https://doi.org/10.6084/m9.figshare.23508849).

References

  1. Brusatte, S. L., Benton, M. J., Ruta, M. & Lloyd, G. T. The first 50 Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity. Biol. Lett. 4, 733–736 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Prentice, K. C., Ruta, M. & Benton, M. J. Evolution of morphological disparity in pterosaurs. J. Syst. Palaeontol. 9, 337–353 (2011).

    Article  Google Scholar 

  3. Brusatte, S. L., Butler, R. J., Prieto-Márquez, A. & Norell, M. A. Dinosaur morphological diversity and the end-Cretaceous extinction. Nat. Commun. 3, 804 (2012).

    Article  ADS  PubMed  Google Scholar 

  4. Langer, M. C., Ezcurra, M. D., Bittencourt, J. S. & Novas, F. E. The origin and early evolution of dinosaurs. Biol. Rev. 85, 55–110 (2010).

    Article  PubMed  Google Scholar 

  5. Andres, B. The early evolutionary history and adaptive radiation of the Pterosauria. Acta Geol. Sin. 86, 1356–1365 (2012).

    Article  Google Scholar 

  6. Nesbitt, S. J. et al. Ecologically distinct dinosaurian sister group shows early diversification of Ornithodira. Nature 464, 95–98 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Cabreira, S. F. et al. A unique Late Triassic dinosauromorph assemblage reveals dinosaur ancestral anatomy and diet. Curr. Biol. 26, 3090–3095 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Ezcurra, M. D. et al. Enigmatic dinosaur precursors bridge the gap to the origin of Pterosauria. Nature 588, 445–449 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Kammerer, C. F., Nesbitt, S. J., Flynn, J. J., Ranivoharimanana, L. & Wyss, A. R. A tiny ornithodiran archosaur from the Triassic of Madagascar and the role of miniaturization in dinosaur and pterosaur ancestry. Proc. Natl Acad. Sci. USA 117, 17932–17936 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kellner, A. W. et al. Reassessment of Faxinalipterus minimus, a purported Triassic pterosaur from southern Brazil with the description of a new taxon. PeerJ 10, e13276 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Müller, R. T., Langer, M. C. & Dias-Da-Silva, S. Ingroup relationships of Lagerpetidae (Avemetatarsalia: Dinosauromorpha): a further phylogenetic investigation on the understanding of dinosaur relatives. Zootaxa 4392, 149–158 (2018).

    Article  PubMed  Google Scholar 

  12. Foffa, D. et al. Scleromochlus and the early evolution of Pterosauromorpha. Nature 610, 313–318 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Langer, M. C., Ramezani, J. & Da Rosa, Á. A. U-Pb age constraints on dinosaur rise from south Brazil. Gondwana Res. 57, 133–140 (2018).

    Article  ADS  CAS  Google Scholar 

  14. Martínez, R. N., Andres, B., Apaldetti, C. & Cerda, I. A. The dawn of the flying reptiles: first Triassic record in the southern hemisphere. Pap. Palaeontol. 8, e1424 (2022).

    Article  Google Scholar 

  15. Martz, J. W. & Small, B. J. Non-dinosaurian dinosauromorphs from the Chinle Formation (Upper Triassic) of the Eagle Basin, northern Colorado: Dromomeron romeri (Lagerpetidae) and a new taxon, Kwanasaurus williamparkeri (Silesauridae). PeerJ 7, e7551 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Irmis, R. B. et al. A Late Triassic dinosauromorph assemblage from New Mexico and the rise of dinosaurs. Science 317, 358–361 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Nesbitt, S. J. et al. The earliest bird-line archosaurs and the assembly of the dinosaur body plan. Nature 544, 484–487 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Morhardt, A. C. Dinosaur Smiles: Do the Texture and Morphology of the Premaxilla, Maxilla, and Dentary Bones of Sauropsids Provide Osteological Correlates for Inferring Extra-oral Structures Reliably in Dinosaurs? Master’s thesis, Western Illinois Univ. (2009).

  19. Hieronymus, T. L., Witmer, L. M., Tanke, D. H. & Currie, P. J. The facial integument of centrosaurine ceratopsids: morphological and histological correlates of novel skin structures. Anat. Rec. 292, 1370–1396 (2009).

    Article  Google Scholar 

  20. Dalla Vecchia, F. M. Gli Pterosauri Triassici (Edizioni del Museo Friulano di Storia Naturale, 2014).

  21. Ezcurra, M. D., Nesbitt, S. J., Fiorelli, L. E. & Desojo, J. B. New specimen sheds light on the anatomy and taxonomy of the early Late Triassic dinosauriforms from the Chañares Formation, NW Argentina. Anat. Rec. 303, 1393–1438 (2020).

    Article  Google Scholar 

  22. Nesbitt, S. J., Langer, M. C. & Ezcurra, M. D. The anatomy of Asilisaurus kongwe, a dinosauriform from the Lifua Member of the Manda Beds (~ Middle Triassic) of Africa. Anat. Rec. 303, 813–873 (2020).

    Article  Google Scholar 

  23. Benton, M. J. & Walker, A. D. Saltopus, a dinosauriform from the Upper Triassic of Scotland. Earth Environ. Sci. Trans. R. Soc. Edinb. 101, 285–299 (2011).

  24. Nesbitt, S. J. The early evolution of archosaurs: relationships and the origin of major clades. Bull. Am. Mus. Nat. Hist. 352, 1–292 (2011).

    Article  Google Scholar 

  25. Nesbitt, S. J. et al. Hindlimb osteology and distribution of basal dinosauromorphs from the Late Triassic of North America. J. Vertebr. Paleontol. 29, 498–516 (2009).

    Article  Google Scholar 

  26. Padian, K. Osteology and functional morphology of Dimorphodon macronyx (Buckland) (Pterosauria: Rhamphorhynchoidea) based on new material in the Yale Peabody Museum. Postilla 189, 1–44 (1983).

    Google Scholar 

  27. Martínez, R. N., Apaldetti, C., Correa, G. A. & Abelín, D. A Norian lagerpetid dinosauromorph from the Quebrada del Barro Formation, northwestern Argentina. Ameghiniana 53, 1–13 (2016).

    Article  Google Scholar 

  28. Baron, M. G. The origin of Pterosaurs. Earth Sci. Rev. 221, 103777 (2021).

    Article  Google Scholar 

  29. Griffin, C. T. et al. Africa’s oldest dinosaurs reveal early suppression of dinosaur distribution. Nature 609, 313–319 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Bright, J. A., Marugán-Lobón, J., Cobb, S. N. & Rayfield, E. J. The shapes of bird beaks are highly controlled by nondietary factors. Proc. Natl Acad. Sci. USA 113, 5352–5357 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Navalón, G., Bright, J. A., Marugán‐Lobón, J. & Rayfield, E. J. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution 73, 422–435 (2019).

    Article  PubMed  Google Scholar 

  32. Sues, H. D. An unusual new archosauromorph reptile from the Upper Triassic Wolfville Formation of Nova Scotia. Can. J. Earth Sci. 40, 635–649 (2003).

    Article  ADS  Google Scholar 

  33. Mukherjee, D. & Ray, S. Pachyosteosclerosis, rhamphotheca and enhanced sensory capabilities of the premaxillae of Hyperodapedon (Archosauromorpha, Rhynchosauria): implications for foraging at the sediment–water interface. Palaeontology 65, e12626 (2022).

    Article  Google Scholar 

  34. Bestwick, J. et al. Cranial functional morphology of the pseudosuchian Effigia and implications for its ecological role in the Triassic. Anat. Rec. 305, 2435–2462 (2022).

    Article  Google Scholar 

  35. Desojo, J. B. et al. Aetosauria: a clade of armoured pseudosuchians from the Upper Triassic continental beds. Geol. Soc. Spec. Publ. 379, 203–239 (2013).

    Article  ADS  Google Scholar 

  36. Dzik, J. A beaked herbivorous archosaur with dinosaur affinities from the early Late Triassic of Poland. J. Vertebr. Paleontol. 23, 556–574 (2003).

    Article  Google Scholar 

  37. Lautenschlager, S., Witmer, L. M., Altangerel, P. & Rayfield, E. J. Edentulism, beaks, and biomechanical innovations in the evolution of theropod dinosaurs. Proc. Natl Acad. Sci. USA 110, 20657–20662 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. de Souza, G. A. et al. The first edentulous ceratosaur from South America. Sci. Rep. 11, 22281 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Brocklehurst, N. & Field, D. J. Macroevolutionary dynamics of dentition in Mesozoic birds reveal no long-term selection towards tooth loss. iScience 24, 102243 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wellnhofer, P. & Kellner, A. W. A. The skull of Tapejara wellnhoferi Kellner (Reptilia: Pterosauria) from the Lower Cretaceous Santana Formation of the Araripe Basin, Northeastern Brazil. Mitt. Bayer. Staatsslg. Paläont. Hist. Geol. 31, 89–106 (1991).

  41. McClure, C. J. et al. Commentary: defining raptors and birds of prey. J. Raptor Res. 53, 419–430 (2019).

    Article  Google Scholar 

  42. Brusatte, S. L., Benton, M. J., Ruta, M. & Lloyd, G. T. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321, 1485–1488 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Müller, R. T. & Garcia, M. S. A new silesaurid from Carnian beds of Brazil fills a gap in the radiation of avian line archosaur. Sci. Rep. 13, 3920 (2023).

    Article  Google Scholar 

  44. Ezcurra, M. D. The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms. PeerJ 4, e1778 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ezcurra, M. D. & Sues, H. D. A re-assessment of the osteology and phylogenetic relationships of the enigmatic, large-headed reptile Sphodrosaurus pennsylvanicus (Late Triassic, Pennsylvania, USA) indicates archosauriform affinities. J. Syst. Palaeontol. 19, 1643–1677 (2021).

    Article  Google Scholar 

  46. De Simão-Oliveira, D., Pinheiro, F. L., De Andrade, M. B. & Pretto, F. A. Redescription, taxonomic revaluation and phylogenetic affinities of Proterochampsa nodosa (Archosauriformes: Proterochampsidae) from the early Late Triassic of the Candelaria Sequence (Santa Maria Supersequence). Zool. J. Linn. Soc. 196, 1310–1332 (2022).

    Article  Google Scholar 

  47. Ezcurra, M. D. & Butler, R. J. The rise of the ruling reptiles and ecosystem recovery from the Permo-Triassic mass extinction. Proc. R. Soc. B Biol. Sci. 285, 20180361 (2018).

    Article  Google Scholar 

  48. Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238 (2016).

    Article  PubMed  Google Scholar 

  49. Ronquist, F., van der Mark, P. & Huelsenbeck, J. P. in The Phylogenetic Handbook: a Practical Approach to Phylogenetic Analysis and Hypothesis Testing (eds Lemey, P., Salemi, M. & Vandamme, A.M.) 210−266 (Cambridge Univ. Press, 2009).

  50. Ezcurra, M. D., Scheyer, T. M. & Butler, R. J. The origin and early evolution of Sauria: reassessing the Permian saurian fossil record and the timing of the crocodile-lizard divergence. PLoS ONE 9, e89165 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  51. Benton, M. J. et al. Constraints on the timescale of animal evolutionary history. Palaeontol. Electron. 18, 1–116 (2015).

    Google Scholar 

  52. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lloyd, G. T. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. 118, 131–151 (2016).

    Article  Google Scholar 

  54. Flannery Sutherland, J. T., Moon, B. C., Stubbs, T. L. & Benton, M. J. Does exceptional preservation distort our view of disparity in the fossil record? Proc. Biol. Sci. 286, 20190091 (2019).

    PubMed  PubMed Central  Google Scholar 

  55. Lehmann, O. E., Ezcurra, M. D., Butler, R. J. & Lloyd, G. T. Biases with the Generalized Euclidean Distance measure in disparity analyses with high levels of missing data. Palaeontology 62, 837–849 (2019).

    Article  Google Scholar 

  56. Guillerme, T., Puttick, M. N., Marcy, A. E. & Weisbecker, V. Shifting spaces: which disparity or dissimilarity measurement best summarize occupancy in multidimensional spaces? Ecol. Evol. 10, 7261–7275 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lehmann, O. E. R. & Ezcurra, M. D. Desafios en los análisis de disparidad con taxones incompletos: el caso de la maxima distancia obsrevada rescalada (MORD). In Reunión de Comunicaciones de la Asociación Paleontológica Argentina, Libro de Resúmenes, Vol. 1 (eds Bodnar, J. et al.) 125–126 (2020).

  58. Guillerme, T. DispRity: a modular R package for measuring disparity. Methods Ecol. Evol. 9, 1755–1763 (2018).

    Article  Google Scholar 

  59. Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan (2019).

  60. Bapst, D. W. A stochastic rate‐calibrated method for time‐scaling phylogenies of fossil taxa. Methods Ecol. Evol. 4, 724–733 (2013).

    Article  Google Scholar 

  61. Button, D. J., Lloyd, G. T., Ezcurra, M. D. & Butler, R. J. Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea. Nat. Commun. 8, 733 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  62. Matzke, N. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013).

    Article  Google Scholar 

  63. Ezcurra, M. D. Biogeography of Triassic tetrapods: evidence for provincialism and driven sympatric cladogenesis in the early evolution of modern tetrapod lineages. Proc. R. Soc. B 277, 2547–2552 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study used computational resources from Universidad Nacional de Córdoba (https://ccad.unc.edu.ar/), which are part of SNCAD – MinCyT, Argentina. We thank the Willi Hennig Society for supporting the free use of TNT software. We thank C. Fantini and M. Fernandes for reconstructions of V. gassenae. This study was supported by the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS no. 21/2551-0000680-3 to R.T.M); Conselho Nacional de Desenvolvimento Cientıfico e Tecnológico (CNPq nos. 404095/2021-6 and 303034/2022-0 to R.T.M., 406902/2022-4 to R.T.M., M.B.S. and A.W.A.K. and 313461/2018-0 and 406779/2021-0 to A.W.A.K.); Sepkoski Grant of the Paleontological Society (to M.D.E.); Agencia Nacional de Promoción Científica y Técnica (PICT nos. 2018-01186 to M.D.E. and 2018-01390 to F.L.A.); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior scholarship (CAPES no. 88887.608076/2021-00 to M.S.G.); and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Rio de Janeiro (FAPERJ no. E-26/201.095/2022).

Author information

Authors and Affiliations

Authors

Contributions

R.T.M., M.D.E. and S.J.N. designed the project. R.T.M. conducted specimen preparation and curation. R.T.M., M.D.E., M.S.G., F.L.A. and S.J.N. scored phylogenetic matrices. M.D.E. conducted phylogenetic, disparity and biogeographical analyses. R.T.M., M.D.E., M.S.G., F.L.A., F.E.N. and S.J.N. assembled the differential diagnosis. R.T.M. and M.S.G. created the figures with inputs from M.D.E., F.L.A., M.R.S., F.E.N., M.B.S., A.W.A.K. and S.J.N. All authors described the material, collected data and contributed to writing, discussion and conclusion.

Corresponding author

Correspondence to Rodrigo T. Müller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Michael Benton, Steve Brusatte, Nicholas Fraser and Hans-Dieter Sues for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Provenance of Venetoraptor gassenae gen. et sp. nov. (CAPPA/UFSM 0356).

a, General view of the Buriol/Pivetta complex. b, Buriol site. The map was adapted from The Paleobiology Database (CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

Extended Data Fig. 2 Life and skull reconstruction of Venetoraptor gassenae gen. et sp. nov. (CAPPA/UFSM 0356).

a, Skull reconstruction in left lateral view according to the preserved bones of the holotype. b, Head reconstruction in left lateral view. c, Head reconstruction in left anterolateral view. Life reconstruction by Caio Fantini.

Extended Data Fig. 3 Additional bone elements of Venetoraptor gassenae (CAPPA/UFSM 0356).

a, Left orbitotemporal region of the skull in dorsal view. b, Braincase in dorsal view. c, Left manual digit III in medial view. Right femur in (d). anterior, (e) posteromedial, (f) proximal, (g) anterolateral, and (h) posterior views. 4t, fourth trochanter; alr, anterolateral ridge; at, anterior trochanter; clp, collateral ligament pit; crtf, crista tibiofibularis; ef, extensor fossa; f, frontal; fm, foramen magnum; ft, flexor tubercle; lc, lateral condyle; ltf, laterotemporal fenestra; mc, medial condyle; mc III, metacarpal III; o, orbit; p, parietal; pf, popliteal fossa; pmt, posteromedial tuber; po, postorbital; pof, postfrontal; pp, paroccipital process; prf, prefrontal; q, quadrate; so, supraoccipital; sq, squamosal; stf, supratemporal fenestra; ts, trochanteric shelf; ve, ventral emargination. Scale bars: 1 cm.

Extended Data Fig. 4 Additional bone elements of Venetoraptor gassenae (CAPPA/UFSM 0356).

a, Right manus in lateral view. Proximal portion of the right fibula in (b) lateral, (c) anterior, and (d) proximal views. e, Right metatarsal IV in anterior view. f, Right metatarsal III in anterior view. g, Digit III of the right pes in medial view. ef, extensor fossa; mc, metacarpal; ph, phalanx; uph, ungual phalanx. Scale bars: 1 cm.

Extended Data Fig. 5 Reduced strict consensus tree depicting the phylogenetic position of Venetoraptor gassenae gen. et sp. nov.

Absolute (left) and GC (group present/contradicted) (right) bootstrap frequencies and Bremer support values are shown above each branch. The silesaurid silhouette has been adapted from Müller & Garcia43 (CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

Extended Data Fig. 6 Majority rule tree recovered from the unconstrained Bayesian phylogenetic analysis depicting the position of Venetoraptor gassenae gen. et sp. nov.

Numbers at nodes indicate posterior probabilities and dotted red vertical lines indicate the boundaries between the Permian and Triassic, Triassic and Jurassic, and Cretaceus and Paleogene geological periods. Life reconstruction of Venetoraptor gassenae gen. et sp. nov. by Caio Fantini.

Extended Data Fig. 7 Ancestral geographic areas reconstructed by the Dispersal-Extinction-Cladogenesis model in the eucrocopodan region of the tree.

Abbreviations: AR, Argentina; BR, Brazil, Uruguay, Namibia; CH, China, Thailand, Kyrgyzstan; eNA, eastern USA, Eastern Canada, Morocco and Algeria; EU, Europe, Russia and Greenland; INT, India, Tanzania, Zambia, Madagascar, Israel and Saudi Arabia; sAF, South Africa, Lesotho, Zimbabwe; wNA, western USA, British Columbia, Mexico and Venezuela. Life reconstruction of Venetoraptor gassenae gen. et sp. nov. by Caio Fantini.

Extended Data Fig. 8 Results of the morphological disparity analyses.

Bivariate plots using: a, Whole skeleton; b, Skull; c, Rostrum; d, Forelimb; e, Anterior zeugopodium and autopodium; f, Hindlimb. Sum of variances: g, Whole skeleton; h, Skull; i, Rostrum; j, Forelimb; k, Anterior zeugopodium and autopodium; l, Hindlimb. In the Sum of Variances the dots are means and the 95% confidence intervals were generated using the two tails of values recovered from 9,999 bootstrap technical replicates of a dataset composed of n = 11 (Whole skeleton, Forelimb), n = 12 (Skull, Rostrum), n = 7 (Anterior zeugopodium and autopodium) and n = 17 (Hindlimb) species of Ornithodiran precursors, n = 18 (Whole skeleton, Skull, Rostrum), n = 16 (Forelimb), n = 14 (Anterior zeugopodium and autopodium) and n = 19 (Hindlimb) species of Dinosauria, and n = 10 (Whole skeleton, Skull, Rostrum), n = 7 (Forelimb, Anterior zeugopodium and autopodium) and n = 6 (Hindlimb) species of Pterosauria. The pterosauromorph silhouette has been adapted from Kellner et al. 10 (CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

Extended Data Fig. 9 Additional results of the morphological disparity analyses.

Bivariate plots using: a, Whole skeleton; b, Skull; c, Rostrum; d, Forelimb; e, Anterior zeugopodium and autopodium; f, Hindlimb. Sum of variances: g, Whole skeleton; h, Skull; i, Rostrum; j, Forelimb; k, Anterior zeugopodium and autopodium; l, Hindlimb. In the Sum of Variances the dots are means and the 95% confidence intervals were generated using the two tails of values recovered from 9,999 bootstrap technical replicates of a dataset composed of n = 5 (Whole skeleton, Skull), n = 4 (Rostrum, Forelimb), n = 3 (Anterior zeugopodium and autopodium) and n = 9 (Hindlimb) species of Lagerpetidae, n = 5 (Whole skeleton), n = 6 (Skull, Forelimb), n = 7 (Rostrum, Hindlimb) and n = 3 (Anterior zeugopodium and autopodium) species of Silesauridae, n = 18 (Whole skeleton, Skull, Rostrum), n = 16 (Forelimb), n = 14 (Anterior zeugopodium and autopodium) and n = 19 (Hindlimb) species of Dinosauria, and n = 10 (Whole skeleton, Skull, Rostrum), n = 7 (Forelimb, Anterior zeugopodium and autopodium) and n = 6 (Hindlimb) species of Pterosauria. The pterosauromorph silhouette has been adapted from Kellner et al. 10 (CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). The silesaurid silhouette has been adapted from Müller & Garcia43 (CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

Extended Data Fig. 10 Evolutionary tree of archosauromorphs (above) and dinosaurs (below) depicting distinct episodes of edentulism.

a, Langobadisaurus pandolfii. b, Trilophosaurus buettneri. c, Teyumbaita sulcognathus. d, Aetosauroides scagliai. e, Effigia okeeffeae. f, Venetoraptor gassenae gen. et sp. nov. g, Seazzadactylus venieri. h, Asilisaurus kongwe. i, Heterodontosaurus tucki. j, Stegosaurus stenops. k, Protoceratops andrewsi. l, Iguanodon bernissartensis. m, Limusaurus inextricabilis. n, Deinocheirus mirificus. o, Erlikosaurus andrewsi. p, Citipati osmolskae. q, Gobipteryx minuta. r, Gallus gallus.

Supplementary information

Supplementary Information

This file contains information on fossil provenance, a differential diagnosis for the new taxon, details of skeletal reconstruction, detailed descriptions of the methods and Supplementary Table 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, R.T., Ezcurra, M.D., Garcia, M.S. et al. New reptile shows dinosaurs and pterosaurs evolved among diverse precursors. Nature 620, 589–594 (2023). https://doi.org/10.1038/s41586-023-06359-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06359-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing