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From discoveries in ageing research to 
therapeutics for healthy ageing
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For several decades, understanding ageing and the processes that limit lifespan have challenged biologists. Thirty years 
ago, the biology of ageing gained unprecedented scientific credibility through the identification of gene variants that 
extend the lifespan of multicellular model organisms. Here we summarize the milestones that mark this scientific triumph, 
discuss different ageing pathways and processes, and suggest that ageing research is entering a new era that has unique 
medical, commercial and societal implications. We argue that this era marks an inflection point, not only in ageing 
research but also for all biological research that affects the human healthspan.

A key initial step in the field of ageing research 
was the observation in 1939 that restriction 
of caloric intake in mice and rats increased 

lifespan1 (Fig. 1). This discovery, reproduced in sev-
eral species including, most recently, in primates2,3, 
was the first demonstration of the plasticity of the ageing process and a 
harbinger of the genetic studies that came 50 years later. Notably, dietary 
restriction increased not only the maximum lifespan but also suppressed 
the development of age-associated diseases4. These observations led to 
the concept that lifespan extension was associated with slowed ageing and 
increased healthspan—which describes both the length of healthy life and 
the fraction of total lifespan free from disease.

During the mid-1900s, the field began to debate the idea that ageing 
was the cause of age-related chronic disease. The use of the word ‘cause’ 
remains controversial because, although ageing is the largest risk factor for 
a multitude of age-related diseases5, causality has not been proven. In sup-
port of the idea, some apparently normal ageing phenomena, which inter-
act with each other in a complex way, contribute to diseases. There was a 
realization that many of the molecular and biochemical mechanisms that 
determined the rate of ageing were also under investigation in laboratories 
that solely focused on individual chronic diseases. Increasingly, researchers 
who study lifespan genetics and work on disease models collaborate with 
scientists who have no expertise in ageing research. To distinguish this 
new field from gerontology, defined as the comprehensive multidiscipli-
nary study of ageing and older adults, this interdisciplinary science at the 
interface of normal ageing and chronic disease was termed ‘geroscience’6.

A genetic approach to ageing research
Biologists have long known that lifespan is a heritable trait and thus 
has a genetic basis, as different species have radically different lifespans 
that range from days to decades. In 1952, Peter Medawar proposed that 
ageing is the result of the decline in the force of natural selection after 
reproduction7. This led some population-genetics and evolutionary 
biologists to culture large fly populations (usually Drosophila species) 
with high genetic diversity to selectively breed for late- and early- 
reproducing flies and test their genetic makeup. These studies showed 
that the late-reproducing flies lived almost twice as long as early- 
reproducing flies, and that these differences were heritable, supporting 
the model that genes determined lifespan8.

Over 30 years after Medawar’s writing on ageing, a landmark study 
in the nematode Caenorhabditis elegans showed that a single gene, 

age-1, can determine the lifespan of an organism9. 
The lifespan of age-1-mutant worms increased by 
40–60% on average9. This came as a surprise to 
many, as researchers assumed that hundreds or 
thousands of genes would be involved and that the 

effects of any single gene would be very small and even undetectable. 
Currently, over 800 genes have been identified that modulate lifespan 
in C. elegans according to GenAge (http://genomics.senescence.info/
genes/search.php?organism=Caenorhabditis+elegans&show=4). The 
actual number of genes that modulate lifespan is probably higher, as 
new long-lived mutants continue to be identified and additional genes 
may also affect lifespan under different environmental conditions.

Ageing pathways and processes
The past 30 years of ageing research has transitioned from identifying 
ageing phenotypes to investigating the genetic pathways that under-
lie these phenotypes. The genetics of ageing research has revealed a 
complex network of interacting intracellular signalling pathways and 
higher-order processes10. Many of the pathways and processes, such as 
dietary restriction, that have been identified are known to be critical in 
homeostatic responses to environmental change.

Below, we selected a few key pathways and processes that have 
emerged during the past 30 years.

Insulin-like signalling pathway
In 1993, a C. elegans mutation in daf-2, which is involved in a switch 
between normal developmental progression and an alternate diapause 
larval stage (the dauer), was shown to almost double the adult lifespan11. 
This finding was followed by the discovery that two of the daf genes (daf-2  
and daf-16) were located in a single pathway that influenced both the 
formation of the dauer larval stage and adult lifespan12. These ageing- 
associated genes were the C. elegans orthologues of mammalian genes that 
encode components of the insulin and insulin-like growth factor intracellu-
lar signalling pathway (ILS). age-1 turned out to be a phosphatidylinositol- 
3 kinase, daf-2 encodes an insulin-like receptor and daf-16 encodes a 
FOXO-like transcription factor that acts downstream of the insulin sig-
nalling pathway in mammals. This was supported by findings in yeast13 
and flies14,15 that inhibition of components of the ILS pathway extended 
lifespan. This suggested that the earlier discoveries in worms were not a 
‘private’ mechanism confined to nematodes but a common mechanism 
with the potential to be relevant to humans and human diseases.
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Further studies in flies, worms and mice have since proven the con-
served effects of inhibiting the insulin signalling pathway and extended 
lifespan16. Some alleles of the daf-16 orthologue in humans, FOXO3, are 
also associated with human centenarian populations across the globe17, 
which supports the idea that what we learn from model organisms may 
be relevant to ageing in humans.

Target of rapamycin
Target of rapamycin (TOR) proteins were first identified from rapa-
mycin research. Rapamycin was originally discovered for its potent 
antifungal properties and later shown to inhibit the growth of cells 
and act as an immune modulator18,19. Insights into its mechanism of 
action came from the identification of mutants that suppressed the 
cell cycle-arrest properties of rapamycin in Saccharomyces cerevisiae18. 
These were later identified to be mutations in the genes that encode 
TOR1 and TOR2. Mammalian TOR genes are known as mTOR (mech-
anistic (or mammalian) target of rapamycin).

Studies have also elucidated the relationship between TOR and 
dietary restriction. Evolutionary hypotheses that explain the protec-
tive effects of dietary restriction argue that under nutrient restriction, 
there is a shift in metabolic investment from reproduction and growth 
towards somatic maintenance to extend survival10. The evidence for 
TOR as a conserved nutrient sensor made it an attractive candidate 
to mediate the switch between growth and maintenance and lifespan 
extension by dietary restriction across species. Consistently, flies with 
reduced activity of various components of the TOR pathway show 
extended lifespan in a manner that mimics dietary restriction20. A 
large-scale screen for long-lived mutants in yeast identified several 
mutations in the TOR pathway that also mimicked the effects of dietary 
restriction13,21. Notably, double mutants that carry mutations in genes 
of both the TOR and insulin signalling pathways have a nearly fivefold 
increased lifespan in C. elegans22. Both key longevity pathways—that is, 
TOR and ILS—have emerged as key parallel but interacting conserved 
nutrient-sensing pathways, with TOR being important for autonomous 
and the ILS pathway for non-autonomous growth signalling.

TOR is a versatile protein that acts as a major hub that integrates 
signals from growth factors, nutrient availability, energy status and 
various stressors10. These signals regulate several outputs that include 
mRNA translation, autophagy, transcription and mitochondrial func-
tion, which have been shown to mediate extended lifespan23.

Sirtuins and NAD+

In 1995, a genetic screen identified epigenetic ‘silencing’ factors as lon-
gevity genes24. Five years later, Sir2 was identified as a conserved pro-

tein that regulates replicative lifespan in yeast25. A key discovery was the 
demonstration that Sir2 was a protein deacetylase that removed acetyl 
groups from histone proteins in a manner that is dependent on the cel-
lular coenzyme nicotinamide adenine dinucleotide (NAD+)26. Another 
key demonstration was the fact that Sir2 was a key protein in the lifespan 
extension observed under dietary restriction in yeast27. Other organ-
isms also express Sir2-related proteins called sirtuins, which generally 
function as protein deacylases that remove acyl groups, including acetyl, 
succinyl and malonyl, from lysine residues on target proteins28. Mice 
and humans express seven sirtuins that are characterized by a conserved 
catalytic domain and variable N- and C-terminal extensions. SIRT1, 
SIRT2, SIRT3, SIRT6 and SIRT7 are bona fide protein deacetylases, 
whereas SIRT4 and SIRT5 do not exhibit deacetylase activity but remove 
other acyl groups from lysine residues in proteins29. Notably, SIRT1, 
SIRT2, SIRT6 and SIRT7 appear to function as epigenetic regulators, 
whereas SIRT3, SIRT4 and SIRT5 are located in mitochondria29. Sirtuins 
have emerged as global metabolic regulators that control the response to 
calorie restriction and protecting against age-associated diseases, thus 
increasing healthspan and—in some cases—lifespan30–33.

NAD+ is a critical redox coenzyme found in all living cells. It serves 
both as a critical coenzyme for enzymes that fuel reduction–oxidation 
reactions by carrying electrons from one reaction to another, and as 
a cosubstrate for other enzymes, such as sirtuins and polyadenosine 
diphosphate-ribose polymerases (PARPs). There is increasing evidence 
that NAD+ levels and the activity of sirtuins decrease with age and 
during senescence or in animals on a high-fat diet. By contrast, NAD+ 
levels increase in response to fasting, glucose deprivation, dietary 
restriction and exercise, which are all conditions associated with a lower 
energy load34–40. The fact that NAD+ levels increase under conditions 
that increase lifespan and healthspan, such as dietary restriction and 
exercise, and decrease during ageing or under conditions that decrease 
lifespan and healthspan, such as a high-fat diet, support the working 
model that decreased NAD+ levels might contribute to the ageing pro-
cess. On the basis of this idea, it has been predicted and validated that 
NAD+ supplementation exerts protective effects during ageing41,42.

Circadian clocks
Research on sirtuins has also helped us to understand the link between 
circadian clocks and ageing. NAD+ levels fluctuate in a circadian 
manner and link the peripheral clock to the transcriptional regula-
tion of metabolism by epigenetic mechanisms through SIRT1. The 
core circadian clock machinery, BMAL1 and CLOCK, directly regu-
lates expression of NAMPT in the NAD+ salvage pathway in mice38.  
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Fig. 1 | Timeline of ageing research. Key discoveries in the ageing field are highlighted, starting with the discovery of the effect of calorie restriction on 
ageing in 1930.
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The deacetylase activity of SIRT1 depends on the presence of NAMPT 
to generate NAD+. The possibility that NAD+ concentrations are reg-
ulated semi-independently in different cellular compartments suggests 
that changes in unique local NAD+ concentrations could differentially 
affect the activity of distinct sirtuins.

Similarly, several other homeostatic responses are regulated by circa-
dian clocks that are vital to maintaining health by rhythmic activity of 
neuronal, physiological and endocrine functions. One of the common 
hallmarks of ageing is the progressive loss of circadian behavioural 
patterns (sleep–wake cycles) and a dampening of circadian gene expres-
sion43. Given that the network of circadian clocks modulates various 
biological processes, it is not surprising that disruption of circadian 
rhythms—genetically or through environmental perturbation—is 
linked with age-related pathologies, including neurodegeneration, 
obesity and type 2 diabetes43.

Dietary restriction is also emerging as an important factor that can 
influence peripheral clocks, as it promotes circadian homeostasis in 
flies and mice by enhancing the circadian-regulated amplitude of gene 
expression44,45. More importantly, circadian clocks are required for the 
protective effects of dietary restriction on lifespan extension in both 
flies and mice44,45. There is an increase in the expression of rhythmic 
genes in the liver after dietary restriction that include targets of SIRT1, 
NAD+ metabolites and protein acetylation46. Time-restricted feeding, 
in which feeding is restricted to shorter periods when an organism 
is active, has emerged as a potential paradigm to improve circadian 
and metabolic homeostasis, resulting in increased healthspan47. These 
findings suggest that circadian rhythms are more than just a biomarker 
of ageing and may be a driving factor in organismal ageing.

Mitochondria and oxidative stress
In the 1950s, it was theorized that endogenous production of free rad-
ical molecules arising from oxygen and generated during fundamental 
metabolic processes, such as respiration, represent a key factor that 
drives ageing48. These theories particularly focused on mitochondrial 
production of superoxide as a key mediator of ageing pathophysiol-
ogy49. Indeed, numerous publications have shown that oxidative dam-
age accumulates in multiple tissues and species with age. Although it 
is indisputable that such damage is one of the most consistent conse-
quences of increasing age in cells and tissues, whether such damage is 
a cause or a consequence of ageing has proved to be hard to determine. 
The free radical theory of ageing has proved extremely difficult to test, 
at least in part because reactive oxygen species are also important sig-
nalling molecules. Numerous studies have shown that the modulation 
of respiration can extend lifespan in model organisms50–53.

In the 1990s and early 2000s, model organisms were used to overex-
press key genes involved in detoxifying free radical molecules such as 
superoxide. There were multiple successes that led to lifespan exten-
sion54,55, which suggests that oxidative damage arising from metab-
olism was limiting lifespan—at least to some degree. However, this 
finding was challenged by subsequent studies in mice that showed 
no increase in the lifespan of wild-type animals56 in which the key 
mitochondrial antioxidant protein superoxide dismutase 2 was overex-
pressed. However, further studies that specifically targeted the hydro-
gen peroxide scavenger protein catalase to the mitochondria resulted in 
improved healthspan and increased lifespan in mice57–59. The contra-
diction between these two findings in mice suggests that simple genetic 
overexpression in mammalian systems is very context-specific. This 
is not surprising, as free radical production within the mitochondria 
is complex, with at least ten sites of production within the respiratory 
chain60, and the rate of production under diverse physiological states, 
at various ages and in different cell types remains relatively poorly 
explored and characterized61.

Although free radicals are generally implicated in cellular damage 
and inflammation when present at high levels, they can also poten-
tially increase cellular defenses through an adaptive response (termed 
‘mitohormesis’) when present at lower levels62. Mitohormesis explains 
the paradoxical increase in lifespan observed after disruption of 

mitochondrial function in worms, flies and mice63,64. Genome-wide 
screens for lifespan extension in C. elegans revealed that disruption 
of several genes involved in the electron transport chain extended 
lifespan52,65. Inhibition of genes in the mitochondrial electron trans-
port chain triggers the mitochondrial unfolded protein response 
(UPRmt), which is also required for the extended lifespan found in these  
C. elegans mutants66. Disruption of mitochondrial function in neurons 
activates the UPRmt in distal tissues such as the intestine, which suggests 
the existence of circulating factors that coordinate metabolism between 
tissues66. Mitochondrial perturbation triggered a nuclear transcrip-
tional response that regulates a large set of genes involved in protein  
folding, antioxidant defenses and metabolism. UPRmt is regulated by 
several factors including activating transcription factor associated 
with stress-1 (ATFS-1), the homeobox transcription factor DVE-1, the 
ubiquitin-like protein UBL-5, the mitochondrial protease ClpP and the 
inner mitochondrial membrane transporter HAF-167.

Studies that demonstrate the importance of mitohormesis in extend-
ing lifespan pose several challenges to the field as it is unclear whether 
using antioxidants would be a good strategy for lifespan extension. As 
a result, there is evidence both for and against lifespan extension by 
increasing oxidative stress63. It is also unclear how the above findings 
can be reconciled with results that show that mitochondrial function is 
enhanced by dietary restriction in multiple species68–70. Further studies 
are needed to determine how differing states of mitochondrial function 
influence ageing in different contexts.

Senescence
Nearly 60 years ago, the first formal description of the limited ability 
of human cells to divide in culture was published71,72. This phenom-
enon is now known to be an example of a more general phenomenon 
termed cellular senescence. Senescent cells are characterized by three 
main features: arrested cell proliferation, resistance to apoptosis and 
a complex senescence-associated secretory phenotype73. The senes-
cence that limits cell proliferation is caused mostly by the short, dys-
functional telomeres that result from repeated DNA replication in the 
absence of telomerase74. Dysfunctional telomeres trigger a persistent 
DNA-damage response, which in turn induces cell cycle arrest75 and 
the expression of pro-inflammatory factors that are associated with the 
senescence-associated secretory phenotype76. Similarly, at least some 
of the oncogenes that induce senescence do so by causing replication 
stress and subsequent DNA damage77,78. However, other stressors can 
drive cells into senescence without a DNA-damage response, including 
epigenomic perturbations79 and mitochondrial dysfunction80.

Senescent cells are more abundant in aged and diseased tissues in 
multiple species81. Cell culture studies showed that senescent cells can 
fuel hallmarks of a variety of ageing phenotypes and diseases, largely 
through the cell non-autonomous effects of the senescence-associated 
secretory phenotype82. The development of two transgenic mouse 
models in which senescent cells can be selectively eliminated confirmed 
the idea that senescent cells can have a causal role in many age-related 
phenotypes and pathologies in vivo83,84. Both models have been used 
to show that senescent cells are drivers of a large number of age-related 
pathologies—at least in mice. These pathologies include Alzheimer’s85 
and Parkinson’s86 disease, atherosclerosis87, cardiovascular dysfunc-
tion88 (including cardiovascular problems caused by certain genotoxic 
chemotherapies89), tumour progression88,89, loss of haematopoietic and 
skeletal muscle stem cell functions90, non-alcoholic fatty liver disease91, 
pulmonary fibrosis92, osteoarthritis93 and osteoporosis94.

This leads to the question of whether compounds could be iden-
tified that can eliminate senescent cells, similar to the action of the 
mouse transgenes, and that are therefore potentially translatable to use 
in humans. This approach led to the identification of a new class of 
drugs, termed senolytics, that is rapidly expanding90,95–99. Many seno-
lytic drugs have been tested in mice and human cells or tissues, with 
promising results. However, clinical trials have only recently started 
and it therefore remains to be determined whether these drugs are safe 
and efficacious in humans.
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Chronic inflammation
Senescence of the immune system (known as immunosenescence) is 
one of the causes of ‘inflammaging’, a term coined in 2000100 that refers 
to a phenomenon in which older organisms tend to have higher levels 
of inflammatory markers in their cells and tissues, which results in a 
low-grade, sterile and chronic pro-inflammatory status. In contrast to 
acute, transient inflammation—an evolutionarily conserved mechanism 
designed to protect the host from infections and injuries—inflammaging 
is linked to a myriad of age-related diseases such as cancer, type 2 diabe-
tes, cardiovascular disease, neurodegenerative diseases and frailty101–105.

Other factors that contribute to inflammaging include genetic sus-
ceptibility, obesity, oxidative stress, changes in the permeability of the 
intestinal barrier associated with translocation of bacterial products 
(‘leaky gut’), chronic infection and defective immune cells104 and 
pro-inflammatory factors that are associated with the senescence- 
associated secretory phenotype of non-immune senescent cells76. In 
addition, numerous environmental factors—such as the chemicals 
identified by the Tox21 consortium106—can be cytotoxic and pro- 
inflammatory101,102. Finally, longevity-enhancing interventions such as 
dietary restriction reduce inflammatory biomarkers107,108. On the basis 
of these findings, inflammaging is now considered to be a biomarker 
for accelerated ageing and one of hallmarks of ageing biology.

As discussed for other variables that influence ageing, an extended 
lifespan and healthspan may be a result of a fine balance between pro- 
inflammatory and anti-inflammatory processes109. Consistent with this 
idea, it has been shown that although centenarians have an increased 
level of pro-inflammatory molecules (for example, interleukin-6,  
a commonly used marker for chronic morbidity105), the adverse  
consequences associated with these pro-inflammatory molecules are 
counterbalanced by high levels of anti-inflammatory molecules110.

Proteostasis
Protein homeostasis (known as proteostasis) is an essential process that 
maintains protein structure and function, a process that degrades dur-
ing ageing. Proteome stability is associated with naturally long lifespan 
in organisms such as the naked mole-rat, which is characterized by 
high levels of homeostatic proteolytic activity111–113. During normal 
ageing, many hundreds of proteins become insoluble and accumulate 
in a wide variety of tissues. In C. elegans, these insoluble proteins are 
highly enriched for proteins that determine lifespan114,115. It appears 
that a proteome-wide failure in proteostasis accelerates ageing.

The major pathways that determine lifespan also regulate aspects of 
proteostatic factors. For example, insulin signalling pathways control 
the expression of molecular chaperones and TOR signalling pathways 
regulate many forms of autophagy including mitoautophagy, which is 
the mechanism by which damaged mitochondria are removed from the 
cell. Age-related failure in proteostasis may be mechanistically respon-
sible for the processing and folding of neurotoxic peptides associated 
with Alzheimer’s disease, Parkinson’s disease and other proteotoxic 
diseases116. Indeed, this may be why age is such a high-risk factor for 
neurological diseases that are marked by protein aggregation.

An inflection point in ageing interventions
The rapid increase in our understanding of the molecular mechanisms 
that underlie ageing has created new opportunities to intervene in the 
ageing process. Two notable findings have emerged from these early 
studies. First, the number of genes that can extend lifespan is much 
larger than expected, which suggests a much higher level of plasticity in 
the ageing process than expected. Second, genes that control ageing—
which define cellular pathways such as the TOR and insulin signalling 
pathways—are remarkably conserved in yeast, worms, fruit flies and 
humans. The conservation of these pathways across wide evolutionary 
distances and the fact that targeting these pathways in model organisms 
increases both lifespan and healthspan has brought to the fore the idea 
of interventions in humans.

Rapidly ageing societies across the world are seeing an increasing 
healthcare burden attributable to both morbidity and cost of age-related 

diseases, such as heart disease, stroke, cancer, neurodegeneration, oste-
oarthritis and macular degeneration. However, current medical care is 
highly segmented as well as organ- and disease-based, and ignores the 
fact that age and the ageing process are the strongest risk factor for each 
of these diseases. According to the concept of geroscience, targeting 
conserved ageing pathways is anticipated to protect against multiple 
diseases and represents a different approach to tackling the rapidly 
growing burden of diseases worldwide (Table 1).

Using geroscience to treat age-related disease
The concept of geroscience predicts that conserved ageing pathways 
are part of the pathophysiology of many age-related conditions and 
diseases (Fig. 2). For example, multimorbidity is seen as the multisys-
tem expression of an advanced stage of ageing rather than a coinci-
dence of unrelated diseases117. Targeting conserved ageing pathways 
should, therefore, prevent or ameliorate multiple clinical problems. This 
hypothesis remains to be tested in clinical trials, but is supported by 
several lines of evidence. A wide range of animal models of specific  
diseases can be affected by manipulating a single ageing mechanism 
(such as NAD+)118 or senescent cells95 in the laboratory. Rates of  
individual age-related diseases and of multimorbidity increase nonlinearly  
with age, and the rate of acquiring new chronic diseases may be higher 
in people who have an existing chronic disease119.

Certain populations, such as people who live with HIV or are home-
less, show an early onset of a wide range of age-related chronic diseases 
and geriatric syndromes that are not necessarily related to their spe-
cific disease risks120,121. A classic statistical analysis of human mortality 
showed that even curing an entire category of chronic disease, such 
as all types of cancer or cardiovascular diseases, would only modestly 
increase life expectancy owing to the expected mortality from other 
chronic diseases122. Conversely, humans with extreme longevity who 
presumably have favourable ageing mechanisms show delayed onset of 
most major chronic diseases123.

In clinical care, multimorbidity is increasingly viewed as an entity 
unto itself that requires a specific integrative management plan124, as 
intensive but uncoordinated treatment of individual diseases can give 
rise to the harmful syndrome of polypharmacy125. Frailty measures 
are the most widely used clinical assessments for quantifying the stage 
of ageing126,127, and these clinical biomarkers of ageing predict mor-
tality while awaiting liver transplant128, complications of surgery129 
and whether the pathology of Alzheimer’s disease manifests as clinical 
dementia130. Taken together, experimental data from preclinical mod-
els, epidemiological patterns of age-related conditions and the power of 
non-disease-specific clinical ageing assessments such as frailty to pre-
dict risk and mortality in diverse contexts all suggest that intervening 
in mechanisms of ageing could have broad clinical benefit.

Challenges ahead
However, to move from simple organisms to humans several key diffi-
culties need to be overcome, as discussed below. First, it is already clear 
from the study of model systems that interventions that are beneficial in 
a given genetic environment might not work in another. For example, 
analyses of dietary restriction in multiple recombinant inbred mice 
strains found both an increase and a decrease in lifespan, which was 
dependent on the strain131. Similar results have been obtained using 
more than 150 strains of flies132. The molecular basis for these dif-
ferences in response to what had been assumed to be a universally 
beneficial intervention has not been established. Future studies in 
invertebrates such as yeast, worms and flies hold promise for system-
atically explaining the genetic basis of lifespan extension by dietary 
restriction.

The human population is also characterized by a large genetic het-
erogeneity that has a critical role in disease susceptibility, lifespan and 
the response to drugs of an individual. This heterogeneity is the basis 
for the current field of precision medicine, which aims to identify crit-
ical genetic determinants of disease and to customize interventions 
and treatments to unique genetic variants. In the future, the field of 
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precision medicine and geroscience will have to interact closely. As 
discussed above, FOXO3 is related to the DAF–insulin pathway, and 
unique polymorphisms in FOXO3 are found in centenarians around 
the world17. Furthermore, the APOE gene is involved in cholesterol 
metabolism, and unique alleles are associated with longevity and a 
lower risk of developing Alzheimer’s disease133,134. Many additional 
genes135, such as SIRT6136, are now known to be associated with human 
longevity.

Just as several animal studies have challenged the universality of the 
benefits of dietary restriction137–139, it is likely that pharmacological 
interventions will work with different success in distinct humans, owing 
to the natural genetic variation in the population138. As in mice, it has 
been hypothesized that selective pressures on the response to nutri-
ent availability may vary across different human populations, result-
ing in genetic differences that may influence diabetes and obesity140. 
Furthermore, most of the interventions have arisen from research to 
show protection against ageing in animals. Thus, it is possible that 
humans that have optimized their nutrition and exercise are unlikely 
to derive much benefit from these interventions. Future studies on tai-
loring interventions based on personalized medicine approaches are 
likely to be most successful in deriving the most benefit from these 
interventions.

Additionally, it is clear that studies in mice are not always predictive 
for humans. Many important discoveries in mice have been translated 
successfully in humans, but many others have not. This can be due to 
intrinsic biological differences between mice and humans. In addition, 
the complexity of biology and the multiplicity of recognized and unrec-
ognized variables that affect biological phenotypes have caused repro-
ducibility problems between different laboratories that study the same 
organisms, not only in studies of mice but also other model systems141.

Although there are many examples of a connection between long 
lifespan and increased healthspan, more-recent studies in mice142,143, 
flies132 and worms144–146 have questioned the assumption that lifespan 
extension is always accompanied by an increase in healthspan. Future 
studies will need to address the effects of interventions on both of these 
aspects before attempting to translate these interventions into the  
treatment of human patients.

Drugs undergoing clinical trials
Both drugs that are being developed to target ageing and some drugs 
that are commonly used behave as geroprotectors in animal mod-
els. The multicentre Intervention Testing Program (ITP), which is 
supported by the National Institute for Ageing, has identified five 
drugs that reproducibly increase lifespan in genetically heterogenous 
mice147, including rapamycin, acarbose, nordihydroguaiaretic acid, 
17-α-oestradiol and aspirin147. Some of these drugs also improve 
healthspan measures in some tissues of animal models148–150. Drugs 
found in other studies to extend rodent lifespan include metformin151 

(although it did not repeat in the ITP at the same dose), drugs targeting 
the angiotensin-converting enzyme and the aldosterone receptor, and 
the sirtuin activators SRT2104152 and SRT1720153. Further work will 
be necessary to validate that these drugs act as true geroprotectors in 
model organisms.

A key question is how these interventions will be tested and even-
tually used clinically in humans. Geroscience predicts that ageing 
therapies will ameliorate or prevent several age-related diseases and 
conditions simultaneously. Clinical trials to test this hypothesis should 
therefore use clinical outcomes that inherently depend on multiple 
age-related diseases or conditions. Examples include multimorbidity, 
or the combination of several age-related chronic diseases; the multi-
factorial geriatric syndromes such as frailty or delirium; or resilience 
to health stressors such as surgery or infection154. Multimorbidity 
and frailty are also widely incorporated into measures of age-related 
risk that inform clinical decision-making155. Other examples of such 
measures that could be useful trial outcomes include grip strength, gait 
speed156, timed-up-and-go and activities of daily living.

These clinical measures of ageing could be useful for selecting 
patients at higher age-related risk to receive interventions. For example, 
the risk of multimorbidity increases steeply with age119; however, devel-
oping one chronic disease increases the risk of developing another by 
several fold157. How early or late in the ageing process interventions can 
be effective remains to be seen, although animal studies of drugs and 
human studies of exercise provide some reassurance that the window of 
opportunity extends quite late in life. At least five major classes of drugs 
are currently being tested in humans for their geroprotective potential.

Metformin. Metformin is a widely prescribed antidiabetic drug that 
has been found to target several molecular mechanisms of ageing158. A 
retrospective analysis of patients with diabetes who received metformin 
showed increased lifespan in comparison to individuals without diabe-
tes159. In randomized trials, metformin prevented the onset of diabe-
tes, improved cardiovascular risk factors and reduced mortality160,161. 
Epidemiological studies have suggested that metformin use might also 
reduce the incidence of cancer and neurodegenerative disease158. These 
data underpin the proposed Targeting Aging with MEtformin (TAME) 
study, a large randomized controlled trial of metformin given to 65- to 
80-year-old individuals without diabetes who are at high risk for the 
development of chronic diseases of ageing. The primary outcome of 
TAME is a composite of death or new major age-related chronic dis-
eases, including cardiovascular disease, cancer and dementia. Other 
outcomes include geriatric measures such as mobility, independence 
in activities of daily living and cognitive function162.

Rapamycin analogues. The compound identified by the ITP that 
has perhaps the most reproducible effects on lifespan is rapamycin. 
Rapamycin inhibits the TOR pathway, extends the lifespan of yeast 

Table 1 | Interventions to increase healthspan and/or lifespan
Intervention Target or process Major effects

Rapamycin mTOR Geroprotective effects in mice and dogs. Human clinical trials with rapamycin and rapalogs are 
underway.

Senolytics Cellular senescence Protective against age-related disease in mice. Ongoing clinical trials in human diseases, 
including arthritis and eye degeneration.

NAD precursors NAD metabolism Geroprotective in animal models. Supplements available for human consumption, but no 
clinical trials have been reported yet.

Sirtuin-activating compounds Sirtuins Geroprotective in rodents and non-human primates but mixed results in humans; SRT2104 
may have effects beyond mitigating some age-associated conditions.

Metformin Mitochondrial respiration Associated with increased lifespan in human patients with diabetes and decreased risk of 
cancer. TAME trial is planned to test effects in individuals without diabetes.

Exercise Unknown Associated with reduced risk of age-related disease, improved quality of life and increased 
lifespan in humans.

Calorie restriction Several targets, including 
mTOR and sirtuins

Enhanced lifespan and protection from disease in worms, flies, mice, rats and non-human 
primates. Associated with decreased risk factors for disease in humans.

Several key interventions that are currently under investigation in human trials for their potential to increase healthspan and lifespan are described (see text for further details).
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and flies and increases mean and maximum lifespan in mice from 
multiple genetic backgrounds163–165. These basic research data led to 
a unique clinical trial that studied the effects of rapamycin on heart 
function, cognition, cancer and lifespan in household companion dogs 
as a preclinical model166. Rapamycin (also known as sirolimus) and 
its analogue everolimus are approved for clinical use as immunosup-
pressants in solid organ transplantation. Healthy older adults given 
a non-immunosuppressive dose of everolimus for six weeks showed 
an improved immunological response to influenza vaccination19. A 
subsequent clinical trial found that six weeks of low-dose everolimus 
plus a second TOR inhibitor improved vaccine response and, provoc-
atively, reduced infection rates by over a third during the subsequent 
nine months167. These were two of the first examples of clinical trials 
that target a syndrome of ageing—immunosenescence—with a drug 
that targets the mechanisms of ageing.

Senolytics. As discussed above, senolytic drugs—drugs that selectively 
target and eliminate senescent cells—have showed great geroprotec-
tive potential in animal models95. Some of these drugs are natural 
products96,97, whereas others are synthetic small molecules90,98,99. A 
growing number of biotechnology companies and research laboratories 
are developing new or repurposed senolytics that have just begun to 
be tested for safety in humans, with no results—thus far—regarding 
efficacy.

Sirtuin activators. Sirtuin-activating compounds (STACs) enhance 
sirtuin activity and increase healthspan in mice and non-human pri-
mates168. However, mixed conclusions have been observed in clinical 
trials. Resveratrol (a natural STAC) and SRT1720 (an early synthetic 
STAC) have shown promising results in preclinical trials but failed in 
clinical trials, owing to low bioavailability, potency and limited target 
specificity169. The most promising synthetic STAC so far is SRT2104, 
a highly specific SIRT1 activator; the compound has completed several 
small clinical studies of effects on cardiovascular and metabolic mark-
ers, including in type 2 diabetes, cigarette smokers and the elderly, with 
larger trials underway118.

NAD+ precursors. NAD+ precursors such as nicotinamide riboside and 
nicotinamide mononucleotide aim to supplement the age-associated 
decrease in cellular NAD levels69. In animal models, both precursors 
have shown geroprotective activity against a number of ageing-associated 
diseases. Several companies are currently selling nicotinamide riboside  
and nicotinamide mononucleotide as supplements online. Although 
these supplements increase NAD levels in humans170, no efficacy or 
geroprotective effects for humans have been demonstrated thus far.

Exercise improves healthspan
Although much hope and investment are currently focused on drug 
development, it is important to note that exercise behaves as a true and 

effective geroprotector. In the absence of suitable treatments for age- 
related dysfunction, exercise is currently the only intervention that has 
shown a remarkable efficacy for reducing the incidence of age-related 
disease171,172, improving the quality of life173 and even increasing mean 
and maximum lifespan in humans174,175. Its benefits can be seen even 
with modest implementation173. Although the key molecular players 
that mediate the protective effects of exercise against age-related disease 
are unknown, efforts are underway to identify the molecular players 
and whether we can harness such knowledge to improve the health of 
the ageing population.

Nutrition and ageing
Diet is probably one of the most important influences on health and 
ageing. However, it is an enormously complicated topic and beyond 
the scope of this Review (extensive discussion on this topic has previ-
ously been published176). The field of ageing has focused almost exclu-
sively on the lifespan and healthspan effects of dietary restriction but, 
at the other end of the spectrum, overeating and the accompanying 
obesity shortens lifespan and decreases healthspan. In between these 
two extremes, there is strong evidence that optimal eating is associated 
with increased life expectancy and a reduction in the risk of all types 
of chronic disease. Many claims have been made for the competitive 
merits of different diets relative to one another. However, it is very 
difficult to conduct rigorous, long-term studies that compare differ-
ent diets for their lifespan and healthspan effects using methodology 
that is devoid of bias and confounding variables. Without such direct 
comparisons, no specific diet can claim superiority over any others. 
However, a number of themes have emerged from studies that compare 
different diets and from the study of populations that are geographically 
associated with increased longevity (so-called ‘blue zones’). Diets that 
favour longevity and healthspan are generally characterized by mini-
mally processed foods, being predominantly plant-based, low alcohol 
consumption and a lack of overeating.

Exciting recent developments are emerging in the nutrition field, such 
as intermittent fasting177, diets that mimic fasting178 and time-restricted 
feeding179. Recently, interest has grown in a ketogenic diet that is char-
acterized by the endogenous production of high levels of the ketone 
body β-hydroxybutyrate. This diet has long been used as a treatment 
for childhood epilepsy and was recently shown to increase healthspan in 
two separate studies in mice180–182. The studies are supported by recent 
findings that β-hydroxybutyrate modulates the enzymatic activity of the 
epigenetic regulators, histone deacetylases, and thereby activates the 
expression of FOXO3183. Future research will focus on the healthspan 
and possible lifespan of these dietary interventions and the identifica-
tion of their interactions with pathways that regulate ageing.

The need for biomarkers of ageing
The field of geroscience needs biomarkers to assess the ageing pro-
cess and the efficacy of interventions to bypass the need for large-scale 

Hallmarks of ageing

• Stem cell exhaustion
• Altered intercellular communication
• Genetic instability
• Telomere attrition
• Epigenetic alterations
• Loss of proteostasis
• Deregulated nutrient sensing
• Mitochondrial dysfunction
• Cellular senescence

Chronic diseases of ageing

• Diabetes

• Cardiovascular diseases
   (stroke, myocardial infarction)

• Alzheimer’s disease

• Osteoporosis
• Sarcopenia
• Cancer
• Macular degeneration and glaucoma
• Osteoarthritis

Genes and
environment

Disability
Mortality
Geriatric

syndromes

Chronic
inflammation

Ageing

Disease-specific
risk factors

Fig. 2 | The concept of geroscience and its approach to age-related 
disease. Environmental and genetic factors exert influences on a number 
of key cellular processes and pathways, which have recently been defined 
as the hallmarks of ageing193. Many of these pathways contribute to the 
creation of a chronic inflammatory stage and to ageing. These in turn 

increase the risk for chronic diseases of ageing together with disease-
specific risk factors (for example, cholesterol level and high-blood 
pressure can lead to cardiovascular diseases such as stroke and myocardial 
infarction).
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longitudinal studies. Medicine has undergone a progressive transfor-
mation during the past 40 years, changing from ‘sick care’—that is, 
care primarily focused on treating diseases after they occurred—to 
‘healthcare’, in which unique risk factors for disease development are 
recognized and suppressed before disease onset. For example, neither 
high plasma cholesterol nor high blood pressure is a disease by itself 
but both are important risk factors for the development of myocardial 
infarction and strokes.

Similarly, ageing is not a disease but a notably strong risk factor for 
multiple diseases that include myocardial infarction, stroke, some  
ageing-associated cancers, macular degeneration, osteoarthritis, neu-
rodegeneration and many other diseases. For example, cardiovascular 
risk doubles every 10 years past the age of 40, even after adjustment for 
other risk factors—the rough equivalent of adding a major new risk 
factor (smoking, hypertension and so on) every decade184. Decades of 
cardiovascular studies identified risk factors and showed that treating  
risk factors even when patients are asymptomatic prevented harm. 
Treatment guided by these cardiovascular biomarkers now extends 
earlier and earlier in life. The availability of true biomarkers of ageing, 
and associated clinical health outcomes and malleability to interven-
tions162, would allow geroprotectors to be tested on an accelerated time 
scale. They would further allow for early identification of patients at 
high age-related risk throughout life and in various clinical contexts to 
target geroprotective treatments.

Early efforts to identify such markers have been unsuccessful, but 
recent developments using newer technologies such as high-through-
put proteomics, transcriptomics and epigenomics indicate that such 
biomarkers do exist and could be of high clinical importance185. One 
possible biomarker, the epigenetic clock, is based on the measurement 
of DNA methylation at multiple sites and appears to correlate with 
biological age and age-related risk more than chronological age186–188. 
Advanced glycation end products represent another potential bio-
marker that accumulates with age and in several age-related diseases189. 
Furthermore, increased levels of some advanced glycation end products  
are also associated with increased mortality in humans190. There already 
is evidence that ageing biomarkers can be modified by interventions 
that target ageing, such as in the CALERIE study of calorie restriction 
in humans191. The identification of further biomarkers that predict 
biological age and disease risk will represent a huge stride forward in 
the efforts to combat age-related disease and dysfunction in humans.

We are now entering an exciting era for research on ageing. This era 
holds unprecedented promise for increasing human healthspan: pre-
venting, delaying or—in some cases—reversing many of the pathol-
ogies of ageing based on new scientific discoveries. Whether this era 
promises to increase the maximum life span of humans remains an 
open question192. What is clear is that, 30 years after the fundamental 
discoveries that link unique genes to ageing, a solid foundation has 
been built and clinical trials that directly target the ageing process are 
being initiated. Although considerable difficulties can be expected as 
we translate this research to humans, the potential rewards in terms of 
healthy ageing far outweigh the risks.
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