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Intensification of terrestrial carbon cycle related to
El Niño–Southern Oscillation under greenhouse
warming
Jin-Soo Kim 1, Jong-Seong Kug 1 & Su-Jong Jeong2

The El Niño/Southern Oscillation (ENSO) drives interannual variation in the global carbon

cycle. However, the relationship between ENSO and the carbon cycle can be modulated by

climate change due to anthropogenic forcing. We show herein that the sensitivity of the

terrestrial carbon flux to ENSO will be enhanced under greenhouse warming by 44% ( ±

15%), indicating a future amplification of carbon–climate interactions. Separating the con-

tributions of the changes in carbon sensitivity reveals that the response of land surface

temperature to ENSO and the sensitivity of gross primary production to local temperature are

significantly enhanced under greenhouse warming, thereby amplifying the ENSO–carbon-

cycle coupling. In a warm climate, depletion of soil moisture increases temperature response

in a given ENSO event. These findings suggest that the ENSO-related carbon cycle will be

enhanced by hydroclimate changes caused by anthropogenic forcing.
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The El Niño/Southern Oscillation (ENSO) strongly impacts
the interannual variations in the global carbon cycle by
influencing terrestrial ecosystem processes via extensive

teleconnection1. Throughout most of the tropics, terrestrial
vegetation productivity is reduced by the increased surface tem-
perature and decreased precipitation associated with El Niño,
whereas the opposite anomalies occur in the case of La Niña2–6.
This response of terrestrial ecosystems to ENSO controls sig-
nificant changes in terrestrial productivity and the magnitude of
the terrestrial carbon flux, eventually regulating the concentration
of atmospheric CO2

7, 8. Therefore, understanding the relation
between ENSO and the terrestrial carbon cycle provides an
excellent route to predicting changes in the global carbon cycle.

In a warmer climate, the terrestrial carbon cycle will change in
response to altered ENSO teleconnection9. For example, previous
studies indicate that greenhouse warming would cause changes in
the regional impacts of ENSO10–14 because ENSO responses can
be altered by changes in the mean background states, such as
atmospheric circulation patterns, surface temperature, and pre-
cipitation. Changes in these atmospheric conditions associated
with ENSO could also affect their impacts on the terrestrial

ecosystem and carbon cycle. In addition, regional changes in the
mean climate lead to changes in the sensitivity of the terrestrial
carbon flux to local temperature anomalies15–17, which means
that changes in sensitivity depending on varying climate states
will be directly related to the strength of the terrestrial response to
ENSO. Greenhouse warming leads to a strong potential for a
change in the relation between ENSO and the terrestrial carbon
cycle, thereby requiring quantitative investigations to estimate
future changes in the ENSO-related carbon cycle.

In the present study, we examine future changes in the sensi-
tivity of the terrestrial carbon cycle to ENSO in the Coupled
Model Intercomparison Project Phase 5 (CMIP5) Earth System
Models (ESMs) by comparing preindustrial and future projec-
tions. We analyze the Extended Concentration Pathway 4.5
(ECP4.5) scenario for the future projections, which extends the
Representative Concentration Pathways (RCP) 4.5 with con-
tinuous anthropogenic forcing until 2300. It is difficult to estimate
temporal changes of interannual sensitivities using the RCP sce-
nario because atmospheric conditions and carbon fluxes are
strongly affected by anthropogenic forcing with considerable
year-to-year variations and a time-varying trend with respect to
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Fig. 1 Net biome production sensitivities to ENSO. a Regression coefficients of carbon-flux anomalies in the range 40 °S–40 °N for the December–February
(DJF) Niño3.4 index for net biome production (NBP) γENSONBP

� �
based on the preindustrial experiment (blue) and ECP4.5 (red), and b the differences between

the two experiments ΔγENSONBP

� �
. Shaded area and dashed lines indicate 95% confidence levels calculated using the bootstrap method. Red stars indicate

significant months for ΔγENSONBP at 95% confidence levels. c Regression coefficients of NBP anomalies from September to February in the range 40 °S–40 °N
for DJF Niño3.4 for the preindustrial experiment and ECP4.5 based on multimodel ensemble (MME, left) as simple arithmetic mean of nine Earth System
Models (ESMs) and individual ESMs (right). Error bars indicate 95% confidence levels of regression coefficients calculated by using bootstrap method. *P
< 0.1 and **P< 0.05 for difference between two experiments in regression coefficients being significantly different from zero
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the ongoing climate change. To estimate more stable interannual
sensitivities under the influence of anthropogenic climate change,
we use a stabilized period of 200 years of ECP4.5, which is an
idealized experiment for the 22nd and 23rd centuries. In this way,
interannual sensitivities are more statistically significant and thus
better estimate the anthropogenic effects on these sensitivities,
allowing for a better comparison with sensitivities obtained from
the preindustrial experiment (see Methods).

Results
Enhanced ENSO-related carbon cycle under greenhouse
warming. The sensitivity to ENSO (γENSONBP ; PgC yr−1 °C−1) of net
carbon flux from land (net biome production; NBP) in the range
40°S–40°N is estimated based on a linear regression of NBP
anomalies with respect to December–February (DJF) Niño3.4
index. This sensitivity is well simulated by the CMIP5 ESMs and
is consistent with previous modeling results in terms of phase and
peak timing18, 19 (Fig. 1a). As shown in Fig. 1, the ESMs show
negative values, suggesting that the ESMs capture well the
decreased carbon uptake during the El Niño years and the
increased carbon uptake during the La Niña years (see Supple-
mentary Fig. 1). The maximum NBP response to ENSO also
appears the following March, whereas the ENSO magnitude
usually peaks in the boreal winter4, 8, 18, 19. This delayed peak in
the ENSO-related carbon flux is consistent with the findings of
numerous studies based on both observation and modeling18–21.

It is evident that the sensitivity is largely increased in the
ECP4.5 simulation (Fig. 1a), accompanied by a stronger sensi-
tivity of NBP to ENSO in the projection. This result suggests that
ENSO-related NBP intensifies under greenhouse warming. This
intensification ΔγENSONBP

� �
appears clearly from September to

February (SONDJF; Fig. 1b, 44.9% for SON and 44.1% for DJF),
when ENSO anomalies are strong. The NBP response to ENSO is
−1.29 PgC yr−1 °C−1 in the preindustrial experiment for the
SONDJF mean; however, it is enhanced by 44.4% in the future
projection. The increase in the multimodel ensemble (MME) is
also significant at the 95% confidence level, based on bootstrap
estimates. In addition to the MME, all individual models indicate
that compared with the results of the preindustrial experiment,
the NBP will become more sensitive to ENSO under greenhouse
warming (Fig. 1c). In particular, among nine ESMs, six (eight)
models exhibit significantly stronger sensitivities of NBP in the
period SONDJF at the 95% (90%) confidence level.

The NBP carbon flux is defined as the sum of carbon fluxes due
to gross primary production (total biomass produced by
photosynthesis; GPP), autotrophic respiration Ra, heterotrophic
respiration Rh, and emissions from wildfires in the CMIP5 ESMs.
The sensitivity of carbon fluxes to ENSO is estimated from the
separate responses of each carbon flux. The GPP response to
ENSO, γENSOGPP , explains most of the NBP response to ENSO in the
ESMs, but carbon fluxes due to respiration, Ra and Rh, are
relatively small for both the experiments and for the differences
between the two experiments (see Supplementary Fig. 2d, f).
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Fig. 2 Sensitivity contributions to enhanced gross primary production response to ENSO. a Differences in the regression coefficient of gross primary
production (GPP) anomalies ΔγENSOGPP
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from September to February for the December–February Niño3.4 index between the preindustrial experiment and

ECP4.5. b Sum of changes in sensitivities based on each term in Eq. (4). c–f Each term in Eq. (4) plotted as a contribution to future changes in the response
to ENSO and the GPP sensitivity changes to c temperature ΔγTemp
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and d precipitation ΔγPrecGPP

� �
; the GPP response to ENSO due to e temperature
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� �
and f precipitation ΔγENSOPrec

� �
. Units are kgCm−2 yr−1 °C−1
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Because the CMIP5 models tend to underestimate these ENSO-
associated fluxes in the control experiment19, changes in
respiration will require further examination. However, projec-
tions of carbon flux due to wildfires change significantly as
compared to preindustrial experiments, which give −0.12 PgC yr
−1 in SONDJF (see Supplementary Fig. 2h). This result is
consistent with a previous study that shows enhanced fire activity
associated with El Niño due to water deficit under a warm
climate22. Although this MME result is about 20% of GPP
anomalies in SONDJF, it is based on only four models: CESM1-
CAM5, IPSL-CM5A-MR, MPI-ESM-LR, and NORESM1-M,
which simulate carbon flux due to wildfires. Because other
models do not include carbon-emission anomalies due to fire, the
CMIP5 ESMs tend to underestimate the contribution of fires to
NBP anomalies. Nonetheless, the individual ESMs and the MME
mostly exhibit similar magnitudes, evolutions, and peak timings
in the GPP response to ENSO as compared with the NBP
response to ENSO (see Supplementary Fig. 3). Thus, the carbon
fluxes according to GPP anomalies in the range 40 °S–40 °N
mainly lead to terrestrial carbon-flux anomalies associated with
ENSO in the ESMs.

Contributions to enhanced sensitivity. Because the terrestrial
GPP is significantly affected by local temperature and precipitation
(see Methods, Eq. (2))7, 8, 18, 19, the GPP response to ENSO is
separated into the contributions of local temperature and pre-
cipitation to understand how the ENSO-related carbon cycle
intensifies under greenhouse warming. The future changes in the
GPP response to ENSO are determined by changes in the response
of local temperature and precipitation to ENSO and changes in the
sensitivity of GPP to local temperature and precipitation (see

Methods, Eq. (4)). Figure 2 shows the contribution of each term to
the increased GPP responses to ENSO under greenhouse warming.
In Fig. 2b, the sum of the linear terms is similar in spatial dis-
tribution and magnitude to the simulated changes in the GPP
response (see Fig. 2a and Supplementary Fig. 4), suggesting that
this separation is valid. For western Africa, however, the sum of all
terms cannot explain the negative value of the changes in the GPP
response to ENSO, suggesting that other physical factors might be
more important for changes over western Africa.

For most tropical regions, such as in Amazonia, Australia, and
Insular Southeast Asia, we find a negative contribution of the
changes in the GPP sensitivity to temperature (ΔγTemp

GPP γENSOTemp ,
Fig. 2c and Supplementary Fig. 5) and in the temperature
response to ENSO (ΔγENSOTemp γ

Temp
GPP , Fig. 2e and Supplementary

Fig. 6). This indicates that these changes significantly contribute
to the changes in the GPP response, whereas the other parameters
make relatively small contributions related to precipitation23. As
shown in Fig. 2c, the changes in the GPP sensitivity to

temperature ΔγTemp
GPP γENSOTemp

� �
also substantially contribute

throughout the tropics to the changes in the enhanced GPP
response to ENSO ΔγENSOGPP

� �
(Fig. 2c). This result suggests that

the carbon flux of GPP will be more sensitive to local temperature
variations under greenhouse warming, which is consistent with
previous studies that suggest that the current climate is already
close to or exceeding the optimal temperature range for terrestrial
productivity16, 17. Thus, even if the remote impacts of ENSO on
regional climate are not altered under greenhouse warming, the
ENSO-related carbon cycle can be intensified because of changes

in GPP sensitivity to temperature ΔγTemp
GPP

� �
.

In addition, Fig. 2e ΔγENSOTemp γ
Temp
GPP

� �
shows the contribution of

changes in the response of land temperature to ENSO γENSOTemp

� �

on changes in the GPP response to ENSO. Because the GPP

response to local temperature γTemp
GPP

� �
is mostly negative in

tropical regions, enhanced γENSOTemp under greenhouse warming
leads to a negative GPP response to ENSO. In particular, the
enhanced temperature response to ENSO clearly appears over the
Amazon and eastern Africa. The enhanced temperature response
during El Niño tends to reduce the carbon uptake by GPP owing
to enhanced heat stress to ecosystems.

Regional contributions in the future changes. The stronger
terrestrial carbon-flux anomalies associated with ENSO in a warm
climate appear in most tropical regions; however, their con-
tributions vary over different regions. To examine which regions
contribute the most to the stronger GPP response to ENSO, we
separate changes in the GPP response to ENSO into six land
regions in the tropics and the subtropics that are known to have
dominant terrestrial carbon fluxes. Of these regions, Amazonia,
Australia, Insular Southeast Asia, and Southeast Africa con-
siderably contribute to the reduced carbon fluxes out of atmo-
sphere due to GPP on land (i.e., −0.31, −0.18, −0.13, and −0.14
PgC yr−1 °C−1, respectively; see Fig. 3). These regional contribu-
tions appear to be proportional to their present contributions,
except for Southeast Africa (see Supplementary Fig. 7). Because
almost half of the changes in the GPP response to ENSO can be
attributed to the contribution of the Amazon region, the Amazon
terrestrial carbon flux changes are the most critical for changes in
the interannual variability of the global carbon cycle, as suggested
by previous studies24, 25. Moreover, the increase in Australia is
consistent with the recent intensified interannual carbon flux
variability in semi-arid regions, which would be an important
driver of the interannual global carbon cycle in the future26. Both
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changes in GPP response to ENSO ΔγENSOGPP

� �
in Amazonia and

Australia can be explained by ΔγENSOTemp γ
Temp
GPP and ΔγTemp

GPP γENSOTemp , but

ΔγENSOTemp γ
Temp
GPP is the most dominant contributor for the Amazon

region (see Supplementary Fig. 8). However, the current models
also show a considerable spread in future changes, indicating
large uncertainty. This uncertainty reveals that current land
models have large uncertainties regarding ENSO teleconnection27

and terrestrial production to climatic conditions28. Despite the
wide model spread, the conclusion remains robust: changes in the
GPP response to ENSO in the tropics lead to global changes in
the GPP response to ENSO.

Possible mechanism for the enhanced temperature responses.

The enhanced land temperature responses to ENSO ΔγENSOTemp

� �

substantially contribute to the changes in the GPP response to
ENSO (Fig. 2 and Supplementary Figs. 6 and 9); however, it
remains unclear how the land temperature responses become
stronger during the ENSO phases. A previous modeling study
suggests that this pattern may be attributed to surface heat budget
changes caused by cloudiness and decreased evaporation related
to soil-moisture depletion10. However, cloudiness and its relevant
surface heat budget do not show significant changes at least in the
nine ESMs (see Supplementary Fig. 10). In contrast, previous
studies suggest that soil-moisture depletion under greenhouse

warming can increase the possibility of extreme heat events not
only in Europe and North America but also in the tropics29–32.
The soil moisture in the preindustrial experiment is greater than
that in the future projection across the entire tropics, except for
western Africa and India (Fig. 4b), and this result is consistent
with that of a previous multimodel study33. Soil-moisture
depletion leads to enhanced sensible heat exchange between the
land surface and air rather than latent heat flux, and this is
particularly effective in areas with a soil-moisture-limited
regime30.

Figure 4c shows the correlation ρ E;Tð Þ between evaporation
and surface temperature, which is a useful diagnostic tool for
estimating the coupling strength between evaporation and
temperature31. The ESMs exhibit a strong negative relation
between evaporation and surface temperature over soil-moisture-
limited regions in the tropics, including Amazonia, Australia,
South Asia, and Africa (Fig. 4a, c). This negative correlation
means that decreased evaporation is closely related to an increase
in the local temperature anomaly through enhanced sensible heat
flux exchange, regardless of latent cooling for those regions, and
suggests a soil-moisture-limited regime29–36. As expected, the
spatial pattern of future changes in the evaporation-temperature
coupling strength, Δρ E;Tð Þ, is fairly similar to that of the future
changes in soil moisture (Fig. 4b, d). This implies that the soil-
moisture-limited regime will expand in the tropics under
greenhouse warming and that evaporation-temperature coupling
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will be enhanced accordingly. Therefore, future strengthened
evaporation-temperature coupling indicates that the initial
temperature anomalies may be intensified further and maintained
longer as a result of the strong positive feedback of soil moisture.
Consequently, the response of the ENSO-induced land tempera-
ture is also enhanced as the evaporation-temperature coupling
strengthens. In other words, reduced soil moisture under
greenhouse warming leads to enhanced ENSO-related tempera-
tures owing to the strengthened evaporation-temperature cou-
pling (see Supplementary Fig. 11).

Discussion
A comparison of two different scenarios (preindustrial & ECP4.5)
in the ESM simulations shows that the sensitivity of terrestrial
carbon flux to ENSO is enhanced under greenhouse warming.
The amplification of the coupling between ENSO and the global
carbon cycle results from two physical processes: (i) the enhanced
sensitivity of GPP to local temperature and (ii) the enhanced
ENSO impacts on the land temperature. These two factors are
expected to affect other interannual climate variabilities and long-
term climate change. In other words, the results of the present
study suggest that two-way coupling between the climate system
and the global carbon cycle might be intensified in a warmer
climate; therefore, climate sensitivity to anthropogenic forcing
may accelerate as global warming progresses.

In contrast to GPP, Ra and Rh show no significant changes
between the two scenarios (see Supplementary Fig. 2). Indeed,
attempting various parameterizations for Rh related to tempera-
ture variation in the CMIP5 ESMs37 shows that a systematic
problem exists in the current land surface models for capturing
the temperature sensitivity of respiration, especially that linked to
long-term temperature variability38. To estimate future changes
in the Rh response to ENSO, the model parameterization for Rh

should be further validated and investigated39. In addition, cur-
rent ESMs, including process-based fire schemes, tend to
underestimate the effects of wildfires19, 40, 41, which implies that
our results may have overlooked the contributions of changes in
Rh and changes due to wildfires related to ΔγENSOTemp . Such changes
might further intensify the ENSO-related terrestrial carbon flux,
rather than what we report herein.

In addition, our results imply that the amplified ENSO-related
interannual carbon cycle can change the terrestrial productivity
on a long-term time scale, particularly in regions that are vul-
nerable in terms of climatic extremes. Observational studies have
pointed out that climate extremes (e.g., heat waves) will even
cause collective mortality in tropical forests by exceeding the
threshold for survivable conditions42–45. Consequently, the
damaged terrestrial ecosystem will partly lose its function of
consuming CO2 until natural restoration. Thus, short-term cli-
mate extremes could cause a considerable reduction in long-term
carbon uptake and may promote positive feedback to greenhouse
warming46–48. For example, numerous studies have warned that
land use change, deforestation, and dieback of the Amazon forest
will accelerate future global warming22, 49–52. Indeed, stronger
ENSO impacts on Amazonian terrestrial production would pro-
mote accelerated CO2-induced global warming through extensive
dieback.

Furthermore, in addition to regions of tropical rainforest, the
present results show that regions with high cropland intensity,
such as South Asia and East Australia, exhibit enhanced GPP
response to ENSO under greenhouse warming. These regions
considerably contribute to global crop production and a close
relation exists between ENSO and crop production in these
regions13, 53. Therefore, our results imply that enhanced ENSO
impacts on terrestrial productivity will lead to larger interannual

variability in the global crop yield associated with ENSO.
Although a strong positive trend exists in global crop production
based on technical progress in agriculture, approximately one-
third of the global crop yield can be explained by climate varia-
bility54, which means that enhanced ENSO impacts on terrestrial
response play a role in both the global carbon cycle and food
security because they influence global crop production.

Methods
Data. Nine ESMs from CMIP5 were analyzed (BCC-CSM1-1, CANESM2, CESM1-
CAM5, GISS-E2-H, HADGEM2-ES, IPSL-CM5A-MR, MIROC-ESM, MPI-ESM-
LR, and NORESM1-M) based on the availability of carbon fluxes and long-term
simulations. We used the preindustrial experiment and ECP4.555 to estimate the
future changes in ENSO teleconnection and its relevant carbon-cycle variations
(see Supplementary Table 1). The MME for the regression coefficient is given by
the simple arithmetic mean of nine ESMs. Bootstrap resampling is used to assess
the significance of MME. By randomly selecting nine ESMs with replacements,
10,000 bootstrap samples are produced for the regression coefficient. These are
used to produce 10,000 estimates of the MME, which constitute an empirical
bootstrap distribution and provide a confidence interval for the MME. ECP4.5 is
the extension of RCP4.5 with continuous anthropogenic forcing until 2300. Pre-
vious studies attempted to estimate the anthropogenic effects on the climate by
comparing climatology in the first (i.e., 2006–2025) and the last (i.e., 2081–2100)
period of the 21st century projection. However, estimating the interannual sensi-
tivities is difficult even with a 20- or 30-year window because variables are strongly
affected by anthropogenic forcing with considerable year-to-year variations and a
time-varying trend with respect to the ongoing climate change56–58. Moreover, the
long-term natural variability inherent in model simulations can hinder the esti-
mation of accurate interannual sensitivities when using a 20- or 30-year window59.
To more accurately estimate sensitivities under the influence of anthropogenic
climate change, we use a stabilized period of 200 years of ECP4.5 (i.e., the 22nd and
23rd centuries). In this way, interannual sensitivities have statistical significance for
estimating the anthropogenic effects on these sensitivities when comparing the
sensitivities obtained using the preindustrial experiment.

The CMIP5 ESMs provide carbon-flux variables between land and atmosphere
related to land processes such as terrestrial production and respiration. In this
study, carbon fluxes are defined as the amount of CO2 transported from land to the
atmosphere; thus, a negative value means that land emits CO2 into the atmosphere
and a positive value implies that land removes CO2 from the atmosphere.

Sensitivity analysis. The DJF Niño3.4 (5 °S–5 °N, 170°–120 °W) index is used to
represent the ENSO state (4), and linear regression is used to estimate the impact of
ENSO on regional temperature, precipitation, and carbon fluxes. We define these
regression coefficients as sensitivity (γ). For example, the temperature sensitivity to
ENSO γENSOTemp

� �
is defined as the regression coefficient between the DJF Niño3.4

index and temperature anomalies. Similarly, γENSOPrec indicates a regression coefficient
that falls between the DJF Niño3.4 index and the precipitation anomalies. Future
change in the sensitivity Δγ is defined as the difference in sensitivity between
preindustrial and ECP4.5 simulations. The MME was calculated by averaging the
regressed results from each of the nine ESMs. Model outputs were regridded to a
common 1° × 1° latitude-longitude grid to obtain Figs. 3 and 4.

Surface temperature and precipitation are highly correlated to each other over
the tropics and their effects on the carbon-flux anomalies cannot be easily
distinguished based on a simple linear regression19. Thus, to separately estimate the
sensitivities of GPP to temperature and precipitation, a partial regression was used
herein on behalf of the partial differential for the sensitivity of the GPP to surface
temperature and precipitation, and partial regression coefficients are derived from
multiple linear regressions of GPP on surface temperature and precipitation17, 19,
60, 61. This may be expressed as

∂ GPPð Þ
∂ Tempð Þ δTempþ ∂ GPPð Þ

∂ Precð Þ δPrecþ ε

¼ γTemp
GPP δTempþ γPrecGPPδPrecþ ε;

ð1Þ

where γTemp
GPP and γPrecGPP are obtained from the coefficients based on the partial

regression method. These parameters approximately represent the sensitivities of
GPP to surface temperature and precipitation, respectively. Moreover, to quantify
the changes associated with ENSO forcing, GPP changes with respect to ENSO
forcing may be expressed as

d GPPð Þ
d ENSOð Þ ¼ ∂ GPPð Þ

∂ Tempð Þ
d Tempð Þ
d ENSOð Þ þ ∂ GPPð Þ

∂ Precð Þ
d Precð Þ
d ENSOð Þ þ ε

¼ γTemp
GPP

d Tempð Þ
d ENSOð Þ þ γPrecGPP

d Precð Þ
d ENSOð Þ þ ε

ð2Þ

where the ordinary differential is used for the sensitivity of temperature and
precipitation to ENSO forcing. The partial differential is applied for the sensitivity
of the GPP to temperature γTemp

GPP

� �
and precipitation γPrecGPP

� �
. We define each term
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in Eq. (2) as sensitivity, which may be expressed in a simplified form as

γENSOGPP ¼ γTemp
GPP γENSOTemp þ γPrecGPPγ

ENSO
Prec þ ε ð3Þ

Based on Eq. (3), future changes in GPP responses to the ENSO forcing ΔγENSOGPP

� �
can be separated by four terms if nonlinear terms are ignored. This can be
expressed as

ΔγENSOGPP ¼ ΔγTemp
GPP γENSOTemp þ ΔγENSOTemp γ

Temp
GPP þ ΔγPrecGPPγ

ENSO
Prec þ ΔγENSOPrec γPrecGPP þ ε: ð4Þ

Each term in Eq. (4) indicates contributions to ΔγENSOGPP . The spatial patterns of
these four terms are shown in Fig. 3 to investigate their relative contributions to the
regional aspects.

Data availability. The data that support the findings of this study are all publicly
available from their sources. Processed data, products, and code produced in this
study are available from the corresponding author upon reasonable request.
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