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Quantum engine efficiency bound beyond the
second law of thermodynamics
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According to the second law, the efficiency of cyclic heat engines is limited by the Carnot

bound that is attained by engines that operate between two thermal baths under the

reversibility condition whereby the total entropy does not increase. Quantum engines

operating between a thermal and a squeezed-thermal bath have been shown to surpass this

bound. Yet, their maximum efficiency cannot be determined by the reversibility condition,

which may yield an unachievable efficiency bound above unity. Here we identify the fraction

of the exchanged energy between a quantum system and a bath that necessarily causes an

entropy change and derive an inequality for this change. This inequality reveals an efficiency

bound for quantum engines energised by a non-thermal bath. This bound does not imply

reversibility, unless the two baths are thermal. It cannot be solely deduced from the laws of

thermodynamics.
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Engines are machines that convert some form of energy (e.g.,
thermal or electrical energy) into work. Their efficiency,
defined as the ratio of the extracted work to the invested

energy, is restricted to 1 at most by the energy-conservation law.
While mechanical engines may reach this bound, Carnot showed1

that the efficiency of any heat engine that cyclically operates
between two thermal baths is universally limited by the ratio of
the bath temperatures, regardless of the concrete design2, 3. The
universality of this bound led to the introduction of the notion of
entropy by Clausius4 and the formalisation of the second law of
thermodynamics.

The Carnot bound is attained by (idealised) heat engines that
operate reversibly between two (cold and hot) thermal baths, so
that the total entropy of the engine and the two baths combined is
unaltered over a cycle2, 3, 5. This corresponds to the minimum
amount of heat being dumped into the cold bath, so as to close
the cycle, and hence to the maximum input heat being trans-
formed into work. By contrast, in an irreversible cycle, a larger
amount of heat must be dumped into the cold bath, so that less
input heat is available for conversion into work, causing the
engine efficiency to decrease3, 5.

Whereas the above considerations hold for engines that operate
between two thermal baths at temperatures Tc and Th, there are
more general engine cycles that comprise additional baths at
intermediate temperatures between Tc and Th. However, any such
cycle (be it reversible or not) is less efficient than a reversible cycle
that solely involves Tc and Th

2. Hence, to find out how to use
available resources most efficiently it suffices to consider the two-
bath scenario.

As part of the effort to understand the rapport between
quantum mechanics and thermodynamics6–21 (see refs. 22–26 for
recent reviews), the Carnot bound has been challenged for
quantum engines in which one or both of the baths are non-
thermal10, 27–35. In this respect, a distinction is to be drawn
between two types of non-thermal engines32, 36, (i) engines
wherein the working medium equilibrates to a thermal state
whose temperature is adjustable (e.g., by the phase of the
coherence in a ‘phaseonium’ bath10), which qualify as genuine
heat engines with a controllable Carnot bound, and (ii) engines
wherein the non-thermal (e.g., squeezed30) bath may render the
working-medium state non-thermal, making the Carnot bound
irrelevant.

The efficiency bound of the latter type of engines has been
addressed29, 30, 32, 33, 35 but still needs elucidation. What is par-
ticularly puzzling is that, contrary to heat engines that operate
between two thermal baths, their efficiency bound cannot be
deduced from the requirement of reversible operation: Reversi-
bility may entail an efficiency bound that not only surpasses the
(as mentioned, irrelevant) Carnot bound but also unity33, making
it unachievable. Hence, the question naturally arises whether such
engines are limited by constraints other than the second law.

The second law for quantum relaxation processes is widely
accepted9, 19, 22–25, 33, 37–46 to be faithfully rendered by Spohn’s
inequality47. According to this inequality, the entropy change of a
system that interacts with a thermal bath is bounded from below
by the exchanged energy divided by the bath temperature. What
has not been considered so far is, however, that the bound on
entropy change in quantum relaxation processes crucially
depends on whether the state of the relaxing system is non-
passive. The definition7, 8, 11 of a non-passive state7, 8, 11, 23–25, 32,
36, 44, 48–57 is that its energy can be unitarily reduced until the
state becomes passive, thereby extracting work. Non-passive
states may thus be thought of as being ‘quantum batteries’49, 52 or
‘quantum flywheels’58. The maximum amount of work extrac-
table from such states (their ‘work capacity’) has been dubbed
‘ergotropy’ in ref. 11. For example, every population-inverted state

is non-passive and so are, e.g., coherent or squeezed field states,
whereas thermal states are passive.

Here we examine the adequacy of assessing the maximum
efficiency via the standard reversibility criterion in experimentally
relevant21, 34 cyclic engines that intermittently interact with two
(thermal or non-thermal) baths. We show that the standard
reversibility criterion provides an inequality for the change in the
engine entropy which may be much too loose (non-tight) to be
useful if non-passive states are involved. The distinction between
non-passive and passive states is at the heart of our analysis and
underlies our division of the energy exchanged between a quan-
tum system and a bath into a part that necessarily causes an
entropy change, and ergotropy. Our proposed division is in fact a
new unraveling of the first law of thermodynamics for quantum
systems. In scenarios where non-thermal baths may create non-
passive states of the working medium, we derive a new inequality
for the entropy change which yields a physical efficiency limit of
the engine that never surpasses unity. This efficiency limit in
general cannot be assessed by the standard reversibility criterion.
We illustrate these results for the practically relevant Carnot- and
Otto cycles34 energised by non-thermal baths. Both cycles are
shown to be restricted by our new efficiency bound.

Results
The first law of quantum thermodynamics. For an arbitrary
process taking the initial state ρ0 of a quantum system to an
evolving state ρ(t), which may be governed by a time-dependent
Hamiltonian H(t) and a bath, energy conservation implies

ΔEðtÞ ¼ EdðtÞ þWðtÞ; ð1Þ

where ΔE(t) is the change in the system energy E(t) = Tr[ρ(t)H(t)].
Its two constituents are

EdðtÞ :¼
Z t

0
Tr _ρ t′ð ÞH t′ð Þ½ �dt′; ð2Þ

which is the non-unitary dissipative energy change due to the
interaction with the bath, and

WðtÞ :¼
Z t

0
Tr ρ t′ð Þ _H t′ð Þ� �

dt′; ð3Þ

which is the work7 due to changes of the system Hamiltonian.
Contrary to the energy change ΔE(t), both EdðtÞ and W(t) are
process variables that generally depend on the evolution path, not
only on the initial and final states. For thermal baths, the energy
(2) is commonly identified with the transferred heat9. The energy
EdðtÞ vanishes for a closed (isolated) system whose state evolves
unitarily according to the von Neumann equation
_ρðtÞ ¼ 1

i�h HðtÞ; ρðtÞ½ �. The work (3) is either extracted or invested
by the external agent that controls the system via a time-
dependent Hamiltonian, as in driven engines.

We here consider general scenarios, wherein the bath and/or
the system may be in a non-thermal state and strive to better
understand the nature of the exchanged energy (2) and, in
particular, its relation to entropy change. As we show, only part of
the exchanged energy EdðtÞ is necessarily accompanied by a
change in entropy.

To elucidate this issue, we resort to the concept of non-passive
states (see Fig. 1 and Methods ‘Non-passive states’). The energy
E(t) of a non-passive state ρ(t) can be decomposed into ergotropy
WðtÞ � 0 and passive energy Epas(t). Ergotropy is the maximum
amount of work that can be extracted from such a state by means
of unitary transformations7, 8, 11. By contrast, the passive energy,
which is the energy of the passive state π(t), cannot be extracted
in the form of work.
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The von Neumann entropy SðρðtÞÞ ¼ �kB Tr ρðtÞln ρðtÞ½ � of a
non-passive state ρ(t) is the same as that of its passive state π(t)
since the two are related by a unitary transformation. Hence, a
change in entropy requires a change in the passive state π(t).
Equation (2), however, does not discriminate between ρ(t) and
π(t): a change in ρ(t) may cause a non-zero EdðtÞ but not
necessarily a change in entropy. By contrast, a change in π(t)
results in entropy change.

In order to explicitly account for a change in the passive state,
we may decompose the dissipative energy change (2) as follows:

EdðtÞ ¼ ΔEpas
��
d
ðtÞ þ ΔWjdðtÞ; ð4Þ

where

ΔEpas
��
dðtÞ :¼

Z t

0
Tr _π t′ð ÞH t′ð Þ½ �dt′ ð5Þ

is the dissipative (non-unitary) change in passive energy and

ΔWjdðtÞ :¼
Z t

0
Tr _ρ t′ð Þ � _π t′ð Þð ÞH t′ð Þ½ �dt′ ð6Þ

is the dissipative (non-unitary) change in the system ergotropy
due to its interaction with the bath. The microscopic decom-
position of the exchanged energy (4) into dissipative change in
passive energy (5) and dissipative ergotropy change (6) is a new
unraveling of the first law of thermodynamics for quantum
systems that constitutes one of our main results.

The decomposition (4) carries with it the following insights: (a)
although ergotropy may be transferred from a non-thermal bath
to the system in a non-unitary fashion, it may afterwards still be
extracted from the system in the form of work via a suitable
unitary transformation. (b) Consistently, any unitary
changes (in either ergotropy or in passive energy due to time-
dependent changes of the Hamiltonian) are associated
with work (3). If the Hamiltonian is constant, then ΔEpas

��
d
ðtÞ

is only the change in passive energy without work,
ΔEpas

��
d
ðtÞ ¼ ΔEpasðtÞ ¼ Tr πðtÞH½ � � Tr π0H½ �, where π0 is the

passive counterpart of the initial state ρ0. Likewise, ΔWdðtÞ ¼
ΔWðtÞ ¼ W ρðtÞð Þ �W ρ0ð Þ is then the change in ergotropy
without work performance. (c) While a non-zero ΔEpas

��
d
ðtÞ

entails a change in the passive state π(t) and hence in entropy, a
non-zero EdðtÞ, by contrast, does not necessarily imply an
entropy change, as shown below. The correspondence of
ΔEpas

��
dðtÞ and ΔSðtÞ is plausible since they have the same sign

provided a majorisation relation44, 59 holds for ρ(t), as detailed in
Methods (‘Majorisation relation’).

Let us illustrate these insights for a single cavity mode
(harmonic oscillator at frequency ω) prepared in a pure coherent
state ρ0 ¼ α0j i α0h j that interacts (via a leaky mirror) with the
surrounding electromagnetic-field bath (Fig. 2a), which for
optical frequencies is very close to the vacuum state60. Being in
contact with a bath, the cavity-mode state evolves in a non-
unitary fashion (according to a quantum master equation46).
Since the Hamiltonian is constant, the work (3) vanishes, W(t) =
0. While the cavity field exponentially decays to the vacuum state,
ρðtÞ ¼ α0e�iωt�κtj i α0e�iωt�κth j, where κ is the leakage rate, its
entropy does not change, SðρðtÞÞ ¼ 0, so that the passive state
πðtÞ ¼ 0j i 0h j is constant. Consequently, ΔEpas

��
dðtÞ ¼ 0 and the

entire energy change is due to dissipated ergotropy,
ΔEðtÞ ¼ ΔWjdðtÞ ¼ �hω α0j j2 e�2κt � 1ð Þ � 0.

As another example, consider again a single cavity mode, this
time prepared in its vacuum state ρ0 ¼ 0j i 0h j, that interacts with
an outside bath in a squeezed-vacuum state60 (see Methods
‘Master equation for a squeezed bath’), eventually converging to a
squeezed-vacuum state inside the cavity (Fig. 2b). Although the
initial and the steady state have zero entropy, this is not true
during the evolution (Fig. 3). Consequently, both dissipative
passive-energy change ΔEpas

��
d
ðtÞ and dissipative ergotropy

Non-passiveNon-passive Passive

a b c

Fig. 1 Visualisation of the concept of passive energy and ergotropy. The
different kinds of energy contained in a quantum state visualised by means
of a battery at a certain temperature. The battery charge (yellow bars)
represents ergotropy W (extractable as work, here illustrated by a lighted
bulb) and its temperature (colour of the battery: red—hot, blue—cold)
represents passive (here: thermal) energy Epas—the higher the temperature
the larger the passive energy. a The battery is partly charged and hot: this
represents a non-passive state that allows for work extraction. As the
battery is not completely charged, the light bulb appears dim. b The battery
is discharged, but its temperature is the same as in a. This state is the
passive state of a and, consequently, the light bulb does not shine. c The
battery is in a non-passive state whose ergotropy is higher than in a (the
battery is fully charged) but the passive energy is lower (the battery is
colder). Although the total energy in a, cmay be the same, more work can be
extracted from the state c, causing the light bulb to shine brighter than in a

t = 0
a

b

|�0〉 |0〉

t = 0

t → ∞

t → ∞

Fig. 2 Interaction of a cavity mode with thermal and non-thermal baths. a A
cavity mode initialised in a coherent state decays into the surrounding
electromagnetic-field bath to the vacuum state. b A cavity mode prepared
in the vacuum state evolves to a squeezed-vacuum state due to its
interaction with a squeezed bath. The circles and the ellipse represent the
respective phase-space distributions60 of the field states
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change ΔWjdðtÞ � 0 occur. Figuratively, this process corresponds
to a non-unitary charging of a battery.

Reversibility criterion. In non-equilibrium thermodynamics, the
accepted criterion for the irreversibility or reversibility of the
system relaxation to its steady state is the non-negativity of the
entropy production3. For quantum systems that are weakly
coupled to (thermal or non-thermal) Markovian baths, Spohn47

put forward an expression for the entropy production Σ(t). Here
we are interested in relaxation to steady state, for which we define
Σ : ¼ Σð1Þ, satisfying (see Methods ‘Entropy production Σ’)

Σ � 0; ð7Þ

where the equality sign is the reversibility condition. For a con-
stant Hamiltonian, it evaluates to Σ ¼ S ρ0 ρsskð Þ � 0, where
S ρ0 ρsskð Þ :¼ kB Tr ρ0 ln ρ0 � ln ρssð Þ½ � is the entropy of the system
initialised in a state ρ0 at t = 0 relative to the steady state ρss to
which it relaxes. For a slowly time-varying Hamiltonian9, 61, Eq.
(7) gives rise to an inequality for the the change ΔS of the system
(von Neumann) entropy, given in Methods (‘Entropy production
Σ’).

The common9, 19, 22–25, 33, 37–46 identification of Eq. (7) with
the second law appears plausible for systems in contact with
thermal baths: It then evaluates to Σ ¼ ΔS � Ed=T � 0, where
Ed is the dissipative change in the system energy defined in Eq.
(2) (in the limit t → ∞).

Here we contend that although inequality (7) is a formally
correct statement of the second law (under standard thermo-
dynamic assumptions), it may not provide a meaningful estimate
of ΔS if a system is initialised in a non-passive state and/or
interacts with a non-thermal bath. Physically, this is because, as
discussed above, the exchanged energy Ed may be non-zero even
if the entropy does not change.

Entropy change in relaxation processes involving ergotropy.
Consider the decay of an initially non-passive state ρ0 to a
(passive) thermal state ρth via contact with a thermal bath at
temperature T. Based on the decomposition (4), the reversibility
condition (7) evaluates to (at t → ∞)

ΔS � Ed

T
¼ ΔEpas

��
d
þΔWjd
T

; ð8Þ

where both dissipative change in passive energy (5) and dis-
sipated ergotropy (6) appear. In what follows we shall revise this
inequality, which may greatly overestimate the actual entropy
change. As shown below, a tight inequality for ΔS is indis-
pensable for correctly assessing the maximum efficiency of an
engine.

We first consider the case of a constant Hamiltonian. As we
have seen, dissipative ergotropy change is not necessarily linked
to a change in entropy. Therefore, the lower bound on ΔS in Eq.
(8) may be not tight (maximal). It is obtained from Spohn’s
inequality (7) for the relaxation of an initially non-passive state in
a thermal bath. However, one may resort to the fact that the
entropy S is a state variable, so that ΔS ¼ S ρthð Þ � S ρ0ð Þ is
path-independent, i.e., its value only depends on the initial state
ρ0 and the (passive) thermal steady state ρth. Hence, Spohn’s
inequality (7) may well be applied to alternative evolution paths
from ρ0 to ρth, giving rise to different inequalities for the same
ΔS.

In particular, we now consider a path that does not involve any
dissipation of ergotropy to the bath: Namely, one may start the
process by performing a unitary transformation to the passive
state, ρ0 7!π0. Thereafter, this state is brought in contact with the
thermal bath, yielding the steady-state solution ρth. Inequality (7)
applied to this alternative path yields

ΔS � ΔEpas
��
d

T
; ð9Þ

where ΔEpas
��
d
is the same as in Eq. (8).

The steady state attained via contact with a thermal bath is
passive, hence the system ergotropy must decrease as a result of
the relaxation, ΔWjd ¼ �W0 � 0, where W0 � 0 is the initial
ergotropy stored in the state ρ0. Hence, inequality (9) always
entails inequality (8) and is thus a tighter and more relevant
estimate of ΔS. This has a crucial consequence: if the initial state
is non-passive, inequality (9) rules out the equality sign in
inequality (8), so that the considered decay via contact with a
thermal bath can never be reversible according to criterion (7).

We now consider the more general situation wherein the
system is governed by a constant Hamiltonian and interacts with
an arbitrary bath (that may not be parameterised by a
temperature) until it reaches the steady state ρss. In order to
obtain an optimal (the tightest) inequality for the entropy change
ΔS, we here instead of inequality (7) (see Methods ‘Entropy
production Σ for non-thermal baths’) propose to adopt the
mathematical relation

S π0 πsskð Þ � 0: ð10Þ

As shown in Methods (‘Optimality of the inequality for relative
entropy’), Eq. (10) provides generally a tight inequality for ΔS.
The motivation for Eq. (10) is, as before, that the entropy of any
state ρ is the same as that of its passive counterpart π. If πss is a
thermal state, we recover Eq. (9).

We stress that, contrary to Spohn’s inequality (see Methods
‘Entropy production Σ’), Eqs. (9) and (10) do not require weak
coupling between the system and the bath (in the same spirit as in
refs. 40, 62) and are thus universally valid whenever the reduced
state of the system reaches a steady state.

We now allow the Hamiltonian H(t) to slowly vary during the
evolution9. Contrary to the case of a constant Hamiltonian, the
dissipative passive-energy change (5) and the ergotropy change
(6) in the r.h.s. of Eq. (8) are now path-dependent. Namely, they
are not only determined by the initial state ρ0 and the steady state
ρth(∞), which is a thermal state under the Hamiltonian H(∞).

543210

0.18

0.12

0.06

0

S (t )

�t

d(t )

Δ    d(t )

ΔEpas d(t )

Fig. 3 Entropy and energy of a cavity mode interacting with a squeezed
bath. Entropy, ergotropy and energy changes for a single cavity mode
prepared in the vacuum state that interacts with an outside bath in a
squeezed-vacuum state (Fig. 2b) obtained by a numerical integration of the
master equation. The energies are given in units of ħω and the entropy in
units of kB. Parameters: ω= 10κ and squeezing parameter r= 0.4, κ being
the decay rate of the cavity
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Since during the evolution the time-dependent Hamiltonian
may generate a non-passive state (even if the initial state is passive
and the bath is thermal) we cannot, in general, find an alternative
path void of dissipated ergotropy for the same H(t). Notwith-
standing, we may still consider a path void of initial ergotropy in
the spirit of the previous section by extracting the ergotropy of
the initial state in a unitary fashion prior to the interaction with
the bath, resulting in the passive state π0. Afterwards, this passive
state is brought into contact with the thermal bath, yielding the
steady state ρth(∞). Spohn’s inequality can be applied to the latter
step, yielding

ΔS � E′d
T

; ð11Þ

with the energy

E′d :¼
Z 1

0
Tr _RðtÞHðtÞ½ �dt ð12Þ

exchanged with the bath along the alternative path. Here R(t) is
the solution of the same thermal master equation that governs
ρ(t) but with the initial condition R0 = π0. In the case that the
initial state ρ0 is already passive, we have R(t) = ρ(t), E′d ¼ Ed and
Eqs. (7) and (11) coincide. For a constant Hamiltonian, Eq. (11)
evaluates to Eq. (9).

Consider now the more general situation where a quantum
system interacts with a non-thermal bath and eventually relaxes
to a unitarily transformed thermal state Uρth(∞)U†. A prime
example is a harmonic oscillator that interacts with a squeezed
thermal bath60, 63: Its steady state is a squeezed thermal state.
Then one can show (see Methods ‘Unitary equivalence of non-
thermal and thermal baths’) that this situation can be traced back
to the interaction of a unitarily transformed state ~ρðtÞ :¼
UyρðtÞU with a thermal bath, provided that the Hamiltonian
H(t) commutes with itself at all times; a harmonic oscillator with
a time-dependent frequency and time-independent eigenstates is
an example. This requirement will be adopted in the remainder of
this paper for any interaction of a system with a non-thermal
bath. The relaxation of a possibly non-passive state ~ρðtÞ in a
thermal bath pertains to the scenario considered above upon
replacing ρ(t) by ~ρðtÞ there. Equation (11) thus also holds for this
class of non-thermal baths (the derivation and the generalisation
to arbitrary non-thermal baths are discussed in Methods ‘Entropy
change for time-dependent Hamiltonians’).

The new entropic inequality (11) is the second main result of
our work. For the special case of a constant Hamiltonian, it
reduces to inequality (9).

Maximal efficiency of engines powered by non-thermal baths.
In view of our new inequality (11), does inequality (7) always
provide a true bound on the engine efficiency? Namely, is

reversibility indeed the key to operating a quantum engine at the
highest possible efficiency? This question arises for cyclic engines
fuelled by non-thermal (e.g., squeezed) baths, since such baths
may transfer both passive thermal energy and ergotropy to the
system while Eq. (7) does not distinguish between these two
different kinds of energies.

Here we consider a quantum engine (Fig. 4) that operates
between a cold thermal bath (at temperature Tc) and a hot non-
thermal bath subject to a time-dependent drive (the ‘piston’9). As
in common, experimentally relevant situations34, the non-
thermal bath drives the working medium into a non-passive
state whose passive counterpart is assumed to be thermal. This
allows us to maintain the notion of a ‘hot’ bath with temperature
Th> Tc, where Th is defined by the steady-state solution of the
working medium. As an example, in the case of a single-cavity
mode interacting with the surrounding electromagnetic field in a
squeezed-thermal state46, 60, the temperature Th equals the
thermodynamic temperature of the bath prior to its squeezing.
The generalisation of the present analysis to arbitrary passive
states is straightforward (see Methods ‘Derivation of the efficiency
bound’).

Existing treatments of engines powered by non-thermal baths
have taken the system–baths interaction to be isochoric, i.e.,
subject to a constant Hamiltonian28–33. We here relax this
restriction and allow for stroke cycles wherein the working
medium (WM) Hamiltonian is allowed to slowly change during
the interaction with the baths9. We only impose the condition that
the WM attains its steady state at the end of the energising stroke
(wherein it interacts with the hot non-thermal bath) and the
resetting stroke (wherein it interacts with the cold thermal bath).

The energising stroke is described by a master equation46 that
evolves the WM state to a unitarily transformed thermal state
ρss(∞) =Uρth(∞)U†, hence Eq. (11) holds. After this stroke, the
WM is in a non-passive state, whose ergotropy is subsequently
extracted by the piston via a suitable unitary transformation.
Since we seek the efficiency bound, we assume that no ergotropy
is dissipated in the cold bath (and thus lost), hence the
requirement to extract it from the WM before its interaction
with that bath. We note that in cycles where both baths are
simultaneously coupled to the WM (as in continuous cycles64),
part of the ergotropy is inevitably dissipated into the cold bath, so
that such cycles are inherently less efficient than stroke cycles
adhering to the above requirement.

Similarly, Hamiltonians that do not commute with themselves
at different times are known to reduce the efficiency due to
‘quantum friction’22, 26, 45, 65, whereas we are here interested in
principal limitations on the efficiency. Hence, during the
interaction with the non-thermal bath, the Hamiltonian is
assumed to commute with itself at all times, as already mentioned
in the discussion on the validity of Eq. (11) for such a bath.

The engine’s WM must return to its initial state after each
cycle. This implies that ΔS ¼ 0 over a cycle, hence the
importance of having a tight estimate for the entropy change
within each stroke. The entropy changes in the two relevant
strokes satisfy ΔSc � Ed;c=Tc and ΔSh � E′d;h=Th. Here Ed;c � 0
is the change in the WM energy due to its interaction with the
cold thermal bath and E′d;h � 0 is the change the WM energy
would have, had the non-thermal bath been thermal (as in Eq.
(11)). Taking into account that the WM is passive prior to its
interaction with the cold bath, so that Eqs. (7) and (11) coincide
for that stroke, the condition of vanishing entropy change over a
cycle (which must hold in any cycle) then yields the inequality

ΔSc þ ΔSh ¼ 0 ) Ed;c

Tc
þ E′d;h

Th
� 0: ð13Þ

Engine Non-thermal
bath

Work

Thermal
bath

Tc
Th

d,hd,c

Fig. 4 Engine fuelled by a non-thermal bath. Schematics of an engine fuelled
by a hot non-thermal (e.g., squeezed thermal) bath that provides the input
energy Ed;h. The engine operates in an arbitrary cycle wherein work is
extracted by a piston and an amount of energy Ed;c is dumped into the cold
thermal bath
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The efficiency of the engine is defined as the ratio of the
extracted work to the invested energy, η :¼ �W=Ed;h, where Ed;h
is the total energy (the sum of passive thermal energy and
ergotropy) imparted by the non-thermal bath during the
energising stroke. Using the first-law statement (1), this ratio
may be expressed through the energy transfers Ed;c and Ed;h.
Condition (13) on Ed;c (the energy lost to the cold bath) then
restricts the efficiency to

η � 1� Tc

Th

E ′
d;h

Ed;h
¼: ηmax: ð14Þ

Its derivation as well as a more general expression for the case
where the passive state after the energising stroke is non-thermal
are given in Methods (‘Derivation of the efficiency bound’).

The efficiency bound (14) does not only depend on the two
temperatures, which is to be expected, as non-thermal baths may
occur in various forms that cannot be universally described by a
common set of parameters. The physical details of the bath (e.g.,
its squeezing parameter) are thus encoded in the fraction of the
two energies E′d;h and Ed;h, whose forms are universal. This
fraction expresses the ratio of generalised heat transfer to the total
energy input from the hot bath.

The bound (14) underscores the physicality of our inequality
(11): in the usual regime of functioning of the engine, E ′

d;h � 0
and Ed;h> 0 (i.e., the hot bath provides energy and increases the
WM entropy), the bound (14) is limited by unity, ηmax ≤ 1, which
is reached in the ‘mechanical’-engine limit E′d;h ! 0 where the
non-thermal bath only provides ergotropy. By contrast, the
bound ηΣ that stems from the reversibility condition (7) (derived
in Methods ‘Derivation of the efficiency bound’) may surpass 1
(see ref. 33). In the opposite, heat-engine, limit E′d;h ! Ed;h where
only passive thermal energy but no ergotropy is imparted by the
hot bath, Eq. (14) reproduces the Carnot bound ηC = 1 − Tc/Th.
As shown below, if the Hamiltonian is kept constant during the
interaction with the non-thermal bath, then Eq. (14) is restricted
by ηC ≤ ηmax ≤ ηΣ. Therefore, for such engines our new bound
(14) is always tighter than the second-law bound ηΣ.

The bound (14) is valid in the regime Ed;c � 0 and E′d;h � 0
wherein the cold bath serves as an energy dump. As shown in
ref. 32, there exists a regime wherein such a machine acts
simultaneously as an engine and a refrigerator for the cold bath.
The efficiency then evaluates to η = 1 (see Methods ‘Derivation of
the efficiency bound’).

We have thus reached a central conclusion: the efficiency
bound of the engine increases with the decrease of the ratio of the
energy that an alternative thermal engine would have received (in
the same energising stroke) to the total energy imparted by the
non-thermal bath (in the actual engine cycle). In the limit of
thermal baths9, we recover the standard Carnot bound for the
efficiency of heat engines, even if the engine (in any cycle)
exhibits quantum signatures (e.g., quantum coherence in the WM
due to the piston action19) or the WM-bath interactions are time-
dependent65.

We note that the costs of bath preparation or the heat
generated by a clock66, 67 required to implement a time-periodic
Hamiltonian will reduce the efficiency. In the spirit of thermo-
dynamics, however, the bound (14) only takes into account
limitations inherent to the cycle.

Whilst our analysis is focused on the two-bath situation, Eq.
(13) can be generalised to cycles where the working medium
intermittently interacts with additional (thermal or non-thermal)
baths. This generalisation shows (see Methods ‘Maximal
efficiency of multi-bath quantum engines’) that the efficiency of
multi-bath engines is always lower than the maximum efficiency

(14) of the appropriate two-bath engine, thus reaffirming the
generality of the bound (14).

Specific quantum engines. We now pose the question: Which
bound is more relevant, ηΣ (whose explicit form is given in
Methods ‘Derivation of the efficiency bound’) that stems from the
reversibility condition (7), or ηmax given by Eq. (14)? Contrary to
the Carnot bound, the efficiency bound (14) not only depends on
the parameters of the baths but also on the energising stroke
through the stroke’s initial condition and the Hamiltonian that
determine the integrals E′d;h and Ed;h. Yet, the functional form
(14) is independent of the choice of the non-thermal bath or the
WM. Whether or not this bound is reached by an engine that
implements this chosen energising stroke is then determined by
condition (13).

In complete generality, the tighter of the alternative efficiency
bounds derived here,

η � min ηmax; ηΣf g; ð15Þ

is the relevant one. Relation (15) is the universal thermodynamic
limit on quantum engine efficiency, which never surpasses unity.

Notwithstanding the alternatives that may be offered by Eq.
(15), we now discuss two generic practically relevant engine cycles
for which one can explicitly show that ηmax ≤ ηΣ. Such engines are
thus not restricted by the second law, but by other constraints on
their entropy.

Carnot cycle: We first consider a photonic Carnot-like engine
fuelled by a squeezed-thermal bath, as depicted in Fig. 5. It
contains the four strokes of the regular thermal Carnot cycle1–4,
as well as an additional ergotropy-extraction stroke (stroke 3 in
the figure). In the regular thermal Carnot cycle, the interactions
with the baths are isothermal.

Based on Eq. (11), we have in the second stroke E′d;h ¼ ThΔSh,
since the master equation void of squeezing induces isothermal
expansion wherein the state R(t) is always in thermal equilibrium
(Fig. 6). Stroke 5 is isothermal compression, i.e., Ed;c ¼ TcΔSc.
The condition of vanishing entropy change over a cycle,
ΔS ¼ Ed;c=Tc þ E′d;h=Th ¼ 0, corresponds to the equality sign
in condition (13). Hence, the efficiency of this cycle is the bound
in Eq. (14).

Consequently, the bound ηmax is lower than ηΣ for all possible
engine cycles that contain a ‘Carnot-like’ energising stroke,
namely, a stroke characterised by a slowly changing Hamiltonian
and an initial thermal state at temperature Th, such that
E′d;h ¼ ThΔSh.

Such a photonic Carnot engine energised by a squeezed bath
may be implemented as a modification of the photonic Carnot
cycle based on a cavity in a micromaser setup in the seminal work
by Scully et al.10: instead of a beam of coherently prepared three-
level atoms (phaseonium) that constitute an effective thermal
bath for the cavity-mode WM, we here suggest, following ref. 36,
to use a beam of suitably entangled atom pairs passing through a
cavity that may act as a squeezed-thermal bath for the same WM
(Fig. 7a). The steady state of the cavity mode is then determined
by a squeezing parameter r and a temperature Th, which are both
a function of the two-atom state36. A major advantage of this
method is that it allows for very high squeezing parameters. In
order to extract the ergotropy that is stored in the cavity mode
after its interaction with the squeezed bath and before its
interaction with the cold bath (where it would be lost), a unitary
transformation that ‘unsqueezes’ the cavity field must be
performed, e.g., as in refs. 68–70, where the cavity-mode frequency
is abruptly ramped up and then gradually ramped down (Fig. 7b).

Otto cycle: Next, we consider a quantum Otto cycle19, 26, 71–74

that consists of two isentropic strokes (adiabatic compression and
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decompression of the WM), two isochoric strokes (interaction
with the baths at a fixed Hamiltonian) and an additional
ergotropy-extraction stroke. This cycle amounts to setting ω2 =
ωh and ω1 =ωc in Fig. 5.

Since the Hamiltonian is now kept constant during the
energising stroke, we have E ′

d;h ¼ ΔEpas;h, where ΔEpas,h is the
change in passive energy during the hot stroke, and
Ed;h ¼ ΔEpas;h þ ΔWh, where ΔWh is the change in ergotropy
during that stroke. The efficiency of this Otto-like cycle is
bounded by Eq. (14),

ηOttomax ¼ 1� Tc

Th

ΔEpas;h
ΔEpas;h þ ΔWh

� ηΣ; ð16Þ

but this bound is only attained in the ‘mechanical’ limit
E ′
d;h ¼ ΔEpas;h ¼ 0, where only ergotropy is transferred from

the non-thermal bath and no net entropy change occurs during
the strokes. In this case the bound equals 1, as one expects for
mechanical engines. By contrast, the Carnot-like cycle always
operates at maximum efficiency, even when both passive thermal
energy and ergotropy are imparted by this bath.

In general, any engine cycle wherein the interaction with the
hot bath is isochoric (has constant Hamiltonian) and sufficiently
long (for the WM to reach steady state) abides by the bound (16),
which is lower than the bound ηΣ imposed by the second law
(Fig. 8). Moreover, their efficiency bound always surpasses the
Carnot bound, ηOttomax � ηC.

Discussion
Our analysis has been aimed at comparing the efficiency bounds
and the conditions for their attainment in quantum engines
energised by thermal and non-thermal baths. These respective
bounds turn out to be very different since, unlike thermal baths,
non-thermal baths may exchange both thermal (passive) energy
and ergotropy with the WM. To this end, we have revisited the
first law of thermodynamics and identified as passive energy the
part of the energy exchange with the bath that necessarily causes a
change in the WM entropy (Eq. (5)). This division of the
exchanged energy relies on the distinction between passive and
non-passive states of the WM. Only the latter states store ergo-
tropy that may be completely extracted in the form of work. Our
energetic division conceptually differs from the one involving
‘housekeeping heat’ previously provided for classical systems75. It
would be interesting to extend our analysis to situations where
‘housekeeping heat’ has been considered in a quantum
context76, 77.

Based on the distinction between passive and non-passive
states, we have put forward a new estimate (11) of the entropy
change in quantum relaxation processes, which turns out to be
the key to understanding the limitations of quantum engines
fuelled by arbitrary baths. Cyclic engines whose passive energy is
altered by the baths are restricted in efficiency by limits on their
entropy change. Yet, for a wide class of practically relevant
engines, including all engines whose energising stroke is either
isochoric or Carnot-like, the restriction imposed by inequality
(11) on the entropy change is stricter than what the second law
(7) would allow. By contrast, the commonly used reversibility is a
global condition on the WM and the two baths combined that is
imposed by the second law, and hence not necessarily a relevant
characterisation of engine efficiency.

An alternative formulation of our main insight is that, for any
baths, entropy change limits the engine efficiency in the same way
as in traditional heat engines—condition (13) is the same whether
the energising bath is thermal or not. Namely, maximal efficiency
is reached when (a) no ergotropy (extractable work) is dumped
into the cold bath and (b) no entropy is generated within the
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4
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�h�1

�c �2

3

25 Thermal
bath

Tc
Th

Squeezed
thermal

bath

Fig. 5 A photonic Carnot cycle for a squeezed thermal bath. The cycle
starts with a thermal state with frequency ωc and temperature Tc (lower left
corner). In stroke 1, the mode undergoes an adiabatic compression to
frequency ω2=ωcTh/Tc and temperature Th> Tc. Thereafter, in the
energising stroke 2, the frequency is slowly reduced to ωh≤ω2 while the
mode is connected to the squeezed thermal bath, yielding a squeezed
thermal steady state. Its ergotropy is extracted in stroke 3 by an
‘unsqueezing’ unitary operation, resulting in a thermal state with
temperature Th. In stroke 4, the frequency is again adiabatically reduced to
ω1=ωhTc/Th such that the mode attains the temperature Tc. Finally, stroke
5 is an isothermal compression back to the initial state

543210

0.25

0.2

0.15

0.1

0.05

0

ΔSh(t )−   d,h(t )/Th
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�t

Fig. 6 Entropy change in a Carnot cycle. Change in entropy (in units of kB)
during stroke 2 of the modified Carnot cycle in Fig. 5 as a function of the
stroke duration obtained by a numerical integration of the master equation.
The upper (blue) curve corresponds to the reversibility criterion (7); it is
seen that the inequality Σ≥ 0 is far from being saturated. By contrast, our
proposed inequality (11) is saturated (i.e., the equality sign applies) for
sufficiently long stroke duration (red lower curve); here
ΔShðtÞ ¼ S ρðtÞð Þ � S ρ0ð Þ. Parameters: oscillator frequency ω(t)= (25 −
0.05κt)κ, kBTh= 5ħκ and squeezing parameter r= 0.2, κ being the decay
rate of the cavity
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mal energy is dumped into the cold bath3. For thermal engines,
this criterion of minimal energy dumping and the reversibility
criterion coincide, but the two criteria differ if the energising bath
is non-thermal.

Another important insight is that the same efficiency bound (14)
ensues whether the WM is energised by a non-thermal bath or by a
thermal bath (that supplies thermal energy) combined with a
battery (that supplies ergotropy) provided the total energy
imparted by the WM remains the same. This supports the
description of non-thermal engines as hybrids of thermal (thermal-
energy-fuelled) and ‘mechanical’ (ergotropy-fuelled) engines32.

Our theory provides better understanding of the operation
principles of quantum engines: These are shown not to follow
only from the laws of thermodynamics, but require discrimina-
tion between different (passive and non-passive) quantum states
of the system (WM) and the baths involved. The present gen-
eralisation of the treatment of standard thermal processes for
quantum systems is not only the key to the construction of the
most efficient hybrid engines that are unrestricted by the Carnot
bound, as in the recent experimental implementation of an engine
powered by a squeezed bath34. It may also open a new perspective
on quantum-channel communications56, 59, 78 where entropic
constraints play a major role.

Methods
Non-passive states. The energy E of a state ρ with respect to a Hamiltonian H can
be decomposed into ergotropy W and passive energy Epas. Ergotropy is the max-
imum amount of work that can be extracted from the state by means of unitary
transformations such that the Hamiltonian before and after the unitary coincide7, 8,
11. The passive energy, by contrast, cannot be extracted in the form of work. States
that only contain passive energy are called passive states.

Ergotropy is defined as

Wðρ;HÞ :¼ TrðρHÞ �min
U

TrðUρUyHÞ � 0; ð17Þ

where the minimisation is over the set of all possible unitary transformations.
Consequently, any state ρ can be written as ρ ¼ VρπVy

ρ , i.e., as a unitarily
transformed passive state π, where Vρ is the unitary that realises the minimum
appearing on the r.h.s. of Eq. (17). The energy of the state ρ thus reads

E ¼ Epas þW ¼ Tr πH½ � þ Tr ðρ� πÞH½ �: ð18Þ

Explicitly, the passive state and its energy read

π :¼
X
n

rn nj i nh j ð19Þ

Epas ¼ Tr½πH� ¼
X
n

rnEn; ð20Þ

where {rn} are the ordered (rn+1 ≤ rn∀n) eigenvalues of ρ and nj if g is the ordered
(En+1 ≥ En∀n) eigenbasis of H. When H is non-degenerate, π is unique. If H is
degenerate, its eigenbasis and, consequently, the passive state (19), may be not
unique. However, the energies (20) of all passive states corresponding to ρ are the
same and equal the passive energy of ρ.

Majorisation relation. Assume ρ t′ð Þ � ρ t′′ð Þ for any t″ ≥ t′ in some time interval I
(t′, t″ ∈ I), namely that ρ(t′) majorises44, 59 ρ(t″) in this interval, i.e.,

Xn
m¼1

rm t′ð Þ �
Xn
m¼1

rm t′′ð Þ 1 � n � Nð Þ; ð21Þ

where rm+1(τ) ≤ rm(τ) (τ ∈ I) are the ordered eigenvalues of ρ(τ) (cf. Eq. (19)) and N
is the dimension of the Hilbert space of the system.

Let us consider the sign of the dissipative passive-energy change ΔEpas
��
d
under

this majorisation condition. We may write (5) in the form

ΔEpas
��
d
ðtÞ ¼

Z t

0
dτ Tr _πðτÞHðτÞ½ � ¼

Z t

0
dτ lim

h!0
f ðτ; hÞ; ð22Þ

where we have defined

f ðτ; hÞ :¼
XN
n¼1

rnðτ þ hÞ � rnðτÞ
h

EnðτÞ; ð23Þ

where En+1(τ) ≥ En(τ) are the ordered eigenvalues of the Hamiltonian (cf. Eq. (20)).
Using summation by parts and the normalisation of the density matrix, this

a b

Fig. 7 Squeezing and unsqueezing of a cavity mode. a The interaction of a
cavity mode with a squeezed thermal bath (stroke 2 in Fig. 5) may be
realised in a micromaser setup where a beam of entangled atom pairs
passes through the cavity36. b The unsqueezing operation in stroke 3 of
Fig. 5 may be implemented by a suitable modulation of the cavity
frequency68–70

21.510.50

1.2

1

0.8

0.6

0.4

0.2

Squeezing parameter r

E
ffi

ci
en

cy

b

10.80.60.40.2

1.4

1.2

1

0.8

0.6

0.4

�
�max

�Σ

Carnot bound

Frequency ratio �c/�h

E
ffi

ci
en

cy

a

Fig. 8 Efficiency bounds for the Otto-like cycle. Actual efficiency η and
alternative efficiency bounds (the explicit expressions are summarised in
Methods ‘Expressions used in Fig. 8’) for an Otto-like cycle implemented
with a harmonic-oscillator working medium and a squeezed thermal bath as
a function of a the frequency ratio and b the squeezing parameter. The
bounds only hold in the regime Ed;c � 0 (see text). Parameters: Th= 3Tc
and a squeezing parameter r= 0.5 and b oscillator frequencies ωc/ωh= 0.5
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function may be rewritten as

f ðτ; hÞ ¼
XN�1

n¼1

Enþ1ðτÞ � EnðτÞ½ �
Xn
m¼1

rmðτÞ � rmðτ þ hÞ
h

: ð24Þ

The first factor is non-negative due to the monotonically ordered energies. The
second factor is also non-negative if Eq. (21) holds in the entire integration domain
[0, t]. In this case, the majorisation relation implies ΔEpas

��
d
ðtÞ � 0.

Let us now turn to the sign of the entropy change. If ρ1 � ρ2, then
S ρ2ð Þ � S ρ1ð Þ11. Hence, we have the relation

ρ t′ð Þ � ρ t′′ð Þ 8 0 � t′ � t′′ � t ) ΔEpas
��
d
ðtÞ � 0 ^ ΔSðtÞ � 0; ð25Þ

where ΔSðtÞ ¼ SðρðtÞÞ � S ρ0ð Þ. Similarly, one can show that the opposite relation
holds, ρ t′ð Þ � ρ t′′ð Þ ) ΔEpas

��
d
ðtÞ � 0 ^ ΔSðtÞ � 0. When the Hamiltonian is

non-degenerate, ΔEpas
��
d
ðtÞ and ΔSðtÞ can be shown to vanish iff the passive state

corresponding to ρ(τ) is constant (i.e., the evolution of ρ(τ) is unitary) for τ ∈ [0, t].
For the case of a constant Hamiltonian, relation (25) was obtained in ref. 44. In

this case, ΔEpas
��
d
ðtÞ ¼ ΔEpasðtÞ and hence Eq. (25) implies that the passive energy

of ρ2 is greater than or equal to the passive energy of ρ1 if ρ1 � ρ2 or, equivalently,
if π1 � π2, where πi is the passive state corresponding to ρi (i = 1, 2).

Master equation for a squeezed bath. In the interaction picture, the master
equation for a harmonic oscillator that interacts with a squeezed thermal bath
reads60

_ρ ¼ κðN þ 1ÞD a; ay
� �½ρ� þ κND ay; a

� �½ρ� � κMDða; aÞ½ρ� � κMD ay; ay
� �½ρ�;

ð26Þ

where DðA;BÞ½ρ� :¼ 2AρB� BAρ� ρBA. Here κ denotes the decay rate and (w.l.o.
g. we have set the squeezing phase to zero)

N :¼ n cosh2r þ sinh2r
� �þ sinh2r ð27Þ

M :¼ �cosh r sinh r 2nþ 1ð Þ; ð28Þ

where n ¼ exp �hω= kBT½ �ð Þ � 1½ ��1 is the thermal excitation number of the bath at
the oscillator frequency ω and r the squeezing parameter. The results in Fig. 3 were
obtained by a numerical solution of Eq. (26) with n ¼ 0.

Defining b :¼ SðrÞaSyðrÞ ¼ a cosh r þ ay sinh r, where SðrÞ ¼
exp r

2 a
2 � r

2 ay
� �2h i

is the unitary squeezing operator, the master equation (26) can
be cast into the Lindblad form46, 63

_ρ ¼ κðnþ 1ÞDðb; byÞ½ρ� þ κnDðby; bÞ½ρ�: ð29Þ

Its steady-state solution is the squeezed thermal state S(r)[Z−1 exp(−ħωa†a/[kBT])]
S†(r).

Entropy production Σ. Spohn’s inequality for the entropy-production rate reads47

σ :¼ � d
dt

S ρðtÞkρssð Þ � 0; ð30Þ

where S ρðtÞkρssð Þ :¼ kB Tr ρðtÞ ln ρðtÞ � ln ρssð Þ½ �. Inequality (30) holds for any ρ(t)
that evolves according to a Lindblad master equation46

_ρ ¼ Lρ; ð31Þ

L being the Liouvillian (Lindblad operator). The steady-state solution of Eq. (31)
obeys Lρss ¼ 0. Then, upon defining Σ :¼ R1

0 σdt, the time-integrated inequality
(30) yields

Σ ¼ S ρ0kρssð Þ � 0: ð32Þ

Equality (30) requires the coupling between the system and the bath to be
sufficiently weak and the bath relaxation to be sufficiently fast to allow for the
perturbative derivation of the Lindblad master equation. In the spirit of traditional
thermodynamics, the Lindblad approach excludes correlations or entanglement
between the system and the bath46. In general, Eq. (30) may not hold for non-
Markovian baths12. In contrast, since the relative entropy is non-negative, Eq. (32)
holds for arbitrary coupling between the system and the bath40, 62.

As shown in refs. 9, 61, Spohn’s inequality (30) can be generalised to time-
dependent Hamiltonians under the condition that H(t) varies slowly compared to
the relaxation time of the reservoir9. The corresponding master equation then reads

_ρðtÞ ¼ LðtÞρðtÞ; ð33Þ

where LðtÞ is the same Liouvillian as in Eq. (31), but with time-dependent
coefficients (cf. ref. 9). Its invariant state ρss(t) satisfies LðtÞρssðtÞ ¼ 0. The

generalisation of inequality (30) then reads61

σ ¼ � d
ds

S esLðtÞρðtÞ��ρssðtÞ� 	����
s¼0

� 0: ð34Þ

Upon integration, Eq. (34) evaluates to the inequality

Σ ¼ ΔS þ kB

Z 1

0
Tr LðtÞρðtÞð Þln ρssðtÞ½ �dt � 0 ð35Þ

for the entropy change ΔS ¼ S ρssð1Þð Þ � S ρ0ð Þ. In the case of a constant
Hamiltonian, Eq. (35) reduces to Eq. (32).

If the Liouvillian describes the interaction with a thermal bath at temperature T,
i.e., LðtÞ ¼ LthðtÞ, then ρss(t) = ρth(t), where

ρthðtÞ ¼
1

ZðtÞ exp �HðtÞ
kBT


 �
ð36Þ

is a thermal state for the (instantaneous) Hamiltonian H(t). Equation (35) then
yields

ΔS � 1
T

Z 1

0
Tr _ρðtÞHðtÞ½ �dt ¼ Ed

T
; ð37Þ

with the dissipated energy Ed defined in Eq. (2).

Entropy production Σ for non-thermal baths. Let us consider Σ in the case of a
constant Hamiltonian (Eq. (32)) for a non-thermal bath that gives rise to a non-
passive steady state ρss =UπssU† via the Liouvillian LU . This Σ can be related to
that of a passive state, as follows. Since the relative entropy is invariant with respect
to a unitary transformation of its arguments, Eq. (32) can be recast in the form

Σ ¼ S ~ρ0kπssð Þ � 0; ð38Þ

where ~ρ0 :¼ Uyρ0U . Thus, Σ equals the entropy production obtained under the
relaxation of an open system from the unitarily transformed state ~ρ0 to the passive
state πss.

In particular, when πss is the thermal state ρth, Σ equals the entropy production
obtained under thermalisation of the system starting from the state ~ρ0 and we have

Σ ¼ ΔS �
~Ed
T

� 0; ð39Þ

where ~Ed is the change in the energy ~E ¼ Tr ~ρH½ � of the transformed state ~ρ.
Consider now a slowly varying H(t) such that inequality (35) holds. The

invariant state of LU ðtÞ now reads ρss(t) =Uρth(t)U†, with the (instantaneous)
thermal state (36). Inequality (35) then yields

Σ ¼ ΔS � 1
T

Z 1

0
Tr Uy _ρðtÞUHðtÞ� �

dt � 0; ð40Þ

where the appearing integral is the generalisation of ~Ed from inequality (39). It is
shown in Methods (‘Unitary equivalence of non-thermal and thermal baths’) that
Uy _ρðtÞU equals a thermal Liouvillian acting on a unitarily transformed state (Eq.
(45)). Hence, also for a time-dependent Hamiltonian, the evaluation of Σ in a non-
thermal bath reduces to the case of a transformed state that decays via contact with
a thermal bath.

Optimality of the inequality for relative entropy. Equation (10) provides a
generally tighter inequality for ΔS than Eq. (38) (or (32)). Indeed, Eq. (38) can be
written as ΔS � S πssð Þ � kBA, where A ¼ �Tr ~ρ0 ln πss½ �. This inequality is the
tightest (i.e., its r.h.s. is maximal) on the set of all states ~ρ0 which differ from ρ0 by a
unitary transformation, when A is minimal on this set. Note that πss commutes
with the Hamiltonian and the eigenvalues of −lnπss do not decrease as a function of
the eigenvalues of the Hamiltonian. Thus, −lnπss can be considered, in a sense, as
an effective ‘Hamiltonian’, for which A is the average ‘energy’ in the state ~ρ0. The
average energy amongst unitarily accessible states is known to be minimised in the
passive state. When H is non-degenerate, then the passive state π0 corresponding to
H is also the passive state corresponding to the effective ‘Hamiltonian’ –lnπss;
hence, A is minimal for ~ρ0 ¼ π0.

By contrast, if H is degenerate there is generally no unique passive state (see
Methods ‘Non-passive states’). In this case, A is minimal not for each π0 but iff π0 is
also a passive state of the effective ‘Hamiltonian’, i.e., iff π0 commutes with πss. One
can show that there exists, at least, one such state π0. Thus, Eq. (10) provides the
tightest inequality for ΔS among all inequalities of the form (38) or (32).

Unitary equivalence of non-thermal and thermal baths. The time evolution of
an initial state ρ0 under the Liouvillian LU as defined in Methods (‘Entropy pro-
duction Σ for non-thermal baths’) may be replaced by an alternative time evolution
involving a thermal bath. These two equivalent evolution paths can be lucidly
represented by the diagram in Fig. 9a (see also ref. 63 and Methods ‘Master
equation for a squeezed bath’). According to Fig. 9a, the evolution of ρ0 induced by
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a non-thermal bath towards ρss (solid arrow) may be replaced by a three-stage
process (dashed arrows) wherein the system is in contact with a thermal bath only
in the second step.

This may be shown as follows. The Liouvillian LU in the interaction picture
may be cast into the general Lindblad form46

LUρ ¼
X
α

γα
2

2LαρL
y
α � LyαLαρ� ρLyαLα

� �
: ð41Þ

We now consider the unitarily transformed master equation

Uy LUρð ÞU ¼
X
α

γα
2

2~Lα~ρ~L
y
α � ~Lyα~Lα~ρ� ~ρ~Lyα~Lα

� �
; ð42Þ

where we have defined ~ρ :¼ UyρU and ~Lα :¼ UyLαU . The right-hand side of Eq.
(42) is thus again a Lindblad superoperator, Uy LUρð ÞU ¼: ~L~ρ. Now, since ρss ¼
UρthU

y is the steady-state solution of LU , the state ~ρss :¼ UyρssU ¼ ρth must be
the steady state of ~L. Hence, ~L has to be a thermal generator, i.e., ~L ¼ Lth, and
therefore

Uy LUρð ÞU ¼ Lth UyρU
� �

: ð43Þ

Hence, the solution of _ρ ¼ LUρ may be written as

ρðtÞ ¼ U etLth Uyρ0U
� �� �

Uy: ð44Þ

If H(t) is slowly varying in time and commutes with itself at all times, we have
time-dependent γα(t) in Eq. (41)9. Since the above derivation does not depend on
these rates, we have

Uy LU ðtÞρðtÞð ÞU ¼ LthðtÞ UyρðtÞU� �
: ð45Þ

Entropy change for time-dependent Hamiltonians. Equation (11) for a thermal
bath was derived based on the alternative (dashed) path in Fig. 9b. The energies Ed

(along the original path) and E′d (along the alternative path) are those that appear
on the r.h.s. of the entropic inequalities (8) and (11).

The Σ-inequality for the situation where the invariant state is non-passive is
given in Eq. (40) and may be recast in the form

ΔS � 1
T

Z 1

0
Tr Uy LU ðtÞρðtÞ½ �UHðtÞ� �

dt: ð46Þ

Owing to Eq. (45), this inequality is equivalent to

ΔS � 1
T

Z 1

0
Tr LthðtÞ~ρðtÞ½ �HðtÞ½ �dt; ð47Þ

where ~ρðtÞ :¼ UyρðtÞU and LthðtÞ is a thermal Liouvillian with the same
temperature and the same H(t) as in LU ðtÞ. The problem of a state ρ(t) that evolves
subject to a non-thermal bath has thus been reduced to the problem of a state ~ρðtÞ
that evolves according to a thermal bath. This is the situation considered in the
original (solid) path in Fig. 9b upon replacing ρ(t) by ~ρðtÞ there. This yields again
Eq. (11), thus extending it to the case of a non-passive invariant state.

In the general case that πss(t) is not a thermal state, inequality (46) is replaced
by

ΔS � �kB

Z 1

0
Tr Uy LU ðtÞRðtÞ½ �U ln πssðtÞ
� �

dt: ð48Þ

One can then proceed as above, but LthðtÞ is then replaced by a ‘passive’ Liouvillian
LpasðtÞ whose invariant state is πss(t). The resulting inequality for ΔS [the

generalisation of Eq. (11), i.e., the counterpart of Eq. (10)] then reads,

ΔS � �kB

Z 1

0
Tr LpasðtÞRðtÞ

� �
ln πssðtÞ

� �
dt; ð49Þ

where R(0) = π0. Note that the latter integral cannot be identified with energy
transfer. Equation (49) holds also for the case of a passive invariant state ρss(t) =
πss(t), where now LpasðtÞ ¼ LðtÞ.

Derivation of the efficiency bound. Energy conservation (Eq. (1)) over a cycle
yields

Ed;c þ Ed;h þW ¼ 0; ð50Þ

where Ed;c Ed;h
� �

is the dissipative energy change of the WM due to its interaction
with the cold thermal (hot non-thermal) bath (Fig. 4). As mentioned in the main
text, we assume that the WM is thermal and hence passive prior to its interaction
with the cold thermal bath.

The efficiency of the engine is defined as the ratio of the extracted work to the
invested energy (passive thermal energy and ergotropy) Ed;h ¼R1
0 Tr LU ðtÞρðtÞð ÞHðtÞ½ �dt provided by the non-thermal bath, yielding

η :¼ �W
Ed;h

¼ 1þ Ed;c

Ed;h
: ð51Þ

This expression holds for Ed;c � 0 and Ed;h � 0; see below a discussion of the
opposite case. From condition (13) it then follows that

Ed;c � � Tc

Th
E′d;h: ð52Þ

Inserting this relation into (51) yields the efficiency bound (14).
The efficiency bound (14) may be generalised to the case where the passive state

of the working medium is not thermal after the interaction with the non-thermal
bath. Condition (13) is then, following Eq. (49), replaced by

Ed;c

Tc
� kB

Z 1

0
Tr LpasðtÞRðtÞ

� �
ln πssðtÞ

� �
dt � 0 ð53Þ

and we then find

η � 1þ kBTc

Ed;h

Z 1

0
Tr LpasðtÞRðtÞ

� �
ln πssðtÞ

� �
dt; ð54Þ

where the integral is evaluated for the energising stroke.
If Ed;c>0 E′d;h<0

� �
, then also the cold bath provides energy, which has to be

taken into account in the efficiency. The latter now reads32

η ¼ �W
Ed;h þ Ed;c

¼ Ed;h þ Ed;c

Ed;h þ Ed;c
¼ 1; ð55Þ

which cannot be further restricted by any inequality for ΔS.
We now derive the efficiency bound that follows from the reversibility

condition (7). The requirement of vanishing entropy change over a cycle then
yields

Ed;c

Tc
þ

~Ed;h
Th

� 0; ð56Þ

where ~Ed;h (the integral in Eq. (40)) is the energy change during the interaction
with the thermal bath along the dashed path in Fig. 9a. Consequently, according to
this criterion the efficiency (51) is bounded by

η � 1� Tc

Th

~Ed;h
Ed;h

¼: ηΣ: ð57Þ

Unitary

~�(t ) =   �(t )   †

~ ~�0 =    †�0 

th

U�0 �th (∞)
d

d

�0

�0 = �0

�(t )
·�(t )=   th (t )�(t )

·�(t )=   th (t )�(t )
a b

 †

Fig. 9 Different evolution paths. a The evolution of an initial state ρ0 in a non-thermal bath according to the Liouvillian LU (solid path) is unitarily equivalent
to the evolution of a state ~ρ0 in a thermal bath according to the Liouvillian Lth (dashed path). b The steady state reached by the relaxation of a non-passive
state ρ0 in a thermal bath (solid path) may also be reached by an alternative (dashed) path wherein the initial ergotropy is first removed in a unitary
process
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This bound surpasses 1 if ~Ed;h<0, which, e.g., is the case if the bath is ‘over-
squeezed’: This means that, due to the excessive bath squeezing, the interaction
with the thermal bath along the alternative path of Fig. 9a decreases the energy
while that with the non-thermal bath along the initial path increases it.

If the Hamiltonian is constant during the energising stroke, then
~Ed;h ¼ ΔEpas;h

��
d
þ gΔWjd, where gΔWjd � 0 is the ergotropy lost to the effective

thermal bath in the second step of the alternative path in Fig. 9a. A comparison of
Eq. (57) with our bound Eq. (16) for a constant Hamiltonian then yields ηOttomax � ηΣ .

Maximal efficiency of multi-bath quantum engines. We consider a cycle oper-
ating between N thermal baths (either heat sources or heat dumps) and M non-
thermal baths that are assumed to energise the engine. Namely, the non-thermal
baths provide both passive energy and ergotropy to the working medium. As before
(see main text and Methods ‘Derivation of the efficiency bound’) we assume that
the strokes are sufficiently long such that Eq. (11) is valid and that the ergotropy of
the working medium is extracted before every stroke that involves a bath.

For this situation, Eq. (13) can be generalised to

0 �
XM
i¼1

E′d;h;i
Th;i

þ
X

1�i�NjEd;i�0f g
Ed;i

Ti
þ

X
1�i�NjEd;i�0f g

Ed;i

Ti
: ð58Þ

Here the temperatures of the thermal baths are denoted by Ti and the temperature
parameters of the non-thermal baths by Th,i. Note that under the assumptions
made above E′d;h;i � 0 and that for thermal baths Ed;i � E′d;i .

By introducing the minimum and maximum temperatures Tmin ≤ {Ti, Th,i} ≤
Tmax, we obtain2

0 � PM
i¼1

E′d;h;i
Th;i

þ P
1�i�NjE′d;i�0f g

E ′
d;i

Ti
þ P

1�i�NjEd;i�0f g
Ed;i

Ti

� PM
i¼1

E ′
d;h;i

Tmax
þP

f1≤ i≤NjE ′
d;i ≥ 0g

E ′
d;i

Tmax
þP

f1≤ i≤NjEd;i ≤ 0g
Ed;i

Tmin

¼:
E′d;in
Tmax

þ Ed;out

Tmin
:

ð59Þ

Hence, we have the relation

Ed;out � � Tmin

Tmax
E′d;in: ð60Þ

The efficiency of the multi-bath engine is

η ¼ 1þ Ed;out

Ed;in
; ð61Þ

where

Ed;in :¼
XM
i¼1

Ed;h;i þ
X

1�i�NjEd;i�0f g
Ed;i ð62Þ

is the total energy that the working medium obtained from the energising baths
during a cycle. Owing to Eq. (60), the efficiency (61) is bounded by

η � 1� Tmin

Tmax

E′d;in
Ed;in

: ð63Þ

Note that the equality sign in Eq. (63) is only fulfilled if both equality signs in Eq.
(59) hold. In particular, Eq. (63) is a strict inequality in the multi-bath case, i.e., if
more than two temperatures appear in Eq. (58).

Inequality (63) is the generalisation of Eq. (14) to more than one energising
bath. The efficiency of multi-bath engines is thus always lower than the maximum
efficiency of a two-bath engine that operates between a cold thermal bath at
temperature Tmin and a hot non-thermal bath at temperature parameter Tmax

which results in the same ratio E′d;in/Ed;in of the input energies. This also holds in
the case that the first equality sign in Eq. (59) is fulfilled, which in the case of
thermal baths corresponds to the second law and hence the reversibility condition.

The efficiency bound (63) thus contains as a special case the fact that the
efficiency of multi-bath heat engines (i.e., the case where all the baths are thermal
such that E′d;in � Ed;in) is always lower than the Carnot efficiency determined by
the minimium and the maximum temperatures of the cycle, even if the cycle is
reversible2. In this sense, our bound (14) is universal.

The above considerations hold for the case E′d;h;i � 0. As discussed in Methods
(‘Derivation of the efficiency bound’) for the two-bath situation, in the case that
E′d;h<0 the two-bath engine operates at efficiency η = 1 (Eq. (55)), which obviously
cannot be surpassed by any engine powered by multiple thermal or non-thermal
baths.

Expressions used in Fig. 8. In Fig. 8, we have used the energies

Ed;h ¼ �hωh nh þ Δnh � ncð Þ ð64Þ

ΔEpas;h ¼ �hωh nh � ncð Þ ð65Þ

~Ed ¼ ΔEpas;h
��
d
��hωhΔnc: ð66Þ

Here ωc (ωh) is the oscillator frequency before (after) the compression stroke.
Furthermore, we have defined ni ¼ exp �hωi= kBTi½ �ð Þ � 1½ ��1 and Δni ¼
2ni þ 1ð Þsinh2ðrÞ for i ∈ {c, h}, where r denotes the squeezing parameter46. Using
the energies (64)–(66), the efficiency bounds ηΣ (Eq. (57)) and ηmax (Eq. (16)) then
evaluate to

ηΣ ¼ 1� Tc

Th

nh � nc � Δnc
nh þ Δnh � nc

ð67Þ

and

ηmax ¼ 1� Tc

Th

nh � nc
nh þ Δnh � nc

; ð68Þ

respectively. Additionally, we have used the actual efficiency32

η ¼ 1� nh � ncð Þωc

nh þ Δnh � ncð Þωh
; ð69Þ

which is valid for Ed;c � 0, i.e., nc � nh. For nh � nc � nh þ Δnh the efficiency
evaluates to η = 1. The machine acts as an engine for Ed;h � 0, i.e., for
nh þ Δnh � nc, which for the parameters of Fig. 8 corresponds to ωc=ωh ≳ 0.22.

Data availability. All relevant data are available from the authors.
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