Abstract
Batteries and supercapacitors serve as the basis for electrochemical energy-storage devices. Although both rely on electrochemical processes, their charge-storage mechanisms are dissimilar, giving rise to different energy and power densities. Pseudocapacitive materials store charge through battery-like redox reactions but at fast rates comparable to those of electrochemical double-layer capacitors; these materials, therefore, offer a pathway for achieving both high energy and high power densities. Materials that combine these properties are in demand for the realization of fast-charging electrochemical energy-storage devices capable of delivering high power for long periods of time. In this Review, we describe the fundamental electrochemical properties of pseudocapacitive materials, with emphasis on kinetic processes and distinctions between battery and pseudocapacitive materials. In addition, we discuss the various types of pseudocapacitive materials, highlighting the differences between intrinsic and extrinsic materials; assess device applications; and consider the future prospects for the field.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
IEA. Global EV Outlook 2017: Two Million and Counting. International Energy Agency https://www.iea.org/publications/freepublications/publication/GlobalEVOutlook2017.pdf (2017).
Liang, Y. et al. A review of rechargeable batteries for portable electronic devices. InfoMat 1, 6–32 (2019).
Gür, T. M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11, 2696–2767 (2018).
Davies, D. M. et al. Combined economic and technological evaluation of battery energy storage for grid applications. Nat. Energy 4, 42–50 (2019).
Salanne, M. et al. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016).
Conway, B. E. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J. Electrochem. Soc. 138, 1539–1548 (1991). A seminal paper that distinguishes supercapacitor behaviour from that of batteries.
Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Ch. 2 & Ch. 3 (Springer US, 1999).
Abruña, H. D., Kiya, Y. & Henderson, J. C. Batteries and electrochemical capacitors. Phys. Today 61, 43–47 (2008).
Brousse, T., Bélanger, D. & Long, J. W. To be or not to be pseudocapacitive? J. Electrochem. Soc. 162, A5185–A5189 (2015). This paper presents the defining features of pseudocapacitive materials and dispels some of the misimpressions in the field.
Come, J. et al. Electrochemical kinetics of nanostructured Nb2O5 electrodes. J. Electrochem. Soc. 161, A718–A725 (2014).
Girard, H.-L., Dunn, B. & Pilon, L. Simulations and interpretation of three-electrode cyclic voltammograms of pseudocapacitive electrodes. Electrochim. Acta 211, 420–429 (2016).
Costentin, C., Porter, T. R. & Savéant, J.-M. How do pseudocapacitors store energy? Theoretical analysis and experimental illustration. ACS Appl. Mater. Interfaces 9, 8649–8658 (2017).
Bai, L. & Conway, B. E. AC impedance of faradaic reactions involving electrosorbed intermediates: examination of conditions leading to pseudoinductive behavior represented in three-dimensional impedance spectroscopy diagrams. J. Electrochem. Soc. 138, 2897–2907 (1991).
Taberna, P. L., Simon, P. & Fauvarque, J. F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 150, A292–A300 (2003).
Ko, J. S., Sassin, M. B., Rolison, D. R. & Long, J. W. Deconvolving double-layer, pseudocapacitance, and battery-like charge-storage mechanisms in nanoscale LiMn2O4 at 3D carbon architectures. Electrochim. Acta 275, 225–235 (2018).
Ko, J. S., Sassin, M. B., Parker, J. F., Rolison, D. R. & Long, J. W. Combining battery-like and pseudocapacitive charge storage in 3D MnOx@carbon electrode architectures for zinc-ion cells. Sustain. Energy Fuels 2, 626–636 (2018).
Lindström, H. et al. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 101, 7717–7722 (1997). This paper set the foundation for providing kinetic analysis that distinguishes between semi-infinite and capacitor-like behaviour.
Randles, J. E. B. A cathode ray polarograph. Part II.—The current-voltage curves. Trans Faraday Soc. 44, 327–338 (1948).
Ševčík, A. Oscillographic polarography with periodical triangular voltage. Collect. Czech. Chem. Commun. 13, 349–377 (1948).
Come, J., Taberna, P.-L., Hamelet, S., Masquelier, C. & Simon, P. Electrochemical kinetic study of LiFePO4 using cavity microelectrode. J. Electrochem. Soc. 158, A1090–A1093 (2011).
Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). This paper provides the electrochemical and structural characteristics that helped to define pseudocapacitive materials.
Xiao, X. et al. Freestanding MoO3–x nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano Energy 9, 355–363 (2014).
Lai, C.-H. et al. Application of poly(3-hexylthiophene-2,5-diyl) as a protective coating for high rate cathode materials. Chem. Mater. 30, 2589–2599 (2018).
Ko, J. S. et al. High-rate capability of Na2FePO4F nanoparticles by enhancing surface carbon functionality for Na-ion batteries. J. Mater. Chem. A 5, 18707–18715 (2017).
Cook, J. B. et al. Suppression of electrochemically driven phase transitions in nanostructured MoS2 pseudocapacitors probed using operando X-ray diffraction. ACS Nano 13, 1223–1231 (2019).
Lai, C.-H. et al. Designing pseudocapacitance for Nb2O5/carbide-derived carbon electrodes and hybrid devices. Langmuir 33, 9407–9415 (2017).
Liu, T.-C. Behavior of molybdenum nitrides as materials for electrochemical capacitors. J. Electrochem. Soc. 145, 1882–1888 (1998).
Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007).
Forghani, M. & Donne, S. W. Method comparison for deconvoluting capacitive and pseudo-capacitive contributions to electrochemical capacitor electrode behavior. J. Electrochem. Soc. 165, A664–A673 (2018).
Shao, H., Lin, Z., Xu, K., Taberna, P.-L. & Simon, P. Electrochemical study of pseudocapacitive behavior of Ti3C2Tx MXene material in aqueous electrolytes. Energy Storage Mater. 18, 456–461 (2019).
Weppner, W. & Huggins, R. A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 124, 1569–1578 (1977).
Takami, N. Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J. Electrochem. Soc. 142, 371–379 (1995).
Cottrell, F. G. Der Reststrom bei galvanischer Polarisation, betrachtet als ein Diffusionsproblem [German]. Z. Phys. Chem. 42U, 385–431 (1903).
Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications. 2nd edn Ch. 11 & Ch. 15 (Wiley, 2001).
Gibson, A. J. & Donne, S. W. A step potential electrochemical spectroscopy (SPECS) investigation of anodically electrodeposited thin films of manganese dioxide. J. Power Sources 359, 520–528 (2017).
Dupont, M. F. & Donne, S. W. A step potential electrochemical spectroscopy analysis of electrochemical capacitor electrode performance. Electrochim. Acta 167, 268–277 (2015).
Girard, H.-L., Wang, H., d’Entremont, A. L. & Pilon, L. Enhancing faradaic charge storage contribution in hybrid pseudocapacitors. Electrochim. Acta 182, 639–651 (2015).
Nicholson, R. S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 37, 1351–1355 (1965).
Mahmood, Q. et al. Transition from diffusion-controlled intercalation into extrinsically pseudocapacitive charge storage of MoS2 by nanoscale heterostructuring. Adv. Energy Mater. 6, 1501115 (2016).
Wu, X. et al. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4, 123–130 (2019).
Toupin, M., Brousse, T. & Bélanger, D. Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem. Mater. 14, 3946–3952 (2002).
Tang, Y. et al. Identifying the origin and contribution of surface storage in TiO2(B) nanotube electrode by in situ dynamic valence state monitoring. Adv. Mater. 30, 1802200 (2018).
Kodama, R., Terada, Y., Nakai, I., Komaba, S. & Kumagai, N. Electrochemical and in situ XAFS-XRD investigation of Nb2O5 for rechargeable lithium batteries. J. Electrochem. Soc. 153, A583–A588 (2006).
Christensen, C. R. & Anson, F. C. Chronopotentiometry in thin layer of solution. Anal. Chem. 35, 205–209 (1963).
Hubbard, A. T. Study of the kinetics of electrochemical reactions by thin-layer voltammetry. J. Electroanal. Chem. Interfacial Electrochem. 22, 165–174 (1969).
Andrieux, C. P. & Savéant, J. M. Electron transfer through redox polymer films. J. Electroanal. Chem. Interfacial Electrochem. 111, 377–381 (1980).
Peerce, P. J. & Bard, A. J. Polymer films on electrodes. J. Electroanal. Chem. Interfacial Electrochem. 114, 89–115 (1980).
Laviron, E., Roullier, L. & Degrand, C. A multilayer model for the study of space distributed redox modified electrodes. J. Electroanal. Chem. Interfacial Electrochem. 112, 11–23 (1980).
Aoki, K., Tokuda, K. & Matsuda, H. Theory of linear sweep voltammetry with finite diffusion space: Part II. Totally irreversible and quasi-reversible cases. J. Electroanal. Chem. Interfacial Electrochem. 160, 33–45 (1984). This paper outlines the development of the parameters that helped to define finite diffusion and its relationship with thin-layer electrochemistry.
Mirčeski, V. & Tomovski, Ž. Modeling of a voltammetric experiment in a limiting diffusion space. J. Solid State Electrochem. 15, 197–204 (2011).
Lovrić, M., Komorsky-Lovrić, Š. & Scholz, F. Staircase voltammetry with finite diffusion space. Electroanalysis 9, 575–577 (1997).
Aoki, K. & Osteryoung, J. Square wave voltammetry in a thin-layer cell. J. Electroanal. Chem. Interfacial Electrochem. 240, 45–51 (1988).
Komorsky-Lovrić, Š. & Lovrić, M. Kinetic measurements of a surface confined redox reaction. Anal. Chim. Acta 305, 248–255 (1995).
Mirčeski, V. Charge transfer kinetics in thin-film voltammetry. Theoretical study under conditions of square-wave voltammetry. J. Phys. Chem. B 108, 13719–13725 (2004).
Simon, P., Gogotsi, Y. & Dunn, B. Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).
Kim, H.-S., Cook, J. B., Tolbert, S. H. & Dunn, B. The development of pseudocapacitive properties in nanosized-MoO2. J. Electrochem. Soc. 162, A5083–A5090 (2015).
Okubo, M. et al. Fast Li-ion insertion into nanosized LiMn2O4 without domain boundaries. ACS Nano 4, 741–752 (2010).
Mei, B.-A., Li, B., Lin, J. & Pilon, L. Multidimensional cyclic voltammetry simulations of pseudocapacitive electrodes with a conducting nanorod scaffold. J. Electrochem. Soc. 164, A3237–A3252 (2017).
Augustyn, V., Simon, P. & Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014).
Ghodbane, O., Ataherian, F., Wu, N.-L. & Favier, F. In situ crystallographic investigations of charge storage mechanisms in MnO2-based electrochemical capacitors. J. Power Sources 206, 454–462 (2012).
Crosnier, O. et al. Polycationic oxides as potential electrode materials for aqueous-based electrochemical capacitors. Curr. Opin. Electrochem. 9, 87–94 (2018).
Yu, X. et al. Emergent pseudocapacitance of 2D nanomaterials. Adv. Energy Mater. 8, 1702930 (2018).
Trasatti, S. & Buzzanca, G. Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behaviour. J. Electroanal. Chem. Interfacial Electrochem. 29, A1–A5 (1971). This is the original report of the characterization of RuO 2 pseudocapacitive behaviour.
Galizzioli, D., Tantardini, F. & Trasatti, S. Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytes. J. Appl. Electrochem. 4, 57–67 (1974).
Hadzi-Jordanov, S. Reversibility and growth behavior of surface oxide films at ruthenium electrodes. J. Electrochem. Soc. 125, 1471–1480 (1978).
Zheng, J. P. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142, 2699–2703 (1995).
Conway, B. E. & Pell, W. G. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem. 7, 637–644 (2003).
Zhang, J. et al. Template synthesis of tubular ruthenium oxides for supercapacitor applications. J. Phys. Chem. C 114, 13608–13613 (2010).
Ma, H. et al. Disassembly–reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small 13, 1701026 (2017).
Mondal, S. K. & Munichandraiah, N. Anodic deposition of porous RuO2 on stainless steel for supercapacitor studies at high current densities. J. Power Sources 175, 657–663 (2008).
Sugimoto, W., Yokoshima, K., Murakami, Y. & Takasu, Y. Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides. Electrochim. Acta 52, 1742–1748 (2006).
Long, J. W., Swider, K. E., Merzbacher, C. I. & Rolison, D. R. Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: the nature of capacitance in nanostructured materials. Langmuir 15, 780–785 (1999).
Hu, C.-C., Chang, K.-H., Lin, M.-C. & Wu, Y.-T. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6, 2690–2695 (2006).
Bi, R.-R. et al. Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance. J. Phys. Chem. C 114, 2448–2451 (2010).
Liu, Y., Zhou, F. & Ozolins, V. Ab initio study of the charge-storage mechanisms in RuO2-based electrochemical ultracapacitors. J. Phys. Chem. C 116, 1450–1457 (2012).
Dmowski, W., Egami, T., Swider-Lyons, K. E., Love, C. T. & Rolison, D. R. Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. J. Phys. Chem. B 106, 12677–12683 (2002).
Wen, S., Lee, J.-W., Yeo, I.-H., Park, J. & Mho, S. The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2. Electrochim. Acta 50, 849–855 (2004).
Lee, H. Y. & Goodenough, J. B. Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220–223 (1999).
Ghodbane, O., Pascal, J.-L. & Favier, F. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl. Mater. Interfaces 1, 1130–1139 (2009).
Devaraj, S. & Munichandraiah, N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112, 4406–4417 (2008).
Yan, W. et al. Lithographically patterned gold/manganese dioxide core/shell nanowires for high capacity, high rate, and high cyclability hybrid electrical energy storage. Chem. Mater. 24, 2382–2390 (2012).
Zhao, Y., Li, M. P., Liu, S. & Islam, M. F. Superelastic pseudocapacitors from freestanding MnO2-decorated graphene-coated carbon nanotube aerogels. ACS Appl. Mater. Interfaces 9, 23810–23819 (2017).
Peng, L. et al. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 13, 2151–2157 (2013).
Jabeen, N. et al. Enhanced pseudocapacitive performance of α-MnO2 by cation preinsertion. ACS Appl. Mater. Interfaces 8, 33732–33740 (2016).
Cheng, F. et al. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 45, 2038–2044 (2006).
Wang, X. & Li, Y. Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124, 2880–2881 (2002).
Chen, D. et al. Probing the charge storage mechanism of a pseudocapacitive MnO2 electrode using in operando Raman spectroscopy. Chem. Mater. 27, 6608–6619 (2015).
Kuo, S.-L. & Wu, N.-L. Investigation of pseudocapacitive charge-storage reaction of MnO2⋅nH2O supercapacitors in aqueous electrolytes. J. Electrochem. Soc. 153, A1317–A1324 (2006).
Wang, G.-X., Zhang, B.-L., Yu, Z.-L. & Qu, M.-Z. Manganese oxide/MWNTs composite electrodes for supercapacitors. Solid State Ion. 176, 1169–1174 (2005).
Yang, Y., Xiao, L., Zhao, Y. & Wang, F. Hydrothermal synthesis and electrochemical characterization of α-MnO2 nanorods as cathode material for lithium batteries. Int. J. Electrochem. Sci. 3, 67–74 (2008).
Li, L. et al. Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J. Phys. Chem. C 118, 22865–22872 (2014).
Gambou-Bosca, A. & Bélanger, D. Electrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitors. J. Power Sources 326, 595–603 (2016).
Reichman, B. & Bard, A. J. The application of Nb2O5 as a cathode in nonaqueous lithium cells. J. Electrochem. Soc. 128, 344–346 (1981).
Ohzuku, T., Sawai, K. & Hirai, T. Electrochemistry of L-niobium pentoxide a lithium/non-aqueous cell. J. Power Sources 19, 287–299 (1987).
Kim, J. W., Augustyn, V. & Dunn, B. The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Adv. Energy Mater. 2, 141–148 (2012).
Liu, C.-P., Zhou, F. & Ozolins, V. First principles study for lithium intercalation and diffusion behavior in orthorhombic Nb2O5 electrochemical supercapacitor. APS Meet. Abstr. B26. 003 (2012).
Marchand, R., Brohan, L. & Tournoux, M. TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mater. Res. Bull. 15, 1129–1133 (1980).
Zukalová, M., KalbáČ, M., Kavan, L., Exnar, I. & Graetzel, M. Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17, 1248–1255 (2005).
Li, X., Wu, G., Liu, X., Li, W. & Li, M. Orderly integration of porous TiO2(B) nanosheets into bunchy hierarchical structure for high-rate and ultralong-lifespan lithium-ion batteries. Nano Energy 31, 1–8 (2017).
Liu, S. et al. Nanosheet-constructed porous TiO2–B for advanced lithium ion batteries. Adv. Mater. 24, 3201–3204 (2012).
Dylla, A. G., Xiao, P., Henkelman, G. & Stevenson, K. J. Morphological dependence of lithium insertion in nanocrystalline TiO2(B) nanoparticles and nanosheets. J. Phys. Chem. Lett. 3, 2015–2019 (2012).
Hua, X. et al. Lithiation thermodynamics and kinetics of the TiO2 (B) nanoparticles. J. Am. Chem. Soc. 139, 13330–13341 (2017).
Ren, Y. et al. Nanoparticulate TiO2(B): an anode for lithium-ion batteries. Angew. Chem. Int. Ed. 51, 2164–2167 (2012).
Wilkening, M., Lyness, C., Armstrong, A. R. & Bruce, P. G. Diffusion in confined dimensions: Li+ transport in mixed conducting TiO2–B nanowires. J. Phys. Chem. C 113, 4741–4744 (2009).
Hoshina, K., Harada, Y., Inagaki, H. & Takami, N. Characterization of lithium storage in TiO2(B) by 6Li-NMR and X-ray diffraction analysis. J. Electrochem. Soc. 161, A348–A354 (2014).
Laskova, B., Zukalova, M., Zukal, A., Bousa, M. & Kavan, L. Capacitive contribution to Li-storage in TiO2 (B) and TiO2 (anatase). J. Power Sources 246, 103–109 (2014).
Giannuzzi, R. et al. Ultrathin TiO2(B) nanorods with superior lithium-ion storage performance. ACS Appl. Mater. Interfaces 6, 1933–1943 (2014).
Okubo, M. et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129, 7444–7452 (2007).
Rauda, I. E. et al. Nanostructured pseudocapacitors based on atomic layer deposition of V2O5 onto conductive nanocrystal-based mesoporous ITO scaffolds. Adv. Funct. Mater. 24, 6717–6728 (2014).
Tang, Y.-J. et al. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv. Energy Mater. 6, 1600116 (2016).
Wang, R. et al. Elucidating the intercalation pseudocapacitance mechanism of MoS2–carbon monolayer interoverlapped superstructure: toward high-performance sodium-ion-based hybrid supercapacitor. ACS Appl. Mater. Interfaces 9, 32745–32755 (2017).
Liang, Y. et al. Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 15, 2194–2202 (2015).
Chen, K., Pan, W. & Xue, D. Phase transformation of Ce3+-doped MnO2 for pseudocapacitive electrode materials. J. Phys. Chem. C 120, 20077–20081 (2016).
Hu, Z. et al. Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability. Nano Energy 11, 226–234 (2015).
Sun, R. et al. Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy 35, 396–404 (2017).
Hu, Z. et al. 2D vanadium doped manganese dioxides nanosheets for pseudocapacitive energy storage. Nanoscale 7, 16094–16099 (2015).
Zhai, D. et al. A study on charge storage mechanism of α-MnO2 by occupying tunnels with metal cations (Ba2+, K+). J. Power Sources 196, 7860–7867 (2011).
Kim, H.-S. et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 16, 454–460 (2017).
Shin, J.-Y., Joo, J. H., Samuelis, D. & Maier, J. Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 24, 543–551 (2012).
Li, B. & Xia, D. Anionic redox in rechargeable lithium batteries. Adv. Mater. 29, 1701054 (2017).
Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J.-M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016).
Mefford, J. T., Hardin, W. G., Dai, S., Johnston, K. P. & Stevenson, K. J. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat. Mater. 13, 726–732 (2014).
Liu, Y. et al. Highly defective layered double perovskite oxide for efficient energy storage via reversible pseudocapacitive oxygen-anion intercalation. Adv. Energy Mater. 8, 1702604 (2018).
Zhu, L. et al. Perovskite SrCo0.9Nb0.1O3−δ as an anion-intercalated electrode material for supercapacitors with ultrahigh volumetric energy density. Angew. Chem. Int. Ed. 55, 9576–9579 (2016).
Choi, D., Blomgren, G. E. & Kumta, P. N. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18, 1178–1182 (2006).
Wang, B., Chen, Z., Lu, G., Wang, T. & Ge, Y. Exploring electrolyte preference of vanadium nitride supercapacitor electrodes. Mater. Res. Bull. 76, 37–40 (2016).
Pande, P., Rasmussen, P. G. & Thompson, L. T. Charge storage on nanostructured early transition metal nitrides and carbides. J. Power Sources 207, 212–215 (2012).
Cong, X. et al. Intrinsic charge storage capability of transition metal dichalcogenides as pseudocapacitor electrodes. J. Phys. Chem. C 119, 20864–20870 (2015).
Cook, J. B. et al. Pseudocapacitive charge storage in thick composite MoS2 nanocrystal-based electrodes. Adv. Energy Mater. 7, 1601283 (2017).
Mahmood, Q. et al. Unveiling surface redox charge storage of interacting two-dimensional heteronanosheets in hierarchical architectures. Nano Lett. 15, 2269–2277 (2015).
Muller, G. A., Cook, J. B., Kim, H.-S., Tolbert, S. H. & Dunn, B. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 15, 1911–1917 (2015).
Shuai, J. et al. Density functional theory study of Li, Na, and Mg intercalation and diffusion in MoS2 with controlled interlayer spacing. Mater. Res. Express 3, 064001 (2016).
Xu, X. et al. Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: toward fast sodium storage by tunable pseudocapacitance. Adv. Mater. 30, 1800658 (2018).
Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).
Mashtalir, O. et al. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013).
Du, F. et al. Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries. Electrochim. Acta 235, 690–699 (2017).
Lian, P. et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017).
Kayali, E., VahidMohammadi, A., Orangi, J. & Beidaghi, M. Controlling the dimensions of 2D MXenes for ultrahigh-rate pseudocapacitive energy storage. ACS Appl. Mater. Interfaces 10, 25949–25954 (2018).
Hu, M. et al. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 10, 11344–11350 (2016).
Tang, Q., Zhou, Z. & Shen, P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012).
Hong, M. S., Lee, S. H. & Kim, S. W. Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor. Electrochem. Solid-State Lett. 5, A227–A230 (2002).
Hwang, J. Y. et al. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 18, 57–70 (2015).
Wu, Z.-S. et al. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4, 5835–5842 (2010).
Wang, Y.-G., Wang, Z.-D. & Xia, Y.-Y. An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim. Acta 50, 5641–5646 (2005).
Lukatskaya, M. R., Dunn, B. & Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016).
Long, J. W. et al. Asymmetric electrochemical capacitors—stretching the limits of aqueous electrolytes. MRS Bull. 36, 513–522 (2011).
Ra, E. J., Raymundo-Piñero, E., Lee, Y. H. & Béguin, F. High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon 47, 2984–2992 (2009).
Amatucci, G. G., Badway, F., Du Pasquier, A. & Zheng, T. An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 148, A930–A939 (2001).
Naoi, K., Ishimoto, S., Isobe, Y. & Aoyagi, S. High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. J. Power Sources 195, 6250–6254 (2010).
Naoi, K., Ishimoto, S., Miyamoto, J. & Naoi, W. Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ. Sci. 5, 9363–9373 (2012).
Jeżowski, P. et al. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat. Mater. 17, 167–173 (2017).
Tran, T. D., Feikert, J. H., Pekala, R. W. & Kinoshita, K. Rate effect on lithium-ion graphite electrode performance. J. Appl. Electrochem. 26, 1161–1167 (1996).
Sivakkumar, S. R. & Pandolfo, A. G. Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode. Electrochim. Acta 65, 280–287 (2012).
Naoi, K. et al. Ultrafast nanocrystalline-TiO2(B)/carbon nanotube hyperdispersion prepared via combined ultracentrifugation and hydrothermal treatments for hybrid supercapacitors. Adv. Mater. 28, 6751–6757 (2016).
Zhao, Y. et al. Fabrication of nanoarchitectured TiO2(B)@C/rGO electrode for 4 V quasi-solid-state nanohybrid supercapacitors. Electrochim. Acta 258, 343–352 (2017).
Kong, L. et al. High-power and high-energy asymmetric supercapacitors based on Li+-intercalation into a T-Nb2O5/graphene pseudocapacitive electrode. J. Mater Chem. A. 2, 17962–17970 (2014).
Sun, H. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017).
Myung, S.-T., Amine, K. & Sun, Y.-K. Nanostructured cathode materials for rechargeable lithium batteries. J. Power Sources 283, 219–236 (2015).
Cresce, A. V. et al. Solvation behavior of carbonate-based electrolytes in sodium ion batteries. Phys. Chem. Chem. Phys. 19, 574–586 (2017).
Okoshi, M., Yamada, Y., Yamada, A. & Nakai, H. Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents. J. Electrochem. Soc. 160, A2160–A2165 (2013).
Xie, X. et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016).
Wang, X. et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4, 241–248 (2019). This paper reports the performance of a state-of-the-art, high-power hybrid supercapacitor device based on a MXene as the redox electrode.
Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).
Grayfer, E. D., Pazhetnov, E. M., Kozlova, M. N., Artemkina, S. B. & Fedorov, V. E. Anionic redox chemistry in polysulfide electrode materials for rechargeable batteries. ChemSusChem 10, 4805–4811 (2017).
Goodenough, J. B. & Kim, Y. Locating redox couples in the layered sulfides with application to Cu[Cr2]S4. J. Solid State Chem. 182, 2904–2911 (2009).
Moreau, P., Ouvrard, G., Gressier, P., Ganal, P. & Rouxel, J. Electronic structures and charge transfer in lithium and mercury intercalated titanium disulfides. J. Phys. Chem. Solids 57, 1117–1122 (1996).
Subramanian, V., Zhu, H. & Wei, B. Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem. Commun. 8, 827–832 (2006).
Shi, P. et al. Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor. ACS Nano 11, 444–452 (2017).
Kwon, B. J. et al. Effect of passivating shells on the chemistry and electrode properties of LiMn2O4 nanocrystal heterostructures. ACS Appl. Mater. Interfaces 11, 3823–3833 (2019).
Kim, U-H., Myung, S-T., Yoon, C. S. & Sun, Y-K. Extending the battery life using an Al-doped Li[Ni0.76Co0.09Mn0.15]O2 cathode with concentration gradients for lithium ion batteries. ACS Energy Lett. 2, 1848–1854 (2017).
Ding, Z. et al. Understanding the enhanced kinetics of gradient-chemical-doped lithium-rich cathode material. ACS Appl. Mater. Interfaces 9, 20519–20526 (2017).
Weber, R., Fell, C. R., Dahn, J. R. & Hy, S. Operando X-ray diffraction study of polycrystalline and single-crystal LixNi0.5Mn0.3Co0.2O2. J. Electrochem. Soc. 164, A2992–A2999 (2017).
Grenier, A. et al. Reaction heterogeneity in LiNi0.8Co0.15Al0.05O2 induced by surface layer. Chem. Mater. 29, 7345–7352 (2017).
Conway, B. E. & Gileadi, E. Kinetic theory of pseudo-capacitance and electrode reactions at appreciable surface coverage. Trans. Faraday Soc. 58, 2493–2509 (1962).
Acknowledgements
The authors are grateful to the US Office of Naval Research (grants nos. N00014-17-1-2244 and N00014-16-1-2164) for supporting their research.
Author information
Authors and Affiliations
Contributions
All authors researched data for the article. C.C., D.S.A., D.M.B., R.H.D. and B.D. contributed to the discussion of content and writing and editing of the article prior to submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Choi, C., Ashby, D.S., Butts, D.M. et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater 5, 5–19 (2020). https://doi.org/10.1038/s41578-019-0142-z
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-019-0142-z