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Constructing minimal models for complex
system dynamics
Baruch Barzel1, Yang-Yu Liu2,3 & Albert-László Barabási3,4,5,6

One of the strengths of statistical physics is the ability to reduce macroscopic observations

into microscopic models, offering a mechanistic description of a system’s dynamics.

This paradigm, rooted in Boltzmann’s gas theory, has found applications from magnetic

phenomena to subcellular processes and epidemic spreading. Yet, each of these advances

were the result of decades of meticulous model building and validation, which are impossible

to replicate in most complex biological, social or technological systems that lack accurate

microscopic models. Here we develop a method to infer the microscopic dynamics of a

complex system from observations of its response to external perturbations, allowing us to

construct the most general class of nonlinear pairwise dynamics that are guaranteed to

recover the observed behaviour. The result, which we test against both numerical and

empirical data, is an effective dynamic model that can predict the system’s behaviour and

provide crucial insights into its inner workings.
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D
espite the marked advances in mapping social, biological
and technological networks1–5, our ability to predict and
manipulate their behaviour is currently limited due to the

absence of accurate microscopic models of their interaction
dynamics. Indeed, the observed behaviour of complex systems is
governed by the interplay between their topology and their
dynamics6,7, prompting us to develop reliable methodologies for
the construction of dynamic models for complex systems. The
problem is that unlike physical systems, where the interactions
are described in terms of a set of fundamental rules, such as the
laws of electromagnetism driving the microscopic interactions
between particles, for most complex systems such rules remain to
be discovered, limiting our ability to rely on a theoretical
understanding of the system’s components when constructing the
appropriate model. Here we develop a methodology to construct
dynamic models directly from empirical observations, assuming
minimal a priori knowledge about the system. Our goal is to
directly translate these observations into a mechanistic model that
accurately captures the interactions between the system’s
components, ultimately providing the system’s equation of
motion. Such models can provide both theoretical insights into
the inner workings of the system and predictive power on its
expected behaviour.

Consider a complex system with N components (nodes), whose
activities xi(t) (i¼ 1,y,N) are driven by ordinary differential
equations of the form

dxi
dt

¼ M0ðxiðtÞÞþ
XN
j¼1

AijMðxiðtÞ; xjðtÞÞ: ð1Þ

Here M0(xi(t)) describes the self-dynamics of each component
and M(xi(t), xj(t)) captures the impact of i’s neighbour j on the
state of i. The adjacency matrix, Aij, describes which components
interact. With the appropriate choice of the nonlinear M0(xi(t))
and M(xi(t), xj(t)), equation (1) has been used before to describe
the dynamics of a wide range of complex systems, like metabolic
networks8,9, the spread of infectious disease on a social
network10,11 or interspecies interactions in ecological systems12,
to mention only a few. Furthermore, for many biological9,13,14

technological15 or social10,11,16 systems the interaction term
factorizes as M(xi(t), xj(t))¼M1(xi(t))M2(xj(t)), in which case the
system’s dynamics is uniquely characterized by three independent

functions, together defining the system’s model as

m ¼ ðM0ðxÞ;M1ðxÞ;M2ðxÞÞ; ð2Þ
a point in the model spaceM (Fig. 1a,b). For systems of unknown
microscopic dynamics, the challenge is to infer the appropriate
model by identifying M0(x), M1(x) and M2(x) that accurately
describe the system’s observable behaviour. (The treatment of
more general systems, in which M(xi, xj) cannot be factorized, is
discussed in Supplementary Note 5).

Traditionally, uncoveringm involves three steps: (i) observation
of the system’s macroscopic behaviour X (ref. 17); (ii) inference of
the microscopic model, m, from X ; (iii) validation, showing that
m can predict the observed behaviour X . While this program has
been successfully carried out for some well studied systems, the
three steps above are difficult to replicate for complex systems: for
instance, we lack general guidelines to choose the observation X
and a methodology to reliably translate it into a microscopic
model. Hence steps (i) and (ii) require either an intuitive leap to
guess the right observation and its inferred m, or exogenous
knowledge, such as a mechanistic understanding of the nature of
the interactions between the system’s components, knowledge we
currently lack for many complex systems. Moreover, once m is
found, step (iii) is insufficient to verify its uniqueness. Indeed, the
inferred m could be one of a family of potential models that
predict X , which, absent any additional knowledge or
observations, are all equally likely candidates for the system.
This implies that rather than a specific point in the model space,
what the observation X truly allows us to infer is a broader
subspace MðXÞ � M, comprising all models m that can be
validated against X . A model not included in MðXÞ can be ruled
out by X , however, all models that are included in this subspace
are equally likely candidates and X alone cannot be used to settle
between them. Hence our goal is to develop a general method to
infer MðXÞ, relying on minimal a priori knowledge of the
structure of M0(x), M1(x) and M2(x).

Our method provides a systematic formalism to treat all steps
(i)–(iii) above for constructing m directly from empirical data. As
our input observation X we use the system’s response to external
perturbations. This represents a common empirical exploration of
complex systems, such as genetic perturbations in biology18,19,
monitoring the impact of local failures in technological systems20

or tracking the spread of information in social networks21,22. Our
key result is linking the observed system response to the leading
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Figure 1 | Reverse engineering the dynamics of a complex system. (a) The dynamics of the system is captured by the unknown nonlinear dynamic

equation (1), which we attempt to reconstruct from empirical observations. (b) The dynamic equation is composed of three functions M0(x), M1(x) and

M2(x), defining the system’s model m as a point in the model space, M. (c,d) To find this point we measure the system’s response to permanent

perturbations, allowing us to extract a set of observable functions directly linked to m: (c) the transient response is characterized by the steady-state xi and

the relaxation time ti, from which we extract the exponents x and y; (d) the asymptotic response allows us to measure six additional functions (see Table 1),

providing d, j, b, o, s and n. (e) The eight functions of G and T allow us to infer the minimal subspace MðG; T Þ, which includes all potential models m that

can describe the system’s dynamics. The dynamic equation in a is consistent with the observations in c and d if and only if m 2 MðG; T Þ.
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terms of m, providing a direct formulation by which to translate
X into an equation of the form (1). The inferred equation, reverse
engineered directly from the data, does not provide a specific
model m, but rather, defines the exact boundaries of MðXÞ,
providing the most general class of dynamics that can be used to
describe the observed system in light of X .

Results
From observation to inference and validation. To infer m we
express its components in terms of a Hahn series23 as

M0ðxÞ ¼
X1
n¼0

Anðx0 � xÞ�0ðnÞ ð3Þ

M1ðxÞ ¼
X1
n¼0

Bnðx0 � xÞ�1ðnÞ ð4Þ

M2ðxÞ ¼
X1
n¼0

Cnðx0 � xÞ�2ðnÞ; ð5Þ

which is a generalization of the Taylor expansion to include both
negative and real powers. The powers Pi(n) represent a well-
ordered set in ascending order with n, namely Pi(0) represents
the leading power in the expansion of Mi(x) around x0,
Pi(1)4Pi(0) is the next power and so on. For certain systems
the functional form of (3)–(5) is known, and the challenge is to
infer the specific coefficients An, Bn and Cn, which capture the
model parameters, such as the rate constants in (1; refs 24–26). In
contrast, here we consider systems whose microscopic model
itself is unknown. Our goal is thus to uncover the functional form
of (3)–(5), which is captured by the powers Pi(n) that participate
in the expansion. Hence we do not focus here on distinctions
such as M2(x)¼ x2 or M2(x)¼ 2x2, a distinction regarding the
coefficient Cn, which describes the rate at which the interaction
occurs. Rather, our focus here is on distinguishing between
M2(x)Bx2 versus, say, M2(x)B1–x� 2, as the different powers
expressed in the expansion, P2(n), capture different interaction
mechanisms, and hence provide an insight into the fundamental
characteristics of the system’s dynamics.

To infer the leading powers of (3)–(5) we link them to a set of
experimentally accessible observables, related to the system’s
response to external perturbations. These observables, in turn,
allow us to recover the structure of (3)–(5), reverse engineering
the dynamics (1) to its leading terms. To conduct the observation,
first we subject the nodes to external perturbations: this entails
permanently perturbing the steady-state activity, xj of node j, and
capturing the response of all other node activities xi(t). This could
be achieved either through a controlled experiment, as frequently
done in genetic perturbations18, or by monitoring natural
perturbations, like observing the spread of ideas or memes in a
social network21,22, or cascading failures in technological
systems20. The impact of these perturbations is captured by two
quantities (observations):

Transient response T . The temporal dynamics following a
permanent perturbation is characterized by the time-dependent
relaxation from the original steady state, xi, to the perturbed
steady-state xi(t-N)¼ xiþ dxi. By linearizing (1) around the
steady state we find (Supplementary Note 1)

xiðtÞ ¼ xi þ e�
t
ti

Zt
0

Biðlij; t0Þe
t0
ti dt0; ð6Þ

where ti is node i’s relaxation time and Biðlij; tÞ accounts for the
propagation of the permanent perturbation along a distance lij
from the source j to the observed node i.

Asymptotic response G. After relaxation (tcmax(ti)), the
system reaches a new, permanently perturbed state, captured by
the response matrix6,7,19,27

Gij ¼
dxi=xi
dxj=xj

����
���� ¼ d ln xi

d ln xj

����
����; ð7Þ

which quantifies the response of node i to j’s perturbation
(Supplementary Note 2). By extracting a set of empirically
observable exponents from the transient Tð Þ and the asymptotic
Gð Þ responses, we can link xi(t) (6) and Gij (7) to m (2) via
(Supplementary Note 3)

M0ðxÞ � 1

ðRðxÞÞ2
Z

ðRðxÞÞ2þ y þO ðRðxÞÞYþ ð2þ yÞ
� �h i

dx

ð8Þ

M1ðxÞ � M0ðxÞRðxÞ ð9Þ

M2ðxÞ �
ðRðxÞÞdþ 1�j þO ðRðxÞÞYþ ðdþ 1�jÞ

� �
b ¼ 0

y0 �ðRðxÞÞb þO ðRðxÞÞYþ ðbÞ
� �

b40

8<
:

ð10Þ
where

RðxÞ �
x� 1

x þO xY � 1
xð Þ

� �
d ¼ 0

ðx0 � xÞ
1
d þO ðx0 � xÞY

1
dð Þ

� �
d40

8<
: ð11Þ

and x0 and y0 are arbitrary constants.
Equations (8)–(11) take a set of observables (exponents)

extracted from the two observations, T (6) and G (7), as input
(see Table 1), and provide the leading powers in the expansions
(3)–(5) as output. From T we can directly extract two exponents
(Supplementary Note 1): (i) y captures the dependence of the
relaxation time on the node’s degree ki, which follows the scaling
ti � kyi and (ii) x describes the steady-state activity, which
can either follow (Supplementary Note 1) xi � kxi (scaling) or
xi � 1� kxi (saturation). From G we can extract (Supplementary
Note 2, ref. 7): (i) j, capturing i’s impact on its local
neighbourhood Ii ¼

P
AijGji, which scales as Ii � kji ; (ii) d,

capturing i’s stability against perturbations in its vicinity
Si ¼ 1=

P
AijGij, which follows Si � kdi ; and (iii) b, the

dissipation rate that captures the behaviour of the distance-
dependent propagation function, G(l). This function describes
the aggregated response of all nodes at distance l from a
perturbation. For a system following (1) we have G(l)¼ e� bal,
where a¼ ln(hk2i/hki� 1) is the expansion rate of the network.
Note that to measure the observables used for the reconstruction
(8)–(11) we must have access to the degrees ki of all the nodes,
requiring us to know the network topology Aij. Later we show
that even without access to Aij, a partial reconstruction of m is
still possible.

The inference presented in (8)–(11) provides only the leading
terms ofM0(x),M1(x) andM2(x). This leaves a degree of freedom to
add additional terms, as denoted by OðxY� ðyÞÞ, which involves all
the terms of order higher (Yþ (y)) or lower (Y� (y)) than xy.
Finally, in (11) we used the unsigned Y(y)¼Ysign(y)(y), which
allows the inclusion of higher (lower) powers for y40 (yo0). Hence
by measuring the three characteristic exponents of G (d, j and b),
together with the two characteristic exponents of T (y and x), we
can reconstructm to its leading order terms, allowing us to write an
effective continuum equation (1) for the system.

Equations (8)–(11) represent our main result, offering a
formalism to systematically reconstruct the dynamical equation
governing a complex system. As expected, they do not point to a
specific model, m, but narrow down the space M of all the
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potential models into the minimal subspaceMðG; T Þ of the models
that are consistent with observations G and T (Fig. 1e). This
subspace is robust to adding higher order terms and to parameter
selection (that is, rate constants). Therefore it defines a minimal
model, capturing the essential aspects of the mechanisms under-
lying the system’s interactions. Most importantly, our formalism
guarantees that all models included in MðG; T Þ will successfully
validate against G and T , and conversely all models for which
m=2MðG; T Þ will not be consistent with observations G and T .
Hence if and only if m 2 MðG; T Þ can m be validated against the
experimentally measured x and y (T ), and d, j and b (G).

Inferring the dynamics of a model system. To illustrate the
predictive power of the developed formalism we first apply it to
gene regulation, where the interaction is captured by a Hill
function as (refs 13,14,28)

dxi
dt

¼ �Bxai þ
XN
j¼1

Aij
xhj

1þ xhj
: ð12Þ

Here B is a rate constant, a represents the level of self-regulation
and the Hill coefficient, h, describes the level of cooperativity in
gene regulation. We set B¼ 1, a¼ 1/2 and h¼ 1/3, hence the real
dynamics (12) is captured by the model

mReal ¼ � x
1
2; 1;

x
1
3

1þ x
1
3

 !
: ð13Þ

Next we assume that mReal is unknown and preform an in silico
reconstruction using (8)–(10). To observe T and G we perturb
each node around the steady state and numerically measure xi(t)
(6) and Gij (7) (Supplementary Note 4). For T we find
x¼ 2.0±0.02 and y¼ 1.0±0.01 (Fig. 2a,b); for G we observe
d¼ 0, j¼ 0.33±0.01 and b¼ 0.67±0.01 (Fig. 2c–e). Therefore

(8)–(10) predict (Supplementary Note 4)

mInf � xZ þO xY� ðZÞ
� �

; 1þO xY� ð0Þ
� �

; y0 � x�r þO xY� ðrÞ
� �� �

;

ð14Þ
where Z¼ 0.50±0.01 and r¼ 0.33±0.03. Hence the reverse
engineered dynamical model for the system has the form

dxi
dt

� x0:5i þ
XN
j¼1

Aijðy0 � x� 0:33
j Þ; ð15Þ

where we only included the leading terms of (14). Equation (15)
accurately recovers the self-dynamics and the interaction terms to
leading order (Fig. 2f–h). Indeed, expanding M2(x) in (13) for
large x leads to the inferred M2(x) in (15). Hence, the inferred
M2(x) not only captures the qualitative form of the Hill function,
that is, the saturation of the interaction term for large x (ref. 28),
but also the precise form of that saturation as 1� x� 1/3þy.
This demonstrates that our formalism can correctly reverse
engineer the system’s microscopic dynamics directly from
observing T and G.

The inferred m can be also used to predict a broader range of
macroscopic functions of direct experimental interest. Consider
for example the probability density P(G) that a response term Gij

is between G and Gþ dG. We can show that P(G)BG� n, where
n¼ (bþ 2)/(bþ 1) (ref. 7). Another quantity frequently observed
in biological18, social21,22,29 and technological20,30,31 networks is
the cascade size distribution, P(C), representing the probability
that exactly C nodes exhibit a significant response (above a
threshold) to a perturbation. This distribution is driven by the
degree distribution through Ci � koi , where o¼ (bþj)/(bþ 1),
predicting P(C) through P(C)BP(ko¼C) (ref. 7). Finally, the
incoming cascade of node i, defined as the group of all nodes
whose perturbation impacted i above a threshold, can be shown
to follow Qi � ksi where s¼ (b� d)/(bþ 1). Hence, by
recovering b, j and d, the inferred m is guaranteed to also
predict P(G), P(C) and P(Q) (Supplementary Note 2).

Inferring the dynamics of empirical systems. In experimental
settings, we rarely have access to all the components of G and T .
In some cases we may lack access to the temporal dynamics,
unable to measure x and y; in others we lack a map of the
underlying network, missing ki. Fortunately, the three additional
exponents n, o and s, associated with the cascades and with the
distribution of terms in Gij (Table 1), provide an excess of
experimentally accessible quantities to arrive at the original
exponents required for the reconstruction (8)–(10). This redun-
dancy enables us to obtain insights from partial observations as
well. We illustrate this by inferring the dynamical model for two
systems that span rather different domains of inquiry: cell biology
and human activity.

Reverse-engineering subcellular dynamics. We demonstrate the
utility of our formalism using results obtained from high-
throughput gene perturbation experiments for S. cerevisiae. Here
Gij measures the change in the expression levels of 6,222 yeast
genes induced by 55 individual genetic perturbations32. As the
data set is not time resolved, we lack access to T . We also lack an
accurate map of the underlying regulatory/protein interaction
network, hence we cannot directly measure d, j and b. Our
method offers valuable insights even under these rather limiting
circumstances. First, we measure the distribution of terms in Gij,
which we find to follow P(G)BG� n where n¼ 2.0±0.1 (Fig. 3a).
Using Table 1 this translates to b¼ 0. Next we measure the
distribution P(Q) of the incoming cascades of all the nodes
(Fig. 3b). Its bounded nature implies that it is disconnected
from the degree heterogeneity (P(k))33,34, possible only if s¼ 0,

Table 1 | Observations T and G.

Function Characteristic
exponent

Additional information

Transient response T
Steady-
state xi

xi kið Þ � kxi
x0 � kxi

�
Parameter in
equation (6)

Relaxation
time ti

ti � kyi
Parameter in
equation (6)

Asymptotic response G
Stability Si Si � kdi Si ¼ 1PN

j¼1
AijGij

Impact Ii Ii � kji Ii ¼
PN
j¼1

AijGT
ij

Propagation G(l) G(l)¼ e� bal G lð Þ ¼ 1
N

PN
j¼1

P
i2Kj lð Þ

Gij

Additional functions
Cascades Ci Ci � koi o ¼ bþj

bþ 1

Incoming
cascades Qi

Qi � ksi s ¼ b� d
bþ 1

Response
distribution
P(G)

P(G)BG� n n ¼ bþ 2
bþ 1

To observe the system’s dynamics through its transient (T ) and asymptotic (G) response to
perturbations, we focus on five observables (xi, ti, Si, Ii and G(l)), each with its characteristic
exponent (x, y, d, j and b). Additional functions can be derived from these five observables,
such as the cascades (Ci), the incoming cascades (Qi) and the response distribution (P(G)),
giving rise to additional exponents (o, s and n), offering a redundancy in the predictions that is
useful when we explore incomplete experimental data.
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which in turn provides d¼ 0 (Table 1). Hence using (8)–(10) we
obtain (Supplementary Note 6)

mCell � M1ðxÞxZ; M1ðxÞ; xrð Þ; ð16Þ
where, for simplicity, we once again omitted the higher order
terms. Equation (16) predicts a family of potential models, with
an arbitrary M1(x) and Z and r, degrees of freedom originating in
our partial coverage of the functions used as input in (8)–(10).
Indeed, it is expected than the less specific is the observation X ,
the broader are the limits of the inferred subspace MðXÞ. Despite
these degrees of freedom, (16) offers crucial insight into the
biological mechanisms that underlie the observed dynamics,
helping us distinguish between the two classes of dynamical
processes that potentially drive the expression patterns of genes in
the studied experiment. The first process is regulatory
interactions (RIs), the mutual activation/inhibition of genes, in
which the interaction term has the form of a switch-like function,
for example, Hill function (12), saturating as M2(x-N)-1
(M2(x-N)-0), to describe the activation (inhibition)13,14

(Figs 2h and 3c). A competing process is protein–protein
interactions (PPIs), a biochemical mechanism in which proteins
physically bind to each other. PPIs are expressed in (1) through
mass action kinetics by non-saturating polynomial terms. Indeed,
according to the law of mass action a physical binding interaction
mAþ rB-AB contributes a term of the form xmAx

r
B to the

relevant equations in (1) (refs 9,15,35,36). Hence the polynomial
(non-saturating) form of M0(x) and M2(x) in (16) indicates that

in this experiment the system’s dynamics is dominated by
biochemical interactions, such as protein binding, degradation
and dimerization, rather than genetic regulation.

To directly test this prediction we used validated lists of
2,930 PPIs (ref. 34) and 1,079 RIs37. It is expected that a large
response Gij indicates an increased probability of finding a direct
i, j link. Hence we can use Gij to predict the already known PPI/RI
links. The standard measures to evaluate such predictions are the
areas under the receiver operating curve (AUROC) and under
the precision recall curve (AUPR)38 (Supplementary Note 6).
Measuring these curves (Fig. 3d,e), we find that in this experiment
Gij is indeed more predictive of PPIs than of RIs: for PPIs we
obtain AUROC¼ 0.580 (P value 0.03, Supplementary Note 6)
and AUPR¼ 1.8� 10� 3 (P value 0.07), while for RIs we find
AUROC¼ 0.504, and AUPR¼ 1.4� 10� 3, both not significantly
better than random (P value B1). Hence, even though cellular
dynamics is driven by a combinations of both RIs and PPIs, in
this experiment Gij emphasizes PPIs significantly more than the
RIs, supporting our conclusion that PPIs, driven by biochemistry,
offer the dominant contribution to the experimentally observed
Gij, in agreement with the inferred (16). This finding is,
in fact, consistent with other studies indicating that PPIs play a
significant role in shaping the profile of expression data39–41.
Therefore the strength of our formalism is not only its ability to
reconstruct the continuum model (16), but also its ability to
detect the dominance of PPIs in this experiment using only the
observed data Gij.
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Figure 2 | Reverse-engineering regulatory dynamics. We constructed an in silico regulatory network by numerically simulating regulatory dynamics (12)

on a scale-free network, P(k)Bk� g, g¼ 3, with N¼6,000 nodes. Perturbing the activity of each node around its steady state, we measured the functions

of T and G. (a,b) Transient response T : the steady-state xi scales with ki as xi � kxi where x¼ 2; the relaxation time ti has y¼ 1. (c–e) Asymptotic

response G: from Gij (7) we measured the stability Si (d¼0), the impact Ii (j¼0.33) and the propagation function G(l) (b¼0.67). (f–h) Reverse

engineered model m: using equations (8)–(10) we reverse engineered the dynamical equation obtaining the inferred model (14) (mInf, red solid lines). This

model accurately recovers the leading terms of the original regulatory dynamics (13) (mReal, blue circles). As our formalism infers only the leading terms of

m, it allows for a degree of freedom to add additional terms, providing the minimal model subspaceMðG; T Þ of all the potential dynamics. Several functions

from this subspace are also shown (violet solid lines). Note that all functions in the inferred MðG; T Þ accurately capture the asymptotic behaviour

of the real dynamics. Specifically, they correctly identify the essential feature of the regulatory dynamics, which is the saturation of the Hill function (M2(x))

for large x (h).
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Reverse-engineering human dynamics. While building
continuum models for biological systems has a long tradition,
the diversity of human interaction has lead to a paucity of
continuum models capturing human dynamics42,43. Here we rely
on a data set that captures B6� 104 exchanges between 1,899
users of an online instant messaging service (UCIonline) during a

B7 month period (ref. 44). This allowed us to construct Aij by
linking each user pair that exchanged at least one message during
the documented period. As here we cannot conduct a controlled
perturbation experiment, we rely on proxies that capture
quantities associated with xi in (6) and Gij in (7). First we
measure the number of messages sent by user i during a 3 hours
interval, xi(t), to obtain its time-dependent activity. We take
xi¼oxi(t)4 as a proxy for i’s steady-state activity and
Gij ¼ oxixj4=ox2i 4 as a proxy for (7) (Supplementary
Note 7). We find x¼ 1.23±0.03, d¼ 0 and n¼ 1.60±0.03,
predicting b¼ 0.67 (Table 1, Fig. 4a–c). Hence equations (8)–(10)
predict that the continuum model capturing the dynamics of
this social system has the form

mHuman � M1ðxÞ xZ þO xYþðZÞ
� �� �

; M1ðxÞ; y0 � x� r þO xY� ðrÞ
� �� �

ð17Þ
where Z¼ 0.81, r¼ 0.54 and M1(x) is an arbitrary function.

To understand the inferred dynamics, we expand M1(xi) as in
(4) and take its leading power to be m, namely P1(0)¼m. Hence
the self-dynamic term in (17) becomes M0ðxiÞ � ðx0 � xiÞmxZi .
Note that this term provides the node’s dynamics in isolation, as
in the absence of interacting partners equation (1) reduces to
_xiðtÞ ¼ M0ðxiÞ. Here as we describe the message exchanges
between linked individuals, an isolated node should become
inactive, xi(t-N)¼ 0, a condition satisfied if we set x0¼ 0.
Hence, taking only the leading terms of mHuman we obtain the
continuum equation

dxi
dt

¼ � xZþ m
i þ

XN
j¼1

Aijx
m
i y0 � x�r

j

� �
: ð18Þ

To evaluate m we consider the workload Wi of pending
messages that have to be sent or replied and its impact on i’s
activity xi. When the workload Wi is large, i experiences a
significant pressure to respond, increasing its activity xi. Yet Wi

decreases with every email i sends, hence a highly active i will
rapidly decrease its workload and activity. Equation (18) predicts
that the workload should increase with i’s activity as
(Supplementary Note 7)

Wi � xzi ; ð19Þ
where z¼ 2–Z–m. To test the validity of this prediction we
measured the incoming messages of all nodes as a proxy for their
workload, finding that the predicted scaling (19) holds for over
three orders of magnitude with z¼ 0.73±0.02, predicting
m¼ 0.46 (Fig. 4d). The second term on the right hand side of
equation (18) describes the impact of the neighbours’ activity xj
on xi. An active neighbour j increases i’s activity, prompting it to
reply or forward its incoming messages. The saturating nature of
M2(x), however, indicates that a neighbour’s impact is bounded,
reaching a maximum of y0. This agrees with our expectation that
even an extremely active neighbour cannot drive its contacts to be
active beyond their maximal capacity.

To validate (18) we used an independent data set, recording
B3� 105 email exchanges between 2,688 users during a
B6-month period (Epoch) (ref. 45). The exponents extracted
from this data set are very close to those obtained from
UCIonline: x¼ 1.26±0.04, d¼ 0 and n¼ 1.57±0.05 (Fig. 4f–h).
The workload (19), however, has z¼ 0.35±0.1, which signifi-
cantly differs from that of UCIonline (Fig. 4i). Reverse
engineering the dynamics from these exponents leads to (18),
with Z¼ 0.79, m¼ 0.86 and r¼ 0.60. This striking agreement
between the structure of the two equations inferred from two
independent data sets, indicates that the reverse engineered (18)
captures the fundamental dynamical characteristics of human
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Figure 3 | Reverse-engineering subcellular dynamics. We constructed Gij

from high-throughput microarray data tracking the response of 6,222 target

genes to the perturbation of 55 transcription factors in yeast32. (a) The

response distribution is well approximated with a power law P(G)BG� n

with exponent n¼ 2. Using Table 1 this predicts b¼0. (b) The incoming

cascade size distribution, P(Q), is bounded (see Supplementary Note 6),

indicating that Qi is independent of ki; consequently s¼0, predicting also

d¼0 (Table 1). (c) As here we only have access to two functions from the

observation G and no access to T a all, the model subspace, MðGÞ, that we
infer includes a broad range of potential models, as indicated by the

nonspecific form of (16). Still, the inferred model can help us distinguish

between two competing processes in cellular dynamics, which occupy

distinct areas in the model space M: RIs are characterized by M2(x), which

saturates for large x (activation/inhibition13,14); protein–protein interactions

are captured by a non-saturating polynomial M2(x) (mass action8,9). The

inferred model (16), with M2(x)Bxr, belongs to the protein interaction

class of dynamics. (d,e) We used Gij to predict PPIs (red) and RIs (blue),

and measured AUROC and AUPR to evaluate the performance of the two

predictions. For RIs we have AUROC¼0.504 and AUPR¼ 1.4� 10� 3,

indistinguishable from a random guess (Supplementary Note 6). For protein

interactions we have AUROC¼0.580 and AUPR¼ 1.8� 10� 3 (P values

0.03 and 0.07), indicating that indeed, the observed Gij is a better

predictor of protein interactions than of RIs (TPR, true positive rate;

FPR, false positive rate).
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communications. The only notable difference between the two
inferred models is in the value of m, which is higher in Epoch than
in UCIonline. This parameter characterizes the correlation
between a node’s activity and its tendency to respond to
incoming messages (Supplementary Note 7). Hence the greater
value of m in Epoch suggests that the propensity to respond to
incoming communications is more strongly dependent on the
activity in email communication than in instant messaging. To
test if this is indeed the case we measured the responsiveness, Ri,
of all nodes, defined as the average ratio between the incoming
and outgoing traffic between i and its interacting partners. As m is
greater for Epoch than UCIonline, we expect a stronger
dependency in Epoch between Ri and xi than in UCIonline.
Indeed, as shown in Fig. 4e,j this prediction is valid: the scaling of
Ri with xi, is greater for Epoch (g¼ 0.37) than for UCIonline
(g¼ 0.14). This dynamical distinction, correctly predicted by the
reverse engineered equations, provides independent support for
the predictive power of our formalism.

The empirical results presented above demonstrate the
practical applicability of our methodology, which is a result of
the robust nature of its underlying observables. Indeed,
characteristic exponents and scaling laws, the basis of our
reverse-engineering formalism, are often universal46, and hence
unaffected by the microscopic details of the system’s topology and
dynamics7. This allows us to reliably measure the observables
even for real systems, which rarely satisfy all of the model
assumptions, for example, they are subject to the effect
of noise, both in their dynamics as well as in their topology.
For example, many real networks feature degree correlations,
which, strictly speaking, violate our formalism’s predictions
(Supplementary Note 1). Fortunately, the observed exponents
are rather insensitive to such microscopic discrepancies, and can
be accurately extracted from both model and empirical systems,

even in the presence of degree correlations. To exemplify this we
simulated the predicted human dynamics (18) on the empirical
network of Email Epoch. Even though this network features
rather strong degree correlations, we show in Supplementary
Note 7 that the measured obsevables, that is, the exponents x, d
and n, can be accurately fitted by the predictions of our
formalism.

Discussion
In summary, the technological and experimental advances of
recent years have offered a wealth of data, capturing the detailed
node-level dynamics of biological, social and technological
systems. It is difficult, however, to extract predictive power of
these systems without a mechanistic model. Such models are rare
for complex systems, however. Here we address this challenge as a
reverse-engineering problem, showing that we can use the data to
peek into the inner mechanisms of the system, providing an
analytical microscope into the dynamics of a complex system. We
tested our formalism under rather strict conditions, inferring m
from scratch, relying only on the system’s macroscopic behaviour
(G and T ). A more realistic scenario, however, is to use the
proposed method in conjunction with some prior knowledge
about the system’s microscopic dynamics. Often we seek a
resolution between two or more competing models, as was the
case in our inference of the cellular dynamics. If the two
candidate models have a different functional form in (1), they will
occupy distinct subspaces in M, and the more likely of the two
can be decisively determined (Fig. 3c). In other cases, the
inference can be supported by some a priori knowledge
pertaining to the system’s behaviour. For instance, in human
dynamics we postulated, based on the nature of the observed
system, that isolated individuals should become inactive. Coupled
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with our formalism (8)–(10), this allowed us to complete the
reconstruction of (18). Other practical considerations in reverse
engineering are addressed in Supplementary Note 7.

Finally, the fact that our formalism infers a subspace MðXÞ,
rather than a specific model m provides us with exact bounds on
the predictive power of an observation. Indeed, it tells us that our
observation, X , provides us with theoretical grounds to select
m 2 MðXÞ over m0=2MðXÞ. At the same time, however, our
formalism shows that X cannot be used to discriminate between
any set of models within MðXÞ, by that marking the theoretical
limits on the specificity of the inferred model.
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