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Mathematical models are an essential component of quantitative science. They generate 
predictions about the future, based on information available in the present. In the spirit of 
simpler is better; should two models make identical predictions, the one that requires less 
input is preferred. Yet, for almost all stochastic processes, even the provably optimal classical 
models waste information. The amount of input information they demand exceeds the amount 
of predictive information they output. Here we show how to systematically construct quantum 
models that break this classical bound, and that the system of minimal entropy that simulates 
such processes must necessarily feature quantum dynamics. This indicates that many observed 
phenomena could be significantly simpler than classically possible should quantum effects be 
involved. 
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A mathematical model of a system of interest is an algorith-
mic abstraction of its observable output. Envision that the 
given system is encased within a black box, such that we 

observe only its output. Within a second box resides a computer 
that executes a model of this system with appropriate input. For 
the model to be accurate, we expect these boxes to be operation-
ally indistinguishable; their output is statistically equivalent, such 
that no external observer can differentiate which box contains the 
original system.

There are numerous distinct models for any given system. Con-
sider a system of interest consisting of two binary switches. At each 
time-step, the system emits a 0 or 1 depending on whether the state 
of the two switches coincides, and one of the two switches is cho-
sen at random and flipped. The obvious model that simulates this 
system keeps track of both switches, and thus requires an input of 
entropy 2. Yet, the output is simply a sequence of alternating 0s and 
1s, and can thus be modelled knowing only the value of the previous 
emission. Intuition suggests that this alternative is more efficient; 
it demands only an input of entropy 1 (that is, a single bit), when 
the original model required two. This intuition can be formalized 
by defining the optimal model of a particular behaviour is the one 
whose input is of minimal entropy. Indeed, this definition has been 
already adopted as a principle of computational mechanics1,2.

Efficient mathematical models carry operational consequence. 
The practical application of a model necessitates its physical realiza-
tion within a corresponding simulator (Fig. 1). Therefore, should a 
model demand an input of entropy C, its physical realization must 
contain the capacity to store that information. The construction 
of simpler mathematical models for a given process allows poten-
tial construction of simulators with reduced information-storage 
requirements. Thus, we can directly infer the minimal complex-
ity of an observed process once we know its simplest model. If a 
process exhibits observed statistics that require an input of entropy  
C to model, then whatever the underlying mechanics of the observed 
process, we require a system of entropy C to simulate its future  
statistics.

These observations motivate maximally efficient models; models 
that generate desired statistical behaviour, while requiring minimal 
input information. In this article, we show that even when such 

behaviour aligns with simple stochastic processes, such models are 
almost always quantum. For any given stochastic process, we outline 
its provably simplest classical model. We show that unless improve-
ment over this optimal classical model violates the second law of 
thermodynamics, our construction and a superior quantum model 
and its corresponding simulator can always be constructed.

Results
Framework and tools. We can characterize the observable behaviour 
of any dynamical process by a joint probability distribution P X X( , )

 
,  

where X


 and X


 are random variables that govern the system’s 
observed behaviour, respectively, in the past and the future. Each 
particular realization of the process has a particular past x , with 
probability P X x( = )

  . Should there exist a model for this behaviour 
with an input of entropy C, then we may compress x within a system 
S of entropy C, such that systematic actions on S generates random 
variables whose statistics obey P X X x( | = )

   .
We seek the maximally efficient model, such that C is minimized. 

As the past contains exactly E = ( : )I X X
 

 (the mutual information 
between past and future) about the future, the model must require 
an input of entropy at least E (this remains true for quantum sys-
tems5). On the other hand, there appears no obvious reason a model 
should require anything more. We say that the resulting model, 
where C I X X= = ( : )E

 
, is ideal. It turns out that for many systems 

such models do not exist.
Consider a dynamical system observed at discrete times t ∈Z,  

with possible discrete outcomes xt ∈Σ dictated by random  
variables Xt. Such a system can be modelled by a stochastic  
process6, where each realization is specified by a sequence of 
past outcomes x x x x


…= 3 2 1− − − , and exhibits a particular future 

x x x x


…= 0 1 2  with probability P X x X x( = | = )
    . Here, E = ( : )I X X

 
, 

referred to as excess entropy7,8, is a quantity of relevance in diverse 
disciplines ranging from spin systems 9 to measures of brain com-
plexity10. How can we construct the simplest simulator of such 
behaviour, preferably with input entropy of no more than E?

The brute force approach is to create an algorithm that samples 
from P X X x( | = )

    given complete knowledge of x


. Such a construc-
tion accepts x  directly as input, resulting in the required entropy  
of C H X= ( )


, where H X( )


 denotes the Shannon entropy of the  
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Figure 1 | The Relationship between models and simulators. A mathematical model is defined by a stochastic function f that maps relevant data from the 
present, x, to desired output statistics that coincides with the process it seeks to model. To implement this model, we must realize it within some physical 
simulator. To do this, we (a) encode x within a suitable physical system, (b) evolve the system according to a physical implementation of f and (c) retrieve 
the predictions of model by appropriate measurement. On the other hand, given a simulator with entropy C that outputs statistically identical predictions, 
we can always construct a corresponding mathematical model that takes the initial state of this system as input. Thus the input entropy of a model and 
the initial entropy of its corresponding simulator coincide (this is also a lower bound on the amount of information the simulator must store). In this 
article, we regard both models and simulators as algorithms that map input states to desired output statistics, with implicit understanding that the two 
terms are interchangeable. The former emphasizes the mathematical nature of these algorithms, whereas the latter their physical realization.
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complete past. This is wasteful. Consider the output statistics result-
ing from a sequence of coin flips, such that P X X( , )

 
 is the uniform 

distribution over all binary strings. E equals 0 and yet C is infinite. 
It should not require infinite memory to mimic a single coin; better 
approaches exist.

Simplest classical models. ε-machines are the provably optimal 
classical solution3,4. They rest on the rationale that to exhibit desired 
future statistics, a system need not distinguish differing pasts, x  
and ′x


, if their future statistics coincide. This motivates the equiva-
lence relation, ~, on the set of all past output histories, such that 
x x
 
∼ ′ iff P X x P X x( | ) = ( | )

   
′ . To sample from P X x( | )

   for a particu-
lar x , a ε-machine need not store x , only which equivalence class, 
e( ) { : }x x x x   

≡ ′ ′∼ , x  belongs to. Each equivalence class is referred to 
as a causal state.

For any stochastic process P X X( , )
 

 with emission alphabet Σ, we 
may deduce its causal states { } =1Si i

N  that form the state space of its 
corresponding ε-machine. At each time step t, the machine operates 
according to a set of transition probabilities Tj k

r
,
( ); the probability that 

the machine will output x rt = ∈Σ, and transition to Sk given that 
it is in state Sj. The resulting ε-machine, when initially set to state 
e( )x , generates a sequence x according to probability distribution 
P X X x( | = )
    as it iterates through these transitions. The resulting 

ε-machine thus has internal entropy

C H p p C
j

j j= ( ) =S − ≡
∈
∑
S

log m

where S is the random variable that governs S xj = ( )e   and pj is the 
probability that e( ) =x Sj

 .
The provable optimality of ε-machines among all classical models 

motivates Cµ as an intrinsic property of a given stochastic process, 
rather than just a property of ε-machines. Referred to in literature 
as the statistical complexity4,11, its interpretation as the minimal 
amount of information storage required to simulate such a given 
process has been applied to quantify self-organization12, the onset 
of chaos3 and complexity of protein configuration space13. Such 
interpretations, however, implicitly assume that classical models are 
optimal. Should a quantum simulator be capable of exhibiting the 
same output statistics with reduced entropy, this fundamental inter-
pretation of Cµ may require review.

Classical models are not ideal. There is certainly room for improve-
ment. For many stochastic processes, Cµ is strictly greater than  
E (ref. 11); the ε-machine that models such processes is funda-
mentally irreversible. Even if the entire future output of such an 
ε-machine was observed, we would still remain uncertain which 
causal state the machine was initialized in. Some of that informa-
tion has been erased, and thus, in principle, need never be stored. In 
this paper, we show that for all such processes, quantum processing 
helps; for any ε-machine such that Cµ > E, there exists a quantum 
system, a quantum ε-machine with entropy Cq, such that Cµ > Cq≥E. 
Therefore, the corresponding model demands an input with entropy 
no greater than Cq.

The key intuition for our construction lies in identifying the 
cause of irreversibility within classical ε-machines, and addressing 
it within quantum dynamics. An ε-machine distinguishes two dif-
ferent causal states provided they have differing future statistics, but 
makes no distinction based on how much these futures differ. Con-
sider two causal states, Sj or Sk, that both have potential to emit out-
put r at the next time step and transition to some coinciding causal 
state Sl. Should this occur, some of the information required to com-
pletely distinguish Sj and Sk has been irreversibly lost. We say that Sj 
and Sk share non-distinct futures. In fact, this is both necessary and 
sufficient condition for  Cm > E (see Methods for proof).

(1)(1)

The irreversibility condition. Given a stochastic process P X X( , )
 

 
with excess entropy E and statistical complexity Cµ, let its corre-
sponding ε-machine have transition probabilities Tj k

r
,
( ). Then Cµ > E 

iff there exists a non-zero probability that two different causal states, 
Sj and Sk, will both make a transition to a coinciding causal state Sl 
on emission of a coinciding output r∈Σ, that is, T Tj l

r
k l
r

,
( )

,
( ), 0≠ . We 

refer to this as the irreversibility condition.
This condition highlights the fundamental limitation of any clas-

sical model. To generate desired statistics, any classical model must 
record each binary property A such that P X A P X A( | = 0) ( | =1)

 
≠ ,  

regardless of how much these distributions overlap. In contrast, 
quantum models are free of such restriction. A quantum system can 
store causal states as quantum states that are not mutually orthogo-
nal. The resulting quantum ε-machine differentiates causal states 
sufficiently to generate correct statistical behaviour. Essentially, 
they save memory by ‘partially discarding’ A, and yet retain enough 
information to recover statistical differences between P X A( | = 0)


 

and P X A( | =1)


.

Improved quantum models. Given an ε-machine with causal states 
Sj and transition probabilities Tj k

r
,
( ), we define quantum causal states

| = | | ,
=1

( )S T r kj
k

N

r
jk
r〉 〉 〉∑ ∑

∈Σ

where |r〉 and |k〉 form orthogonal bases on Hilbert spaces of size 
|Σ| and |S|, respectively. A quantum ε-machine accepts a quantum 
state |Sj〉 as input in place of Sj. Thus, such a system has an internal 
entropy of

Cq = ,−Trr rlog

where r = | |j j j jp S S∑ 〉〈 . Cq is clearly strictly less than Cµ provided 
not all |Sj〉 are mutually orthogonal14.

This is guaranteed whenever Cµ > E. The irreversibility condi-
tion implies that there exists two causal states, Sj and Sk, which will 
both make a transition to a coinciding causal state Sl on emission 
of a coinciding output r∈Σ, that is, T Tj l

r
k l
r

,
( )

,
( ), 0≠ . Consequently 

〈 〉 ≥S S T Tj k j l
r

k l
r| > 0, ,  iff T Tj l

r
k l
r

,
( )

,
( ), 0≠ , and thus |Sj〉 is not orthogo-

nal with respect to 〈Sj|.
A quantum ε-machine initialized in state |Sj〉 can synthesise black-

box behaviour that is statistically identical to a classical ε-machine 
initialized in state Sj. A simple method is to first measure |Sj〉 in the 
basis |r〉|k〉, resulting in measurement values r, k and then to set r as 
output x0 and prepare the quantum state |Sk〉. Repetition of this proc-
ess generates a sequence of outputs x x1 2, ,… according to the same 
probability distribution as the original ε-machine and hence P X x( | )

  .  
(We note that while the simplicity of the above method makes it 
easy to understand and amiable to experimental realization, there is 
room for improvement. The decoding process prepares Sk based on 
the value of k, and thus still requires Cµ bits of memory. However, 
there exist more sophisticated protocols without such limitation, 
such that the entropy of the quantum ε-machine remains at Cq at all 
times. One is detailed in Methods). These observations lead to the 
central result of our paper.

Theorem: Consider any stochastic process P X X( , )
 

 with excess 
entropy E, whose optimal classical model has input entropy Cµ > E. 
Then, we may construct a quantum system that generates identical 
statistics, with input entropy Cq < Cµ. In addition, the entropy of this 
system never exceeds Cq while generating these statistics.

There always exists quantum models of greater efficiency than 
the optimal classical model, unless the optimal classical model is 
already ideal.

A concrete example of simulating perturbed coins. We briefly  
highlight these ideas with a concrete example of a perturbed coin. 
Consider a process P X X( , )

 
 realized by a box that contains a single 

(2)(2)

(3)(3)
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coin. At each time step, the box is perturbed such that the coin flips 
with probability 0 < p < 1, and the state of the coin is then observed. 
This results in a stochastic process, where each xt ∈{0,1}, governed by 
random variable Xt, represents the result of the observation at time t.

For any p≠0.5, this system has two causal states, corresponding to 
the two possible states of the coin; the set of pasts ending in 0, and the 
set of pasts ending in 1. We call these S0 and S1. The perturbed coin 
is its own best classical model, requiring exactly a system of entropy 
Cµ = 1, namely the coin itself, to generate correct future statistics.

As p→0.5, the future statistics of S0 and S1 become increas-
ingly similar. The stronger the perturbation, the less it matters 
what state the coin was in before perturbation. This is reflected 
by the observation that E→0 (in fact E =1 ( )−H ps  (ref. 9), where 
H p p p p ps( ) = (1 ) (1 )− − − −log log  is the Shannon entropy of a 
biased coin that outputs head with probability p (ref. 15)). Thus only 
E/ =1 ( )C H psm −  of the information stored is useful, which tends to 
0 as p→0.5.

Quantum ε-machines offer dramatic improvement. We 
encode the quantum causal states | = 1 | 0 |10S p p〉 − 〉 + 〉 or 
| = | 0 1 |11S p p〉 〉 + − 〉 within a qubit, which results in entropy 
Cq = −Trr rln , where r =1 2(| | | |)0 0 1 1/ S S S S〉〈 + 〉〈 . The non-orthog-
onality of |S0〉 and |S1〉 ensures that this will always be less than Cµ 
(ref. 16). As p→0.5, a quantum ε-machine tends to require negli-
gible amount of memory to generate the same statistics compared 
with its classical counterpart (Fig. 2).

This improvement is readily apparent when we model a lattice 
of K independent perturbed coins, which output a number x K∈Z2  
that represents the state of the lattice after each perturbation. Any 
classical model must necessarily differentiate between 2 K equally 
likely causal states, and thus require an input of entropy K. A quan-
tum ε-machine reduces this to KCq. For p > 0.2, Cq < 0.5, the initial 
condition of two perturbed coins may be encoded within a system 
of entropy 1. For p > 0.4, Cq < 0.1, a system of coinciding entropy 
can simulate 10 such coins. This indicates that quantum systems 
can potentially simulate N such coins on receipt of KN qubits, 
provided appropriate compression (through lossless encodings17) 
of the relevant past.

Discussion
In this article, we have demonstrated that any stochastic proc-
ess with no reversible classical model can be further simplified by 
quantum processing. Such stochastic processes are almost ubiq-
uitous. Even the statistics of perturbed coins can be simulated by 
a quantum system of reduced entropy. In addition, the quantum 
reconstruction can be remarkably simple. Quantum operations on a 
single qubit, for example, allows construction of a quantum epsilon 
machine that simulates such perturbed coins. This allows potential 
for experimental validation with present day technology.

This result has significant implications. Stochastic processes 
have a ubiquitous role in the modelling of dynamical systems that 
permeate quantitative science, from climate fluctuations to chemi-
cal reaction processes. Classically, the statistical complexity Cµ 
is employed as a measure of how much structure a given process 
exhibits. The rationale is that the optimal simulator of such a proc-
ess requires at least this much memory. The fact that this memory 
can be reduced quantum mechanically implies the counterintuitive 
conclusion that quantizing such simulators can reduce their com-
plexity beyond this classical bound, even if the process they are 
simulating is purely classical. Many organisms and devices operate 
based on the ability to predict and thus react to the environment 
around them. The possibility of exploiting quantum dynamics to  
make identical predictions with less memory implies that such  
systems need not be as complex as one had originally thought.

This leads to the open question: is it always possible to find an ideal 
simulator? Certainly, Fig. 2 shows that our construction, while supe-
rior to any classical alternative, is still not wholly reversible. Although 

this irreversibility may indicate that more efficient quantum models 
exist, it is also possible that ideal models remain forbidden within 
quantum theory. Both cases are interesting. The former would indi-
cate that the notion of stochastic processes ‘hiding’ information from 
the present 11 is merely a construct of inefficient classical probabilistic 
models, whereas the latter hints at a source of temporal asymmetry 
within the framework of quantum mechanics; that it is fundamen-
tally impossible to simulate certain observable statistics reversibly.

Methods
Proof of the irreversibility condition. Let the aforementioned ε-machine have 
causal states S ={ }1Si

N and emission alphabet Σ. Consider an instance of the 
ε-machine at a particular time step t. Let St and Xt be the random variables that 
respectively govern its causal state and observed output at time t, such that the 
transition probabilities that define the ε-machine can be expressed as

T P S r Sj k
r

t k t t j,
( )

1= ( = , = | = ).S X S −

We say an ordered pair ( , )S rj ∈ ∈S Σ  is a valid emission configuration iff Tj k
r
,
( ) 0≠  

for some Sk ∈S. That is, it is possible for an ε-machine in state Sj to emit r and tran-
sit to some Sk. Denote the set of all valid emission configurations by ΩE. Similarly, 
we say an ordered pair ( , )S rk ∈ ∈S Σ  is a valid reception configuration iff Tj k

r
,
( ) 0≠  

for some Sj ∈S, and denote the set of all valid reception configurations by ΩR.
We define the transition function f : ΩE→ΩR, such that f S r S rj k( , ) = ( , ) if  

the ε-machine set to state Sj will transition to state Sk on emission of r. We also 
introduce the shorthand Xa

b to denote the list of random variables X X Xa a b, , ,1+ … .  
We now make use of (I) f is one-to-one iff there exist no distinct causal 
states, Sj and Sk, such that T Tj l

r
k l
r

,
( )

,
( ), 0≠  for some Sl, (II) H t t t( | ) = 01S X S−  iff f 

is one-to-one, (III) H t t t( | ) = 01S X S−  implies H Ht
t

t
t( | ) = ( | )1 0 0S X S X− , (IV) 

H Ht
t

t
t( | ) = ( | )1 0 0S X S X−  implies Cµ = E, (V) Cµ = E implies H t t t( | ) = 01S X S− . Each 

of these five statements will be proved in the subsequent sections.
Combining (I), (II), (III) and (V), we see that there exists a non-zero probabil-

ity that two distinct causal states, Sj and Sk such that T Tj l
r

k l
r

,
( )

,
( ), 0≠  for some Sl only 

if Cm ≠ E. Meanwhile (I), (II) and (V) imply that there exists no two distinct causal 
states, Sj and Sk such that T Tj l

r
k l
r

,
( )

,
( ), 0≠  for some Sl only if Cµ = E. The conditions for 

classical non-optimality follows.

Proof of statement I. Suppose f is one-to-one, then f S r f S rj k( , ) = ( , ) iff Sj = Sk. Thus,  
there does not exist two distinct causal states, Sj and Sk such that T Tj l

r
k l
r

,
( )

,
( ), 0≠  for 

some Sl. Conversely, if f is not one-to-one, so that f S r f S rj k( , ) = ( , ) for some S Sj k≠ . 
Let Sl be the state such that f S r S rj l( , ) = ( , ), then T Tj l

r
k l
r

,
( )

,
( ), 0≠ .

Proof of statement II. Suppose f is one-to-one. Then for each ( , )S rj R∈Ω , there 
exists a unique (Sk, r) such that f(Sk, r) = (Sj, r). Thus, given St jS=  and Xt r= ,  
we may uniquely deduce Sk. Therefore H t t t( | ) = 01S X S− . Conversely, should 
H t t t( | ) = 01S X S− , then H t t t t( | ) = 01S X X S− , and thus f is one-to-one.

Proof of statement III. Note that (i) H H H Ht
t

t t
t

t
t

t
t

t( | ) = ( | ) ( ) ( )1 0 0 1 0 1 0S X S S X S X S X S− − −+ −
H H H Ht

t
t t

t
t

t
t

t
t( | ) = ( | ) ( ) ( )1 0 0 1 0 1 0S X S S X S X S X S− − −+ −  and (ii) that, since the output of f is unique for a given ( , )r S E∈Ω , 

H t t t( | ) = 01S X S − . (ii) implies that H t
t

t( | ) = 00 1S X S −  since uncertainty can only 

(4)(4)
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Figure 2 | Complexity of the perturbed coin simulation. While the excess 
entropy of the perturbed coin approaches zero as p→0.5 (red line), 
generating such statistics classically generally requires an entropy of 
Cµ = 1 (green line). Encoding the past within a quantum system leads to 
significant improvement (purple line). (Here Cq =− −+ + − −l l l llog log ,  
where l± ± −=0.5 (1p p).) However, even the quantum protocol still 
requires an input entropy greater than the excess entropy.



ARTICLE   

�

nature communications | DOI: 10.1038/ncomms1761

nature communications | 3:762 | DOI: 10.1038/ncomms1761 | www.nature.com/naturecommunications

© 2012 Macmillan Publishers Limited. All rights reserved.

decrease with additional knowledge and is bounded below by 0. Substituting  
this into (i) results in the relation H H Ht t t

t
t

t
t( | ) = ( ) ( )1 0 1 0S X S X S X S− − − . Thus 

H t t t( | ) = 01S X S−  implies H Ht
t

t
t( | ) = ( | )1 0 0S X S X− .

Proof of statement IV. Now assume that H Ht
t

t
t( | ) = ( | )1 0 0S X S X− , recursive  

substitutions imply that H Ht
t

t( | ) = ( | )1 0 0S X S X− . In the limit where t→, the  
above equality implies Cµ–E = 0.

Proof of statement V. Since (i) C H Hm = = ( | ) ( | )1 0 1 0 0E S X S X S−
∞

−
∞≤ , and  

(ii) H Ht t t( | ) = ( | )1 1 0 0S X S S X S− − , it suffices to show that H H( | ) = ( | )1 0 0 1 0 0S X S S X S−
∞

− .  
Now H H H H H( | ) = ( ) ( )= ( | ) (1 0 0 0 1 0 0 0 1 1 0 0 0 1 0S X S X S S X S X S X S X S S−

∞ ∞
−

∞ ∞
− −− + )) ( | ) ( )1 0 0 0 0− −∞H HX X S X S

H( 0 1 0X S S− )) ( | ) ( )1 0 0 0 0− −∞H HX X S X S . But, by the Markov property of causal states,  
H H( | ) = ( | )1 1 0 0 1 0 0X S X S X X S∞

−
∞H H( | ) = ( | )1 1 0 0 1 0 0X S X S X X S∞

−
∞ , thus H H H H( | ) = ( ) ( )= ( | )1 0 0 0 1 0 0 0 1 0 0S X S X S S X S S X S−

∞
− −−

H H( )= ( | )0 0 1 0 0X S S X S−− , as required.

Constant entropy prediction protocol. Recall that in the simple prediction pro-
tocol, the preparation of the next quantum causal state was based on the result of a 
measurement in basis |k〉. Thus, although we can encode the initial conditions of a 
stochastic process within a system of entropy Cq, the decoding process requires an 
interim system of entropy Cµ. Although this protocol establishes that quantum mod-
els require less knowledge of the past, quantum systems implementing this specific 
prediction protocol still need Cµ bits of memory at some stage during their evolution.

This limitation is unnecessary. In this section, we present a more sophisticated 
protocol whose implementation has entropy Cq at all points of operation. Consider 
a quantum ε-machine initialized in state | = | |

=1
( )S T r kj k

n

r jk
r〉 〉 〉∑ ∑ ∈Σ

. We refer the 
subsystem spanned by |r〉 as R1, and the subsystem spanned by |k〉 as K.

To generate correct predictive statistics during each iteration, we first 
perform a general quantum operation on K that maps any given |Sj〉 to 
| = | |

=1
( )′〉 〉 〉∑ ∑ ∈

S T r Sj k

n

r jk
r

kΣ
 on R R K1 2× × , where R2 is a second Hilbert space 

of dimension |Σ|. This operation always exists, because it is defined by Krauss 
operators B S kk k=| |〉〈  that satisfy 

k k kB B∑  =1. R1 is then emitted as output. Meas-
urement of R1 in the |r〉 basis leads to a classical output r whose statistics coincide 
with that of its classical counterpart, x1. Finally, the remaining subsystem R K2 ×  is 
retained as the initial condition of the quantum ε-machine at the next time step.

A circuit representation of the protocol is documented in Fig. 3. The first step 
does not increase system entropy because entropy is conserved under addition 
of pure ancilla, while 〈 ′ ′ 〉 ≥ 〈 〉S S S Sj k j k| |  for all j,k. The emission of R1 leaves the 
-machine in state ∑ 〉 〉p S Sj j j| | , which has entropy Cq. Finally, the execution 
of the protocol does not require knowledge of the measurement result r (in fact, 
the quantum ε-machine can thus execute correctly even if all outputs remained 
unmeasured, and thus are truly ignorant of which causal state they are in). Thus, 
the physical application of the above protocol generates correct predication  
statistics without requiring more than memory Cq.  
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Figure 3 | Quantum circuit representation of the refined prediction protocol. The use of this quantum circuit allows the simulation of a given stochastic 
process without ever exceeding an entropy of Cq.
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