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Predominant regional biophysical cooling
from recent land cover changes in Europe
Bo Huang 1,5, Xiangping Hu 1,5, Geir-Arne Fuglstad 2, Xu Zhou 3, Wenwu Zhao4 &

Francesco Cherubini1✉

Around 70 Mha of land cover changes (LCCs) occurred in Europe from 1992 to 2015. Despite

LCCs being an important driver of regional climate variations, their temperature effects at a

continental scale have not yet been assessed. Here, we integrate maps of historical LCCs with

a regional climate model to investigate air temperature and humidity effects. We find an

average temperature change of −0.12 ± 0.20 °C, with widespread cooling (up to −1.0 °C) in

western and central Europe in summer and spring. At continental scale, the mean cooling is

mainly correlated with agriculture abandonment (cropland-to-forest transitions), but a new

approach based on ridge-regression decomposing the temperature change to the individual

land transitions shows opposite responses to cropland losses and gains between western and

eastern Europe. Effects of historical LCCs on European climate are non-negligible and region-

specific, and ignoring land-climate biophysical interactions may lead to sub-optimal climate

change mitigation and adaptation strategies.

https://doi.org/10.1038/s41467-020-14890-0 OPEN

1 Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU),
Trondheim, Norway. 2 Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway. 3 National
Tibetan Plateau Data Center, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China. 4 State Key Laboratory of Earth Surface
Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University (BNU), Beijing, China. 5These authors contributed equally: Bo
Huang, Xiangping Hu. ✉email: francesco.cherubini@ntnu.no

NATURE COMMUNICATIONS |         (2020) 11:1066 | https://doi.org/10.1038/s41467-020-14890-0 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-14890-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-14890-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-14890-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-14890-0&domain=pdf
http://orcid.org/0000-0001-6073-432X
http://orcid.org/0000-0001-6073-432X
http://orcid.org/0000-0001-6073-432X
http://orcid.org/0000-0001-6073-432X
http://orcid.org/0000-0001-6073-432X
http://orcid.org/0000-0003-3468-8248
http://orcid.org/0000-0003-3468-8248
http://orcid.org/0000-0003-3468-8248
http://orcid.org/0000-0003-3468-8248
http://orcid.org/0000-0003-3468-8248
http://orcid.org/0000-0003-4995-2152
http://orcid.org/0000-0003-4995-2152
http://orcid.org/0000-0003-4995-2152
http://orcid.org/0000-0003-4995-2152
http://orcid.org/0000-0003-4995-2152
http://orcid.org/0000-0002-6469-1889
http://orcid.org/0000-0002-6469-1889
http://orcid.org/0000-0002-6469-1889
http://orcid.org/0000-0002-6469-1889
http://orcid.org/0000-0002-6469-1889
mailto:francesco.cherubini@ntnu.no
www.nature.com/naturecommunications
www.nature.com/naturecommunications


C limate variability is a main driver of changes to landscapes
and ecosystems1,2, but also land cover changes (LCC)
influence the regional climate3,4 because they alter bio-

physical mechanisms like evapotranspiration, albedo, and surface
roughness5–7. The temperature response to LCCs depends on the
type of land cover8–10 or management11–13, background climate
conditions14–16, and spatial extension of the LCC14,17. Spatial and
seasonal heterogeneities are also common18,19. For example,
forest losses from 2003 to 2012 locally increased air temperature
up to about 1 °C in temperate and tropical regions as a result of
declined evapotranspiration19, especially during summer18,20. On
the contrary, cooling benefits of forests are smaller at high lati-
tude, where the evapotranspiration benefits are compensated by
lower surface albedo14,19.

Satellite observations provide a valuable opportunity to study
land cover properties and changes21–23, and remotely sensed data
are frequently used to generate maps of forest area extension and
contraction21,24, or development trends in cropland or grass-
land25–28. Because of the importance of land cover feedbacks to
climate, an accurate description of the different types of vegeta-
tion cover and their changes over time is a key asset of climate
models22,29,30. Many of the existing global land cover datasets
available for modeling purposes have little consistency in terms of
period of observation, spatial resolution, and accuracy22,31. In the
recent years, the European Space Agency (ESA) Climate Change
Initiative Land Cover (CCI-LC) produced a time-series (from
1992 to 2015) of high-resolution (300 m) land cover maps com-
bining multiple remote sensing products and ground-truth
observations22,32. These maps were specifically developed for
reducing previous limitations and to advance a more realistic
representation of land cover dynamics in climate models22,31, and
are also used to characterize temporal dynamics and spatial
patterns of land cover changes at a landscape and global level23,33.

Previous research mainly assessed the regional climate impli-
cations of individual land cover transitions, such as the effects of
historical land use changes (mainly forest clearance)18,20, changes
in agricultural management34–36, forest management3,37, or
idealized large-scale scenarios of deforestation/afforestation4,38,
but the combined effects from the mix of recent historical land
cover changes in Europe have not been explored. Further, many
previous assessments of impacts from LCCs focused on a single
variable, typically temperature or precipitation9. However, bulb
temperature alone is only a partial characterization of surface heat
content, and the analysis of a joint temperature−humidity
response offers a more complete measure of warming change39.
The combination of temperature (T) and surface air moisture (q)
into a single variable, called moist enthalpy or equivalent tem-
perature (TE), informs about near-surface atmospheric heating, a
relevant measure for the human and ecosystem capacity to adapt
to climate conditions7,11,20,39,40.

Here, we use the CCI-LC dataset in combination with a
regional climate model (the Weather Research and Forecasting
model, WRF)41 to quantify the effects that land cover differences
have had on European climate between 1992 and 2015. Two
simulations with the land cover in 1992 and 2015 (named LC1992
and LC2015, respectively) are performed and the resulting rela-
tive differences (LC2015–LC1992) in 2-m air temperature, surface
air humidity, and equivalent temperature investigated. Another
experiment (named NoCRP_AB) uses a modified land cover
dataset where conversion of cropland to other land cover classes
is intentionally omitted, but other land cover classes are allowed
to translate to cropland according to the historical transitions.
The difference between NoCRP_AB and LC2015 highlights the
effects of cropland abandonment on regional climate. Unlike
many previous studies that had to use one less realistic large-scale
simulation for each LCC to single out its effects on regional

climate, our analysis simultaneously considers the effects of the
mix of historical land cover changes that recently occurred in
Europe and then disentangles the individual contribution with a
new approach based on a ridge statistical regression. This
approach does not require the explicit consideration of the dif-
ferent components of the surface energy budget, and directly
shows the temperature changes from each land transition. While
acknowledging the limitations related to the use of a single
regional climate model, model outputs are generally able to
reproduce the spatial patterns of observational datasets and key
results are typically consistent with other modeling and empirical
estimates (see Methods).

Results
Land cover transitions. From 1992 to 2015, around 70Mha of
land transitions occurred in Europe (Fig. 1; see Supplementary
Fig. 1 for the maps of the main transitions). Approximately 25
Mha of agricultural land was left abandoned, which was only
partially compensated by cropland expansion (about 20Mha),
resulting in about 5Mha of net loss. Declines in agricultural land
mostly occurred in favor of forests (15 Mha) and urban settle-
ments (8 Mha). Institutional and socio-economic factors are
found to be the most important drivers of agriculture abandon-
ment in Europe, because it usually took place in areas without
major constraints for crop production27,42. For example, the
collapse of the former Soviet Union triggered extensive farmland
abandonment as a result of declines in agricultural investments,
exposure to global agricultural markets, and outmigration from
rural areas27. The type of natural succession after agricultural
abandonment depends on soil fertility, local climate, and nearby
vegetation43. In the first years after abandonment (up to 5 years),
a dense herbaceous cover usually develops on the land, followed
by the growth of new vegetation to woodland and forests42,44.
Other studies investigated the causes and effects of declines of
cropland areas in Europe in more detail25–27,42. As a consequence
of agriculture abandonment, forested areas in Europe increased
by about 23Mha, with about 7Mha of net gain. Drying of wet-
land and peatland in northern Europe also contributed to forest
area extension. Climate changes, such as higher evaporation from
warmer summers, decreased precipitation, and increased runoff
from melting snowpack, favor advances of the tree lines from the
margins to the center of the wetland45,46. Another major land
transition in Europe concerned urban sprawling, which mostly
took place on agricultural land in proximity to densely populated
areas as a result of population and economic growth47.

Annual mean changes in T, TE, and q. We found an annual
average temperature change of −0.12 ± 0.20 °C (mean ± standard
deviation), with −0.42 and +0.22 °C as the 5th and 95th per-
centile (Fig. 2a), respectively, from recent LCCs in Europe. An
average cooling is consistently spread in the southern, central and
western part of Europe, whereas warming occurs in eastern
Europe. Relatively little changes in temperature are observed in
northern Europe (Scandinavia), where relatively limited land
transitions took place. The continental average cooling is reflected
by an average increase in latent heat (+0.25 ± 1.83Wm−2) and
reduction in sensible heat fluxes (−0.21 ± 2.14Wm−2), although
the spatial variability is high owing to the variety of land tran-
sitions involved (Supplementary Fig. 2).

Agriculture abandonment plays a central role for the climate
effects of recent LCCs in Europe. When the transitions from
cropland to other land classes are excluded, we found an
annual average temperature change of +0.10 ± 0.19 °C, with
−0.23 and +0.33 °C as the 5th and 95th percentile, respectively
(Fig. 2b). The cooling benefits are largely lost when agriculture
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abandonment is masked (changes in latent heat fluxes decline to
−0.03 ± 1.83Wm−2), and the net effects from the other land
transitions are either warming or balancing out. An opposite
response is observed in the eastern part of Europe, where exclusion
of cropland abandonment shows a widespread temperature
reduction (Fig. 2b). The same area was generally associated with
warming in Fig. 2a. Contrary to other locations in Europe, in this
subdomain, natural revegetation of agricultural land left aban-
doned is associated to higher local temperature. At an average
European level, the analysis of the climate change signals through a
probability function based on kernel density estimation shows the
average cooling contributions of abandoned cropland (Fig. 2c). In
the “LC2015–LC1992” case, the probability distribution of mean
temperature changes peaks at around −0.1 °C (about 4.5% of the
grids), whereas when conversion of cropland to other land classes
is excluded (“NoCRP_AB–LC2015”) the distribution is translated
towards mean higher temperatures, and peaks at around +0.1 °C.

Changes in equivalent temperature TE are more pronounced
than those in bulb temperature (Fig. 3). At a continental level, the
average difference in TE from the recent LCCs is −0.10 ± 0.37 °C,
with −0.58/+0.57 °C as the 5th and 95th percentile, respectively.
Both the mean value and spatial pattern are similar to that of T,
but variability is larger. A contrasting response is still found
between the western and eastern part of the domain, but for TE
local mean annual differences can be up to +1 °C in eastern
Europe and −0.8 °C in central Europe (Fig. 3a). Such an increase
in equivalent temperature matches with the trends in surface
humidity (Fig. 3b).

When agriculture abandonment is excluded (Fig. 3c), the
average continental change in equivalent temperature is +0.05 ±
0.30 °C (−0.51 and +0.48 °C as the 5th and 95th percentile,
respectively). In this case, the reduction in surface air humidity
drives the stronger cooling response of TE than T in the eastern
part of the domain. The analysis of the climate change signals
through the probability density function clearly shows that TE has
a larger distribution than T. For example, about 1% of the grids
experience a cooling of −0.7 °C for TE (Fig. 3e), whereas it is
−0.5 °C for T (Fig. 2c). Further, while excluding agriculture
abandonment tends to translate the climate change signal of T

towards a warmer climate, for TE it mainly affects the negative
values of the distribution only, increasing the density of the grid
cells that are slightly warmer or show no changes. This is driven
by the decline in specific humidity from exclusion of agriculture
abandonment (Fig. 3f).

In general, the results show a different climate system response
between the western and eastern parts of Europe. This is linked to
the importance that local conditions and background climate have
in shaping how key components of the surface energy budget
respond to LCCs8,14,16. In eastern Europe, the warming contribu-
tion from reduction in surface albedo after revegetation of
abandoned cropland is stronger than the cooling benefits from
larger latent heat fluxes associated with tree cover (Supplementary
Fig. 2). This area has lower values of soil moisture than other places
in Europe (Supplementary Fig. 3), thereby mitigating the potential
for trees to dissipate evaporative cooling from the increased energy
budget due to the decrease in surface albedo. The so-called soil
moisture-temperature feedback refers to the additional warming
occurring with shortages of evaporative cooling in regions affected
by relatively dry conditions48–50. This is mainly observed in mid-
latitude regions transitioning between wet and dry climates, where
lower soil moisture availability directly impacts turbulent flux
partitioning and surface temperature49,51,52. The eastern part of
Europe is a transitional region between oceanic and continental
climate, where the change from cropland to forests under soil
moisture limitations leads to increases in surface temperature. This
mechanism is confirmed by both modeling and observational
analysis49,53,54. Other factors contribute to the observed spatial
variability. Radiative properties of ecosystems are the major factors
controlling surface temperature when incoming energy is the
major limitation to vegetation growth or seasonal snowfalls are
significant (such as in eastern Europe and boreal areas)8. Similarly,
the tendency of forests to decrease surface temperature compared
to open land is higher in relative proximity to the oceans, and
gradually declines at increasing distances14,19,55,56.

Seasonality. We found a seasonality in the intensity and spatial
distribution of the regional temperature changes (Fig. 4). The
averaged seasonal statistics at a continental level are smoothed by
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the contrasting effects of the mixed LCCs (Supplementary Fig. 4),
but spatial variations can be appreciated. The seasonality is
mainly the result of the interlinked combination of the annual
variability in solar radiation, local conditions (e.g., snow cover,
soil moisture), surface albedo and evaporation efficiencies among
the land cover classes18,19. In winter, LCCs caused lower differ-
ences in temperature, except for the central- and north-eastern
part of the domain where changes are more evident, but a clear
spatial pattern does not emerge (Fig. 4a). Larger differences are
found in spring (Fig. 4b) and summer (Fig. 4c), where a cooling
of more than −1.0 °C is observed in some areas of central Europe.
Colder temperatures are generally found in western and southern
Europe as well. At the same time, spring and summer tempera-
tures increased in eastern Europe. The mean annual warming
previously observed in the eastern part of the domain is thus
primarily driven by warmer spring and summer temperatures.
This area is affected by seasonal snow cover in winter and early
spring, and LCCs generally caused reductions in surface albedo
from snow-masking effects in the central-east (from vegetation of
abandoned cropland) and in the north-east (from vegetation of
wetland). This has increased the amount of energy at the surface,
especially during spring when solar radiation is larger. In sum-
mer, the seasonal warming in the central-east is weaker than in
spring, because changes in surface albedo are smaller and eva-
potranspiration efficiencies of land cover classes play a major role.
Higher summer temperatures in the north-eastern part are
mainly due to wetland drying, where the energy dissipated as
sensible heat instead of latent heat increases (wetland typically
have the largest latent heat fluxes57).

A seasonality is also observed in the different extension of the
spatial autocorrelation of the climate response represented by the
spatial correlogram (the autocorrelation index plotted against
distance). The correlation among pairs of spatial observations is
positive up to about 150 km, but there is a strong seasonality in
the decrease of the autocorrelation index at increasing distance
between the data (Supplementary Fig. 5). This decrease occurs at
higher rates in winter than summer. In winter, the autocorrela-
tion vanishes at less than about 50 km, while in summer it
remains positive up to about 200 km. This aligns with the more
consistent pattern of the European climate response in summer
than winter (Fig. 4).

The monthly mean climatological differences in T, TE and q at
the 2‐m level induced by the recent LCCs in Europe are shown in
Fig. 5. In terms of monthly mean values of the individual variables,
T and TE generally exhibit similar seasonal patterns, but TE values
are larger (see Supplementary Fig. 6). During winter and early
spring, humidity is low and differences between the two variables
are small. As humidity increases from late spring to early fall,
differences become larger. The comparison of the monthly mean
differences between LC1992 and LC2015 across the whole domain
shows that T generally decreases up to a maximum in late spring
and summer, but trends in specific humidity and TE are less clear
due to the large spatial variability that tends to balance out
locations with warming or cooling (Fig. 5a). For example, the
average difference in July of TE is +0.002 °C, but with a standard
deviation of about 1 °C. The maximum difference between the
changes in T and TE from the recent LCCs occurs in summer.

The spatial distribution of the changes in equivalent tempera-
ture shows a stronger seasonal response than T (see Fig. 5b, d for
winter and summer, and Supplementary Fig. 7 for spring and
autumn). In particular, higher summer warming (>1 °C) is found
in the eastern part of the domain (Fig. 5d), where increases in
surface humidity are also at a maximum (Fig. 5e). This result can
be explained by increased vegetation greenness and leaf area
index (especially during the growing season), which is associated
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with higher physical evaporation and transpiration rates. The
major transitions in this region are cropland to forests, and in the
northern part drying of wetland. TE correlates with vegetation
activity stronger than T, especially during the growing season,
and both moisture availability and equivalent temperature are
usually larger in forested areas40.

Decomposition to individual land transitions. A ridge-
regression approach was used to disentangle mixed temperature
signals and identify individual contributions for each LCC

(Fig. 6). This procedure allows direct quantification of the tem-
perature effects correlated with each land transition from simu-
lations where multiple LCCs are modeled simultaneously, i.e.
without the need to (i) individually run one (usually unrealistic)
area-extended simulation per LCC, or (ii) indirectly infer tem-
perature changes by post-processing and re-assembling the
components of the surface energy budget. In this approach,
the abundance of each specific land transition determines the
robustness of the estimate, and values that are not statistically
robust are filtered out (see Methods). At an average European
level, transitions from forest to any other land cover class show
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mean warming effects, including conversion of forests to crop-
land (+0.15 ± 0.03 °C), grassland (+0.23 ± 0.06 °C), and urban
(+0.27 ± 0.06 °C). Urban sprawling always shows warming con-
tributions, irrespective of the type of previous land cover.
Although a direct comparison is difficult owing to the uncorre-
lated behavior of T and q, changes in TE are usually larger than
those in T, especially for transitions involving evergreen needle
leaf forests that have low evapotranspiration rates. T and TE have
different signs mainly for transitions including open shrubland or
grassland. These land cover classes have the smallest average
difference between T and TE, which on the other hand are the
largest for cropland, wetland and forest40. The transitions
between the former and the latter groups of land cover classes
thus yield the major marginal differences between T and TE. For
example, transitions from wetland to shrubland typically show
reductions of TE, despite increases of T. This occurs because
wetland usually converts more solar energy into latent heat than
sensible heat (q is thus relatively high)58. The reduction in q after
the wetland-to-shrubland transition can overwhelm the corre-
sponding increase in T, and the transition results in negative TE
values. This LCC is usually associated with an increase in surface
albedo values as well, which reduces the amount of solar energy
to be dissipated at the surface through evapotranspiration.

Potential gradients in the regional climate effects from LCCs
are explored across the two major subdomains observed above,
i.e. central and western Europe (subdomain A) and eastern
Europe (subdomain B). The main differences mostly concerned
the contrasting response to transitions involving forest cover. In
subdomain A, conversion of evergreen or deciduous forest to

cropland results in an average warming of +0.21 ± 0.03 °C (TE=
+0.20 ± 0.05 °C) and +0.12 ± 0.03 °C (TE= +0.28 ± 0.09 °C),
respectively. In subdomain B, these transitions are associated
with an average cooling of −0.14 ± 0.05 °C (TE=−0.15 ± 0.07 °C)
and −0.10 ± 0.05 °C (TE=−0.02 ± 0.09 °C). This is mostly due to
the local conditions discussed above, such as the interplay
between surface albedo changes, evapotranspiration efficiencies
and soil moisture.

We evaluated our estimates of temperature changes from
specific LCCs against recently available land surface temperature
observations. A direct comparison is performed with a recent
empirical dataset derived from potential vegetation changes
where a space-for-time approximation is applied to multiscale
remote sensing products for the period 2008–20128. This dataset
summarizes estimates of the main components of the energy
budget (over areas affected by land cover changes only), including
day and night changes in land surface temperature, for a variety
of LCCs at 1° resolution8,59. We found that our estimates are
broadly consistent with the observational dataset (Supplementary
Table 1). Considering the land cover transitions available in both
studies, 52% of them are within the respective uncertainty ranges,
and most of the remaining are outside their uncertainty intervals
but still have the same sign. Results are generally more consistent
for transitions between forests and cropland, whereas variability
is larger when grassland is involved. In line with our study, the
observational dataset also finds an average warmer surface in
presence of trees than open land in subdomain B, which is the
opposite of the response found in subdomain A. The contrasting
response between eastern and western Europe is reported by
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other studies based on pair-site analysis, which used remotely
sensed daily average surface temperature differences between
adjacent forestland and open land19,56.

More generally, our results can also be compared to previous
studies that modeled temperature changes for a specific LCC (with
forestland-open land as the most common transitions)9,19,56.
Compared to the numerical values summarized in a recent
review9, we find that our figures are typically at the lower end of
the reported ranges, and are closer to observations than other
modeling studies. This is likely due to the smaller spatial extension
of the land transitions in our analysis compared to those simulated

in other modeling studies, which are usually based on extensive
and homogeneous changes in land cover. Our results are the
outcome of historical small and mixed LCCs and represent the
direct regional effects. The response is expected to be stronger for
large-scale transitions that can trigger more substantial direct and
indirect effects9,14,60. A similar validation of our estimates for
changes in TE was not possible owing to a lack of corresponding
observational datasets. Future modeling and empirical studies can
try to increase our understanding of the underlining drivers that
regulate changes in TE with land cover types and increase the
robustness of specific estimates.

0.10

0.00

–0.10

–0.20

JJA

DJF

–0.5 0.5–0.25 0 0.25

0° 15 °E 30 °E

Specific humidity (g kg–1)

Specific humidity (g kg–1)

Equivalent temperature (°C)

Temperature (°C)

DecJan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

a

c

50 °N

40 °N

30 °N

50 °N

JJA

40 °N

30 °N

DJF

0°

–1.0 –0.5 0 0.5 1.0

15 °E 30 °E

Equivalent temperature (°C)
b

d e

Fig. 5 Seasonality of the changes in equivalent temperature and specific air humidity from the recent land cover changes in Europe. Comparison of the
mean monthly differences (LC2015–LC1992) in air temperature, equivalent temperature, and specific air humidity (a); average equivalent temperature
changes (°C) in winter (b) and summer (d); average specific humidity changes (g kg−1) in winter (c) and summer (e). December, January and February
(DJF); June, July and August (JJA).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14890-0 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1066 | https://doi.org/10.1038/s41467-020-14890-0 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Discussion
This study uses a state-of-the-art regional climate model to show
how the mix of recent historical land cover changes in Europe can
influence the regional climate. The distribution and variability of
land cover types influence temperature and moisture availability
in the lower atmosphere. Revegetation after agriculture aban-
donment is the main process found to be associated with bio-
physical cooling at a continental scale, but it has an opposite
effect in the eastern part of the domain. This is a climatic tran-
sition zone where tree cover expansion shows a biophysical
warming mostly due to the soil moisture−temperature feedback
and other local factors like reductions in surface albedo. Whereas

most previous studies had to rely on simulations of less realistic
and large-scale changes of one land cover class to single out the
corresponding climate effects, our results are produced from the
simultaneous modeling of a variety of historical small-scale and
mixed changes in land cover between 1992 and 2015. Specific
climate impacts are directly correlated to individual land transi-
tions with the ridge-regression approach that is used for the
unmixing of the temperature effects. The approach does not
require thresholds or constraints, because it decomposes the
effects of the various LCCs by using the actual land cover data
within each grid cell as predictors, and can be adapted to different
model outcomes, variables and simulation domains.
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Changes in vegetation cover are modeled using the recent ESA
CCI land cover dataset that is specifically designed for climate
modeling studies. CCI-LC maps are found to improve char-
acterization of the recent global and regional land cover changes
relative to other datasets31. In general, our regional climate
simulations with either LC1992 or LC2015 reduce both model
bias and the root-mean-square error when compared to simula-
tions with the default land cover in WRF (see Methods and
Supplementary Fig. 8). Due to the settings of our experiments
(i.e., simultaneous modeling of multiple LCCs per grid cell), the
changes in the components of the surface energy budget for each
individual LCC cannot be directly compared with those available
from observation-driven studies. However, the comparison was
possible for the final temperature responses associated with each
LCC, and results were broadly consistent with observational
datasets. It was also possible to validate key variables such as soil
moisture and surface albedo, which were in line with observa-
tional data for both average numerical values and spatial patterns
(Supplementary Fig. 3 and Table 2). Direct comparison of results
between modeling and empirical studies should always consider
the potential differences in methodological approaches among the
available datasets, such as the land cover classification system,
the spatial resolution, and the temporal scale of analysis. For
example, remotely sensed products measure land surface tem-
perature, while modeling studies focus on 2-m air temperature
(see Methods). Air temperature is usually dependent on land
surface temperature61, but satellite retrievals of land surface
temperature only occur under clear-sky conditions, and correla-
tion between the two temperature indicators varies in time and
across different land covers62. Further, the use of a single model
can have inherent limitations, and future model inter-comparison
efforts are required to better assess model uncertainties and
constraint dependencies of results on individual model
configurations15,63. Future research can improve the representa-
tion of plant physiology and vegetation dynamics, such as forest
development stages, within both remotely sensed datasets of land
cover classes and climate models29,59. There are differences in
vegetation structure within the same land cover class, and the
possibility to explicitly map and model gradients in forest
structures can lead to more accurate modeling of surface fluxes in
forests. For example, inferring the fractional cover of the major
plant functional types and vegetation properties within a land
cover class directly from satellite radiances, and coupling their
representation to regional climate models, is an option for more
confident modeling of vegetation cover.

Our estimates of temperature effects from LCCs were pro-
duced under present climate conditions, but future impacts of
land cover changes on regional climate can vary under a different
future background climate16. Vegetation phenology can respond
to climate feedbacks such as higher CO2 concentration, increases
in average temperature and frequency of extreme events, and
changes in precipitation patterns64,65. For example, the southern
part of subdomain B and other places in Southern Europe will
likely experience a drier climate in the next decades in the
absence of ramping global climate change mitigation efforts66.
This could further reduce soil moisture, and through the soil
moisture–temperature feedback change the potential response of
a certain area to tree cover expansion. Overall, in addition to the
inherent uncertainty of future regional projections of climate
change67, the vegetation response to climate feedbacks is highly
complex and difficult to quantify, and parallel developments of
modeling and empirical approaches are needed to refine land
management strategies by anticipating variability in future
regional climate.

The regional or local scale is the scale at which most decisions
about land management are taken or implemented, and the

availability of site-specific metrics on land-climate interactions is
central to deploy effective land-based climate change mitigation
and adaptation strategies9,68,69. This study quantified the regional
temperature effects of recent land cover changes in Europe with a
regional climate model, and, by directly connecting local climate
impacts to individual LCCs, it expands the scientific basis towards
a better understanding of the potential land-climate interactions
for more climate-oriented land management strategies. Land-
climate interactions are strictly coupled to societal developments,
especially in terms of urbanization and cropland extension/con-
traction. Reduction of urban sprawling will bring temperature
benefits across all Europe. On the other hand, the climate benefits
of revegetation of abandoned cropland is conditional to locations,
because agriculture abandonment cools local climate in many
places of western and continental Europe, but it has an opposite
effect in eastern Europe. The local conditions for land processes
related to regional climate, vegetation cover, and water availability
needs to be considered when assessing LCCs. This calls for
region-specific integrated approaches of land management stra-
tegies to embrace both scientific and socio-economic contexts.

Current international climate policy frameworks are solely
based on greenhouse gases69, and do not include biophysical
effects on regional climate. Interactions between land cover and
the regional and local climate system should be more prominently
considered in land management planning, because they offer the
potential to codeliver regional-scale climate adaptation and
mitigation objectives. The availability and progressive con-
solidation of simplified metrics for land-climate responses, and
further development of remote sensing products coupled to
regional climate models to refine estimates, will be instrumental
to cover this gap. LCCs also influence ecosystem services other
than climate regulation, such as their productivity, water holding
capacity, and biodiversity70. Sustainable land management poli-
cies from the local to the regional level should prioritize the
development of consistent approaches to embed these multiple
dimensions of land use.

Methods
Land cover dataset. The European Space Agency (ESA) Climate Change Initiative
(CCI) land cover (LC) product is used to map changes in vegetation cover. The
ESA CCI-LC maps are provided at a spatial resolution of 300 m for a period of 24
years, from 1992 to 201532. These maps characterize the global surface using 37
land cover classes based on the United Nations Land Cover Classification System
(UNLCCS)71, and were designed to overcome previous limitations and reduce
uncertainty in the representation of land cover and LCCs in climate models22,31,32.
The dataset was produced after combination of the global daily surface reflectance
of five different satellite observation systems, with the ambition to keep high levels
of consistency over time. The accuracy of the CCI-LC products was assessed at
a global level using an independent validation dataset, and estimated to be of
75.4%32. The highest accuracy was found for cropland classes, forests, urban areas,
bare areas, water bodies and perennial snow and ice. Mosaic classes, lichens and
mosses showed the lowest accuracy.

We used three types of land cover data to explore the effects of recent land
cover changes in European climate and single out the role of cropland
abandonment: LC1992, LC2015, and NoCRP_AB. LC1992 and LC2015 represent
the land cover in Europe in 1992 and 2015, respectively. NoCRP_AB is a land cover
dataset where the IGBP classes cropland and cropland/natural vegetation mosaic in
1992 are not allowed to convert to other land classes. However, other land classes
are allowed to convert to cropland and cropland mosaic according to the historical
transitions. This means that, between 1992 and 2015, cropland and cropland/
natural vegetation mosaic are only allowed to expand, and not to contract.

In order to facilitate the interpretation of the land transitions that occurred in
Europe (Fig. 1), the 37 UNLCCS classes were aggregated into the generic IPCC
land classes, according to the specific cross-walking table provided by the ESA CCI-
LC products (reproduced in Supplementary Table 3)32.

Regional climate simulations. Regional climate simulations are performed with
the Weather Research and Forecasting (WRF) model version 3.9.141. WRF is a
next-generation mesoscale model that is suitable for operational research across
scales. WRF produces simulations based on actual atmospheric conditions (i.e.,
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from observations and analyses), and it has been validated to capture the spatio-
temporal patterns of climate against observations in Europe72–74.

The specific configuration of WRF used in this study follows the settings of the
international Coordinated Regional Climate Downscaling Experiment (CORDEX)
initiative (EURO-CORDEX)74. The initial and lateral boundary conditions are
from the European Centre for Medium-Range Weather Forecasts Interim
reanalysis (ERA-Interim)75. The physical parameterization schemes include the
Thompson microphysics scheme76, the Rapid Radiative Transfer Model for GCMs
longwave and shortwave radiation77, the Mellor-Yamada Nakanishi and Niino
boundary layer scheme78, the Kain-Fritsch convection parameterization79, and the
Community Land Model version 4.0 (CLM4) with IGBP-MODIS land use
classification80,81.

CLM4 is a state-of-the-science land surface process model that represents
several aspects of the land surface, including surface heterogeneity, and consists of
components related to land biophysics, hydrologic cycle, biogeochemistry, human
dimensions, and ecosystem dynamics. CLM4 in WRF has a detailed description of
land surface, in which the vertical structure includes a single-layer vegetation
canopy, a five-layer snowpack, and a ten-layer soil column41. In each grid cell, the
land surface is categorized into five primary subgrid land-units (glacier, lake,
wetland, urban, and vegetated) that share the same atmospheric forcing and flux
feedback to the atmosphere within a grid cell. The surface variables are calculated
by averaging the subgrid quantities weighted by their fractional areas (tile
approach). The urban land-unit uses the “urban canyon” concept82 to represent the
canyon geometry, described by building height and street width. The vegetated
subgrid is comprised of up to 15 plant functional types (PFTs) that differ in
structure and physiology as leaf and stem optical properties, root distribution
parameters, aerodynamic parameters, and photosynthetic parameters41. These
parameters are monthly prescribed and daily updated by linearly interpolating
monthly values83. CLM4 includes new treatments of soil column-groundwater
interactions, soil evaporation, aerodynamic parameters for sparse/dense canopies,
vertical burial of vegetation by snow, snow cover fraction and aging, black carbon
and dust deposition, and vertical distribution of solar energy. The CLM two-stream
radiation model calculates the model equivalent surface albedo using climatological
monthly soil moisture along with the vegetation parameters of PFT fraction, leaf
and steam area index. Several PFTs can coexist in a given grid cell, and the energy
balance and surface fluxes are calculated at the PFT level before being aggregated at
the grid-scale level based on the proportion of PFTs in the grid cell. As WRF reads
as input IGBP-MODIS/USGS LC classifications, we use a cross-walking table8

(Supplementary Table 4) to translate the 37 classes in CCI LC to the 21 classes of
the IGBP-MODIS classification system, which CLM4 then translates to PFTs. The
distribution to PFTs is a well-known potential source of uncertainty, especially for
mixed classes and northern boreal forests (an area where little LCCs occurred in
our study)29. The use of cross-walking tables is a common viable approach to
ensure transparency and reproducibility of model results until the mapping of
plant functional traits at global scale will become possible and made available22,29.

Due to limitations in terms of computational time, a 24-year (from 1 January
1992 to 31 December 2015) averaged dataset is produced from the ERA-Interim
data and used as initial and lateral boundary conditions. This new dataset contains
6-hourly data from 1 January at 0000 UTC and run through 31 December at 1800
UTC for a period of 1 year. The land cover datasets are aggregated at a horizontal
resolution of 0.11° (ca. 12 km, the highest resolution available from EURO-
CORDEX) retaining the proportions of the different land classes per grid cell.
Three independent WRF simulations are then performed with the three land cover
datasets LC1992, LC2015, and NoCRP_AB. Since lateral boundary conditions do
not vary between experiments, the resulting differences in model outcomes can be
attributed to the different land cover datasets. The simulations are performed with
40 atmospheric levels and an integration time step of 72 s. The first 15 days are
treated as model spin-up time and therefore excluded from the analysis. The
analysis also excludes 30 simulation grids (ca. 360 km) from the border of the
EURO-CORDEX domain to clear the noise in the lateral boundary conditions.

The simultaneous contribution of 2-m air temperature (T) and absolute specific
humidity (q) is computed in terms of equivalent temperature (TE), which indicates
the temperature a sample of air would have if all its latent heat was isobarically
converted to sensible heat. It can be estimated through the following equation39,40:
TE ¼ T þ Lq=Cp , where L is the latent heat of vaporization and Cp the specific heat
of dry air.

Spatial correlogram. Spatial correlograms are used to study the spatial auto-
correlation of the changes in temperature. This is an approach used to show how
correlated are pairs of spatially distributed observations at increasing distance
between them84,85. The spatial autocorrelation coefficient is computed for each
distance class, and it is usually measured by the Moran’s I statistics as follows86–88:

I dð Þ ¼
1
W

Pn
i

Pn
j wij yi � �yð Þ yj � �y

� �

1
n

Pn
i¼1 yi � �yð Þ for i≠ j; ð1Þ

where yi and yj are the values of the changes in temperature in grids i and j. A
matrix of geographic distances needs to be calculated for all pairs of locations. We
then convert these distances to classes d. The weight factor wij is 1 when the pairs of
sites belong to distance class d, and 0 otherwise. W is the number of pairs in the

computation for a given distance class, and it is equal to the sum of wij for that
class. Moran’s I takes values in the interval [−1, 1] and can be interpreted as the
Pearson’s correlation coefficient. Positive values of I indicate positive auto-
correlation and negative values of I indicate negative autocorrelation85.

Temperature changes of individual land transitions. A ridge-regression
approach is introduced to retrieve the effects of the individual land cover transi-
tions on the temperature and equivalent temperature changes. Although the
methodology and applications differ, the concept is similar to the one recently used
to characterize the changes in surface properties and energy fluxes from specific
vegetation cover changes8,59.

To identify the signal of the temperature changes due to the individual land
cover transitions, we use a set of nonoverlapping local windows that covers the
domain to unravel the effect on temperature from each LCC. Only the local effects
of land cover transitions inside the window are considered, and the indirect
perturbations due to regional changes outside the window are ignored. Local effects
dominate the overall biophysical impacts for space-limited land cover transitions89,
such as those recently occurred in Europe.

The size of the local window is 5-by-5 grids, approximately 60-by-60 km, in
which the local climate is assumed to be uniform. Climatic gradients that result
from topographical differences are masked according to refs. 8,59. To unmix the
temperature signals resulting from the mix of the possible land cover transitions
among the various classes, a linear regression approach is applied separately to the
N windows,

yi ¼ Xiβi þ εi; i ¼ 1; 2; :::;N; ð2Þ
where for window i, Xi is the explanatory variable, i.e. a matrix containing the
fractions of the transitions of all the land cover classes for the 25 grids of each
window (with the first column made of ones to capture the intercept), yi is a vector
that contains the 25 values of changes in temperature, ɛi is the error term referring
to the model residuals, and βi is the vector of the regression coefficients. The
residuals, ɛi, i= 1, 2, …, N, are assumed to be independently and identically
distributed with mean 0 and variance σ2ε;i. Equation (2) can be explicitly written for
window i as a system of equations:

y1 ¼ β0 þ β1x11 þ β2x12 þ � � � þ βmx1m þ ε1
y2 ¼ β0 þ β1x21 þ β2x22 þ � � � þ βmx2m þ ε2

..

.

yn ¼ β0 þ β1xn1 þ β2x2n þ � � � þ βmxnm þ εn;

ð3Þ

where the dependence on i is dropped to simplify the notation. xnm is the fraction
of change in land class m in grid n, n is the number of grids of the local window
(n= 25) and m is the number of land cover classes (m= 14). The aim is to find the
difference in regression coefficients between each pair of land classes to inform
about the effect of the land transition on temperature by solving the system of
Eq. (3). Once the system is solved, we can use the coefficients βi for window i to
understand the local temperature effects of a given transition of land cover classes
from j to k by setting xj=−1 and xk= 1, and all the other x to 0.

However, not all coefficients in βi can be estimated simultaneously since the
transitions xjk; k ¼ 1; 2; :::; 14, in each grid in window i sums to zero. In addition,
in some cases, there are zero-columns in the matrix of the explanatory variable
when transitions between specific land classes are missing, and the corresponding
regression coefficient cannot be estimated. This is handled by solving Eq. (3) for
each window i using ridge regression to stabilize the estimation. This is a robust
method frequently applied in statistical regression90–92. The solution for window i
is given by

β̂i ¼ XT
i Xi þ λI

� ��1
XT
i yi; ð4Þ

where λ stabilizes the inference when there is little or no information about a
coefficient. We choose λ= 10−12 so that a large variance is assigned to a coefficient
for which the data do not inform. We investigate the expected change in
temperature associated with each type of land cover transition as follows:

Δyi;j!k ¼ β̂i;k � β̂i;j; j; k ¼ 1; 2; :::;m: ð5Þ
For a window i where the data inform about the transition from land cover j to

land cover k, Δyi;j!k , takes a meaningful value, whereas when the data do not
inform about the transition, the ridge regression leads to a zero value.

To distinguish between windows where the data inform about the transition of
interest and windows where the data have little or no information about the
transitions, we calculate the associated uncertainty of Δyi;j!k . We first calculate the
estimate of residual variance

σ̂2ε;i ¼ yi � Xiβ̂i

� �T
yi � Xiβ̂i

� �
=df i; ð6Þ

where the degrees of freedom (dfi) for window i is n minus the number of
independent linear combinations of βi that the data inform about in that window.
“T” is the transpose of a matrix. Using the estimated residual variance, we can
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calculate the estimated covariances between coefficients as

Σ̂i ¼ XT
i Xi þ λI

� ��1
σ̂2ε;i: ð7Þ

The variances of the coefficients in β̂i are presented in the diagonal of the
covariance matrix Σ̂i, and the cross-covariance between the coefficients are stored
in the off-diagonal parts of the covariance matrix Σ̂i. This provides the uncertainty
associated with a temperature change due to a given land cover transition, Δyi;j!k ,
by calculating the variance:

σ̂2i;j!k ¼ Σ̂i;jj þ Σ̂i;kk � 2Σ̂i;jk; ð8Þ
where Σ̂i;jk denotes row j and column k of Σ̂i, i.e. Σ̂i;jj and Σ̂i;kk stand for the

estimated variances of the estimated regression coefficients β̂i;j and β̂i;k , and Σ̂i;jk is

the cross-covariance between β̂i;j and β̂i;k . The covariance term is needed because
the estimates of the land cover effects are not independent.

As described above, the system of Eq. (3) is solved in each of the local windows
that spans all the domain. Within the window, water bodies are masked out and
only the land cover transitions are considered. In addition, we also filter out
windows with no land cover transitions. The regressions are then applied to all the
IGBP land cover classes. This method leads to antisymmetry or skew-symmetry in
the result, i.e., Δyj→k=−Δyk→j.

We then pool the information across the windows contained in a region (either
Europe or two subdomains) to achieve informative estimates with useful
uncertainty, because only a few of the 14 × 13 possible land cover transitions
occurred in each window. The mean values for each land cover transition for all the
windows which are considered in the regressions are calculated using the weight
mean since it has the lowest variance

Δyj!k ¼
XN
i¼1

Δyi;j!k

σ̂2i;j!k

.XN
i¼1

1
σ̂2i;j!k

ð9Þ

and the variance is

σ̂2j!k ¼ 1
.XN

i¼1

1
σ̂2i;j!k

; ð10Þ

where N stands for the number of windows for regression. The windows where the
estimated variance σ̂2i is unreliable are omitted, such as the variance is bigger
than 100.

The mean and the median of the empirical residuals, ε̂i ¼ yi � Xiβ̂i; i ¼
1; 2; :::;N; are almost zero, and the histogram of the empirical residuals is
unimodal, symmetric, and similar to a normal distribution. This suggests that
a Gaussian distribution can be assumed for the residuals so that confidence
intervals for the land cover transitions can be calculated using Gaussian
distributions.

This statistical analysis is repeated for the entire European domain and for the
two major subdomains to investigate the heterogeneities of the temperature and
equivalent temperature response to land cover transitions in the different climate
regimes found in the analysis. Subdomain A mainly refers to central, southern and
western Europe, and subdomain B to eastern Europe. The number of valid
windows retrieved is 2779 for the analysis of the entire European domain, and 856
and 1032 for the subdomains A and B, respectively. Only the valid estimates for
each land cover transition that occurred in at least 15% of the valid windows are
considered as representative averages and shown in Fig. 6.

Validation of model results. We validated model outputs against relevant
observation datasets. WRF model simulations based on the EURO-CORDEX
configuration with the new land cover datasets LC1992 and LC2015 are compared
with observation records for European climate (E-OBS)93. E-OBS data are averaged
over the period 1992–2015 to align with the dataset used for the boundary con-
ditions in model simulations. An additional simulation with the default IGBP land
cover in WRF is added to benchmark the relative performance of the new ESA CCI
land cover datasets with indices like the pattern correlation coefficient (PCC), the
regional bias, and the root-mean-square error (RMSE). The three simulations show
similar patterns for annual mean temperature relative to E-OBS, and the simula-
tions with the CCI-based land cover datasets are found to reduce both model bias
and RMSE (Supplementary Fig. 8).

Our simulations modeled multiple, and sometime contrasting, land cover
changes per grid cell, and we could not directly compare the changes caused in the
single component of the surface energy budget from specific LCCs with other
available datasets. However, it was possible to validate estimates of surface albedo
and soil moisture from the individual simulations. Estimates of surface albedo for
LC1992 and LC2015 were resampled and compared against the satellite-derived
CLARA_A2 dataset, which covers the 34-year period from 1982 until 2015 and
provides monthly average values on a 0.25° × 0.25° grid94. Monthly mean values
(with standard deviation and pattern correlation) of 1992–2015 averaged surface
albedo are compared in Supplementary Table 2. Results generally show high
correlation coefficients and a consistent seasonal cycle, with values falling within
the respective uncertainty ranges. The ESA CCI SM database95 provides
harmonized estimates of 10-cm soil moisture from a large set of satellite sensors

and the 1992–2015 average was used to compare soil moisture outputs from
LC1992 and LC2015 (Supplementary Fig. 3). We found high pattern correlation
coefficients (from 0.82 in summer to 0.96 in winter) and limited bias.

Temperature changes attributed to specific land transitions from our ridge-
regression approach were compared to an alternative dataset based on satellite
remote sensing observations8,59. This dataset is derived from potential vegetation
changes where a space-for-time approximation is applied to multiscale remote
sensing products and was developed to benchmark climate model outputs related
to biophysical land processes. It includes changes in the surface energy balance and
land surface temperature (day and night) for up to 10 IGBP land cover transitions
(over affected land areas only) at a resolution of 1° for the period 2008–2012. We
downloaded the publicly available version of this dataset59 and postprocessed it to
compute daily monthly mean surface temperature changes by a simple average
between day and night temperature. The standard errors were derived from the
corresponding standard deviations provided by the dataset. Because some of these
estimates are likely unrealistic values (for example, >10 °C), we treat them as
outliers and filter them out. We then compared the temperature effects of the
individual land transitions with those in Fig. 6, for the EURO-CORDEX domain
and for the subdomains A and B (Supplementary Table 1). We find that results are
generally consistent among the two databases, but the comparison should consider
some important caveats. First, care is needed when interpreting temperature data
acquired using different protocols. The observational dataset reports about land
surface temperature, i.e. the temperature at the top of the land surface, including
bare land, water, snow or ice cover, cropland or forest canopy, while our study
focuses on air (2 m) temperature. Although air temperature is recognized to be
generally dependent on land surface temperature61, there are inherent differences
because satellite retrievals only occur under clear-sky conditions, and coupling
strength between the two temperature indicators varies in time and across different
land covers (e.g., coupling is stronger in forests than in open land)62. In addition,
the observation dataset only refers to the LCCs between 2008 and 2012, a temporal
dimension that differs from our study, and the reported temperature values for
each specific LCC refer to the area affected by the land use change only, with the
variables that are upscaled to one degree resolution. On the other hand, our study
considers temperature values for a specific grid cell where the LCC is only a
fraction of the area of the cell. Relatively smaller values are thus expected from
our study.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Datasets of temperature changes and source data of their statistical decomposition are
available as Supplementary Data file. Additional data are available from the
corresponding author upon reasonable request.

Code availability
The code (in R) of the ridge-regression analysis is available as Supplementary Data file.
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