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Abstract

Interdependencies of stochastically interacting units are usually quan-
tified by the Kullback-Leibler divergence of a stationary joint probability
distribution on the set of all configurations from the corresponding factor-
ized distribution. This is a spatial approach which does not describe the
intrinsically temporal aspects of interaction. In the present paper the set-
ting is extended to a dynamical version where temporal interdependencies

are also captured by using information geometry of Markov-chain mani-

folds.
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1 Introduction

“The whole is more than the sum of its elementary parts.” This statement char-
acterizes the present approach to complexity. Let’s put it in a more formal setting.
Assume that we have a system consisting of elementary units v € V. With each
non-empty subsystem S C V we associate a set Og of objects that can be gen-
erated by S. Examples for such objects are (deterministic) dynamical systems,
stochastic processes, and probability distributions. Furthermore we assume that

there is a “composition” map ® : [[,., Opy < Oy that defines how to put ob-

vev
jects of the individual units together in order to describe a global object without
any interrelations. The image of ® consists of the split global objects which are
completely characterized by the individual ones, and therefore represent the ab-
sence of complexity. In order to quantify complexity, assume that there is given
a function D : (z,y) — D(z||y), that measures the divergence of global objects

x,y € Oy. We define the complexity of x € Oy to be the divergence from being

split:

Complezity (x) := inf D(z||y). (1)
y split

Of course, this approach is very general, and there are many ways to define
complexity following this concept. Is there a canonical way? At least, within
the probabilistic setting, information geometry [1], [3] provides a very convinc-

ing framework for this. In the context of random fields, it leads to a measure



for “spatial” interdependencies: Given state sets €2,, v € V, we define the set
Ogs of objects that are generated by a subsystem S C V to be the probability
distributions on the product set [],.q€,. A family of individual probability
distributions p*) on €, can be considered as a distribution on the whole config-
uration set [] . €2, by identifying it with the product ®,cv p®) € Oy. In order
to define the complexity of a distribution p € Oy on the whole system, according
to (1) we have to choose a divergence function. A canonical choice for D is given

by the Kullback-Leibler divergence [15], [9):

Complezity (p) = I(p) := inf  D(p|l @vev p(,,)) (2)

pMe0,, veV

It is well known that I(p) quantifies spatial interdependencies [2]. It vanishes
exactly when the units are stochastically independent with respect to p. Such
split distributions are called factorizable in this context. In Figure 1, the example

of two binary units with the state sets {0, 1} is illustrated.

Fic. 1. F denotes the set of factorizable distributions on {0,1} x {0, 1}.
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The distributions with maximal interdependence (complexity) are given by

(000) +6ay)  and (01,0 + S(0.1)) -

1 1
2 2

Spatial interdependence has been studied by Amari [2] and Ay [4], [5] from
the information geometric point of view, where it is referred to as (stochastic)
interaction and discussed in view of neural networks. The aim of the present
paper is to use the concept of complexity that is formalized by (1) in order
to extend spatial interdependence to a dynamical notion of interaction, where
the evolution in time is taken into account. Therefore, the term “stochastic

interaction” is mainly used in the context of spatio-temporal interdependence.

The present paper is organized as follows. After a brief introduction into the
information geometric description of finite probability spaces in Section 2, the
general notion of separability is introduced for Markovian transition kernels, and
information geometry is used for quantifying non-separability as divergence from
separability (Section 3). In Section 4, the presented theoretical framework is used
to derive a dynamical version of (2), where spatio-temporal interdependencies are
quantified and referred to as stochastic interaction. This is illustrated by some

simple but instructive examples.



2 Preliminaries on

Finite Information Geometry

In the following, © denotes a non-empty and finite set. The vector space R
of all functions 2 — R carries the natural topology, and we consider subsets as
topological subspaces. The set of all probability distributions on €2 is given by

P(QQ) = {p = (p(w)),en ER? : p(w) >0 forall we Q, Zp(w) = 1} :

weN

Following the information geometric description of finite probability spaces, its
interior P(£2) can be considered as a differentiable submanifold of R? with di-
mension |Q2| — 1 and the basis-point independent tangent space!

T(Q) := {x cR? . Zx(w) = O}.

weN

With the Fisher metric (-,-), : T(2) x T(Q) — R in p € P(2) defined by

1) & (o= —— a(w)yw),

—p(w)
P(Q) becomes a Riemannian manifold [17].2 The most important additional
structure studied in information geometry is given by a pair of dual affine con-

nections on the manifold. Application of such a dual structure to the present

'If one considers P(Q) as an “abstract” differentiable manifold, there are many ways to
represent it as a submanifold of R?. In information geometry, the natural embedding presented

here is called (—1)- respectively (m)-representation.

In mathematical biology this metric is also known as Shahshahani metric [11], [14].



situation leads to the notion of (—1)- and (41)-geodesics: Each two points
p,q € P(Q) can be connected by the geodesics v(®) = ( 5,0‘)) o 0,1] — P(Q),
we

a € {—1,+1}, with

AUDM) = (1 —t)pw) +tqw) and AV () = r(t) plw) ' qw).
Here, r(t) denotes the normalization factor.
A submanifold & of P(Q) is called exponential family if there exist a point py €

P(Q) and vectors vy, ...,vqy € R?, such that it can be expressed as the image of

the map RY — P(Q), 0 = (0y,...,04) — pp, with

m(w) exp (L, 0 vi(w))
po(w) = y : (3)
S eapo(@) exp (S0, 6 vi(w))

Let p be a probability distribution in P(€2). An element p’ € £ is called
(—1)-projection of p onto & iff the (—1)-geodesic connecting p and p' intersects
& orthogonally with respect to the Fisher metric. Such a point p' is unique ([1],
Theorem 3.9, p. 91) and can be characterized by the Kullback-Leibler divergence

[15], [9] (This is a special case of Csiszar’s f-divergence [8])

D:P@xPQ) =R () = Dollg) = 3 pw) m&;.

weN q(w

We define the distance D(-[| €) : P(2) — R, from & by

p = Dp[l&) = infD(p|lq).
qe€
It is well known that a point p’ € £ is the (—1)-projection of p onto £ if and only
if it satisfies the minimizing property D(p||€) = D(p||p’) ([1], Theorem 3.8, p.

90; [3], Corollary 3.9, p. 63).



In the present paper, the set of states is given by the Cartesian product
of individual state sets €2,, v € V, where V denotes the set of units. In the
following, the unit set and the corresponding state sets are assumed to be non-
empty and finite. For a subsystem S C V, Qg := [, .4 €2, denotes the set of all
configurations on S. The elements of P(Qg) are the random fields on S. One
has the natural restriction Xg : Qy — Qg, w = (W) )vey — wWs := (Wy)ves, which
induces the projection P(Qy;) — P(Qs), p — pg, where pg denotes the image
measure of p under the variable Xg. If the subsystem S consists of exactly one

unit v, we write p, instead of py,;.

The following example, which allows to put the definition (2) into the informa-
tion geometric setting, represents the main motivation for the present approach

to stochastic interaction. It will be generalized in Section 4.

EXAMPLE 2.1. (FACTORIZABLE DISTRIBUTIONS AND SPATIAL INTERDE-
PENDENCE) Let V' be a finite set of units and Q,, v € V, corresponding state

sets. Consider the tensorial map

HP(QV) — P(Qv), P)ev = Bpevp™,

vev

with

(®ueVp(V)) (W) = Hp(”)(wl,)

vev
The image F = F(Qv) = {®,evp" : p) € P(Q,), v €V} of this map,

which consists of all factorizable and strictly positive probability distributions, is
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an exponential family in P(€y) with dim F = " (]€2,|—1). For the particular
case of binary units, that is |2, | = 2 for all v, the dimension of F is equal to the
number |V of units. The following statement is well known [2]:

The (—1)-projection of a distribution p € P(Q2y) on F is given by ®,cyp, (the
Py, v € V, are the marginal distributions), and one has the representation

I(p) = D F) = > _ Hp,) - Hp),

vev

where H denotes the Shannon entropy [19]. As stated in the introduction, I(p)
is a measure for the spatial interdependencies of the units. It vanishes exactly

when the units are stochastically independent.

Bofore extending the spatial notion of interaction to a dynamical one, in Sec-

tion 3 we consider the more general concept of separability of transition kernels.



3 Quantifying Non-Separability

3.1 Manifolds of Separable Transition Kernels

Consider a finite set V' of units, corresponding state sets €2,, v € V, and two

subsets A, B C V with B # (). A function
K : Q4 xQp—[0,1], (w,w) = K(w'|w),
is called Markovian transition kernel if K(-|w) € P(Q2p) for all w € Q,4, that is

Y Kwlw) =1, forall weQu.

W' EQp
The set of all such kernels is denoted by K(Qp |Q4). We write K(Qp|Q4) for
its interior and KC(€24) respectively K(Q,4) as abbreviation in the case A = B. If
A =0, then Q4 consists of exactly one element, namely the empty configuration
e. In that case, K(25|Qg) = K(Qp|€) can naturally be identified with P(Qp)
by p(w) == K(w|e), w € Qp.
Given a probability distribution p € P(Q,4) and a transition kernel K € K(Qz|Q4),
the conditional entropy for (p, K) is defined as

H(p,K) = ) plw)H(K(|w))

wWEN 4

For two random variables X, Y with Prob{X = w} = p(w) for all w € Q4, and
Prob{V =u' | X =w} = K(u'|w) for all w € Q4 with p(w) > 0 and all ' € Qp,

we set H(Y | X) := H(p, K).



In the present paper, the set JC(€y) is interpreted as a model for the dynamics
of interacting units, and the information flow associated with this dynamics is
studied in Section 4. In the present section, we introduce a general notion of sep-
arability of transition kernels in order to capture all examples that are discussed
in the paper in a unified way.

Consider a family .7 := {(Ay, B1), (42, Ba), ..., (A, B,)} where the A; and B;
are subsets of V. We assume that {Bjy, ..., B,} is a partition of V, that is B; # ()
for all i, B;NB; = 0 for all i # j, and V = B, W ---& B,. Now consider the

corresponding tensorial map

R H IC(QB|QA) — IC(QV)a (Kg)(A,B)ey = ®(A,B)€§’Kg
(A,B)es

with

(®upesrKp) (W' w) = H Kp(w'g|wa), for all w,w' € Q.
(A.B)e.

The image K.»(Qy) of ® # is a submanifold of K(£2y) with

dim K. (Qv) = Z Q2] (1928] — 1).
(A,B)e.s

Its elements are the separable transition kernels with respect to ..

Here are the most important examples:

EXAMPLES AND DEFINITIONS 3.1.
(1) If we set . = {(V,V)}, the tensorial map is nothing but the identity
K(Qyv) — K(Qy), and therefore one has Ko (Qy) = K(Qy).
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(2) Consider the case where no temporal information is transmitted but all spatial
information: . := ind := {(0,V)}. In that case the tensorial map ®_ reduces

to the natural embedding
K(Qv [Qy) = P(Qv) = K(Qv)
which assigns to each probability distribution p the kernel
KW' w) = pw"), w,w' € Qy.

Therefore, we write K;nqa(Qv) = P(Qy ).

(3) In addition to the splitting in time which is described in example (2), consider
also a complete splitting in space: . := fac := {(0,{v}) : v € V}. Then we
recover the tensorial map of Example 2.1. Thus, Kf..(€2y) can be identified with
F(Qv).

(4) To model the important class of parallel information processing, we set . :=
par = {(V,{v}) : v € V}. Here, each unit “computes” its new state on the
basis of all current states according to a kernel K € K(€, | Qy). The transition
from a configuration w = (w,),ey of the whole system to a new configuration

w' = (w),)yey is done according to the following composed kernel in /(€ ):

KW' |w) = HK(”)(w',,|w), w,w' € Qy.

vev

(5) In applications, parallel processing is adapted to a graph G = (V, E) — here,
E C V xV denotes the set of edges — in order to model constraints for the infor-
mation flow in the system. This is represented by .7 := .7 (G) := {(pa(v), {v}) :

11



v € V}. Each unit v is supposed to process only information from its parents
pa(v) = {p € V : (uv) € E}, which is modelled by a transition kernel
K@ € (2 | Qpagw))- The parallel transition of the whole system is then de-

scribed by

(W' w) HK (W'y | wpa@)), w,w' € Qy.

vev

(6) Now, we introduce the example of parallel processing that plays the most im-
portant role in the present paper: Consider non-empty and pairwise distinct sub-
systems Sy, ..., S, of V with V = S;¥---@S, and define .¥ := .7 (S4,...,S,) =
{(S;,S;) : i =1,...,n}. It describes {S1,...,S,}-split information process-
ing, where the subsystems do not interact with each other. Each subsystem
S; only processes information from its own current state according to a kernel

K® € K(Qg,). The composed transition of the whole system is then given by
(W' w) HK (W's, |ws,), w,w' € Qy.

For the completely split case, where the subsystems are the elementary units, we

define spl := .({v}, ve V) ={({v},{v}) : veV}

3.2 Non-Separability as Divergence from Separability

Consider a Markov chain X, = (X, 5),c» 7 = 0,1,2,..., that is given by an

initial distribution p € P(Qy) and a kernel K € K(fy). The probabilistic

12



properties of this stochastic process are determined by the following set of finite
marginals:
Prob{ Xy = wo, X1 =w1,..., Xp =wn}

= p(wo) K (w1 |wp) -+ K(wy | wp-1), n=0,1,2,...
Thus, the set of Markov chains on €2y, can be identified with
M—C(Qv) = ﬁ(Qv) X K(Qv),

and we also use the notation {X,} = {Xo, X, Xs,...} instead of (p, K). The
interior MC(€Qy/) of the set of Markov chains carries the natural dualistic structure
from P(Qy x Qy), which is induced by the diffeomorphic composition map ® :

MC(Qy) — P(Qy x Qy),
(p, K)—»p K, with (p® K)(w,w') := pw) K(w'|w).

(® can be extended to a continuous surjective map MC(Qy) — P(Qy x Qy)).
Thus, we can talk about exponential families and (—1)-projections in MC(£2y).
The “distance” D((p, K) || (p', K")) from a Markov chain (p, K) to another one

(p', K') is given by
Dp@ K||p'® K') = D(p||p) + Dy(K || K7),
with
Dy(K || K') ==Y p(w) D(K(-|w) [| K'(-|w)).

weN

13



For a set .7 = {(Ay, By), (A2, B2), ..., (A, By)}, we introduce the exponen-

tial family (see Proposition 6.1)
MCy(Qv) = P(Qv) X le(Qv) - MC(Qv),
which has dimension (|Qy|—1) + Yo (AB)es 1Q[(1Q5] - 1).

The set of all these exponential families is partially ordered by inclusion with
MC(€Qy) as the greatest element and MCy,.(€2y) as the least one. This ordering
is connected with the following partial ordering < of the sets .7
Given . = {(A1,B1),...,(Am, Bn)} and 7" = {(A},BY),..., (AL, B!)}, we
write . < . (" coarser than &) iff for all (A, B) € . there exists a pair

(A',B') € " with A C A" and B C B'. One has

Thus, coarsening enlarges the corresponding manifold (The proof is given in the

appendix).
Now, we describe the (—1)-projections on the exponential families MC o (Q2y):

PROPOSITION 3.2. Let (p, K) be a Markov chain in MC(Qy) and .7 < ..
Then:

(i) (PROJECTION) The (—1)-projection of (p, K) on MC» () is given by (p, K.»)

14



with Ky = ®a,pesKip. Here, the kernels Kj € K(Qp|Q4) denote the corre-

sponding marginals of K:

2. coteny  plo) K(o'[o)

A=W, G’B:w’

Zaenv p(a) ’

TpA=wW

KW' |w) = we Ny, we Qs

K is the projection of K on K () with respect to p.

(1i) (ENTROPIC REPRESENTATION) The corresponding divergence is given by

D((p, K) | MC»(Qy)) = Dy(K | Ks)

(A,B)es

(i7i) (PYTHAGORIAN RELATION) One has

Dy(K || Kz) = Dp(K || Kz1) + Dp(Ky || Ks).

If K € P(Qy), that is K(v'|w) = p(w), w,w’ € Qy, with a probability distri-
bution p € P(Qy ), then the divergence D,(K || Ky,.) is nothing but the measure
I(p) for spatial interdependencies that has been discussed in the introduction
and in Example 2.1. More generally, we interpret the divergence D,(K || K»)
as a natural measure for the non-separability of (p, K') with respect to .#. The
corresponding function Iy : (p, K) — Ly (p,K) := D,(K || K») has a unique
continuous extension to the set MC(Qy) of all Markov chains which is also de-
noted by Iy (see Lemma 4.2 in [4]). Thus, non-separability is defined for not

necessarily strictly positive Markov chains.
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4 Application to Stochastic Interaction

4.1 The Definition of Stochastic Interaction

As stated in the introduction we use the concept of complexity that is described
by the formal definition (1) in order to define stochastic interaction.

Let V be a set of units and €2,, v € V, corresponding state sets. Furthermore,
consider non-empty and pairwise distinct subsystems Si,...,5, C V with V =
S1W---S,. The stochastic interaction of Si,..., S, with respect to (p, K) €
MC(€2y) is quantified by the divergence of (p, K) from the set of Markov chains
that represent {Si,...,S,}-split information processing, where the subsystems
do not interact with each other (see Examples and Definitions 3.1 (6)). More

precisely, we define the stochastic interaction (of the subsystems Si,...,Sy) to

be the function Ig, g, : MC(Qy) — R, with

s K) = Ly K) = inf DK K. (3)

In the case of complete splitting of V' = {vy,...,1,} into the elementary units,
that is S; := {1}, i = 1,...,n, we simply write I instead of Iy} (,.1-
The definition of stochastic interaction given by (5) is consistent with the com-

plexity concept that is discussed in the introduction.

Here are some basic properties of I, which are well known in the spatial setting

of Example 2.1:

16



PROPOSITION 4.1. Let V be a set of units, Q,, v € V, corresponding
state sets, and X, = (X, n), ey, 1 = 0,1,2,..., a Markov chain on Qy. For a
subsystem S C V, we write Xg , == (X, n)ves. Assume that the chain is given by
(p, K) € MC(Qdy), where p is a stationary distribution with respect to K. Then

the following holds:
(1)

I{Xn} = ZH(XV,n+1|XV,n) - H(Xn+1|Xn)- (6)

vev

(i) AABCV, AAB#0, AnNB=0, AWB=V =
HX,} = {Xan}+1{Xp o} +1ap{X,}
(iii) If the process is parallel, then

X} = 3 (H (Xt | Xon) = H(Xi1 | X)) (7)

vev

= Z MI(XV,n—l—l; XV\I/,n | Xz/,n)-

vev

(iv) If the process is adapted to a graph (V, E) then

X} = 3 (H(Xuner | Xon) = H(Xons1 | Xpat,0) 8)
vev
= Z MI(XV,TL+1; Xpa(u)\u,n | Xz/,n)-
vev

In the statements (iii) and (iv), the conditional mutual information MI(X;Y | Z)
of two random variables X,Y with respect to a third one Z is defined to be the
difference H(X | Z) — H(X |Y, Z) (see [10], p. 22).

17



If X, is independent from X, for all n, the stochastic interaction I{X,}
reduces to the measure I(p) for spatial interdependencies with respect to the
stationary distribution p of {X,,} (see Example 2.1). Thus, the dynamical notion
of stochastic interaction is a generalization of the spatial one. Geometrically, this

can be illustrated as follows.

Fic. 2.

In addition to the projection Ky, of the kernel K € MC(€y) with respect to
a distribution p € P(y) on the set of split kernels, we consider its projections
King and K, on the set P(Qy) of independent kernels and on the subset F(Qy),

respectively. From Proposition 3.2 we know

Dy(K || Kina) = H(Xn41) = H(Xnp1 [ X5)

((global) transinformation)

18



I(p) = Dy(Kinal| Kpoe) = Y H(Xpjus1) — H(Xpp)

vev

(spatial interdependence)

DP(KSPI || KfaC) = Z (H(Xu,nH) o H(Xu,nﬂ |X1/,n))

vev

(sum of individual transinformations).

According to the Pythagorian relation (Proposition 3.2 (iii)), we get the following

representation of stochastic interaction:

[{Xn} = Dp(KHKSpl)

= I(p) + Dp(K | Kina) — Dp(KSpl | KfaC)- (9)

In the particular case of an independent process, the divergences D, (K || Knq)
and D, (K || Kyqc) in (9) vanish, and the stochastic interaction coincides with

spatial interdependence.

4.2 Some Examples

EXAMPLE 4.2. (SOURCE AND RECEIVER) Consider two units 1 = source and
2 = receiver with the state sets ; and 25. Assume that the information flow
is adapted to the graph G' = {{1,2},{(1,2)}}, which only allows a transmission
from the first unit to the second. In each transition from time n to n + 1, a
state X 41 of the first unit is chosen independently from X, , according to a
probability distribution p € P(£2;). The state X ,41 of the second unit at time

19



n+ 1 is “computed” from X , according to a kernel K € K(€3|€;). Using

formula (8), we have

X} = H(Xgnq1) — H( X2, ng1 | X1,0).

This is the well-known mutual information of the variables X5, and X ,,
which has a temporal interpretation within the present approach. It plays an

important role in coding and information theory [10], [18].

ExampLE 4.3. (Two BINARY UNITS I) Consider two units with the state
sets {0,1}. Each unit copies the state of the other unit with probability 1 — &.

The transition probabilities for the units are given by the following tables:

KO ('] (z,y)) | 0 1 KOy |(z,y) | 0 1
(0,0) l—c| = (0,0) l—¢ |
(0,1) e |1-¢ (0,1) l—¢c| =
(1,0) l—e| = (1,0) e |1—¢
(1,1) e |1-¢ (1,1) e |1-—¢

The transition kernel K € K,u-({0,1} x {0,1}) for the corresponding parallel

dynamics of the whole system is then given by

20



K((@"y) [ (z,y) | (0,0) | (0,1) | (1,0) | (1,1)
(0,0) (1—e)? | (1—e)e|e(l—¢) g2
(0,1) e(1—¢) g2 (1—e) | (1—-e)
(1,0) (1—e)e | (1—¢) g2 e(1—¢)
(1,1) 2 |e(l—g) | (1—2)e | (1—¢)

Note that for ¢ € {0,1}, K corresponds to the deterministic transformations

e=0: (z,y) (v,

),

e=1:

(x,y)l—>(1—y,1—x),

which in an intuitive sense describe complete information exchange of the units.
With the unique stationary probability distribution p = (i, i, i, i) one can easily

compute the marginal kernels

Ki(z'|z) |01 Ka(y'ly) | 0] 1
1 1 1 1

0 2|2 0 7|32

1 1 1 1

1 3|3 1 3|3

which describe the split dynamics according to Ky = K; @ Ko. With (7) we

finally get
{X,} = 2(1n2+ (1—¢)In(l —¢) +51n5).

The shape of this function is shown in the following picture:

21



N

Fic. 3.

This function is symmetric around ¢ = % where it vanishes. Ine =0and ¢ =1
it attains its maximal value 2In2. As stated above, this corresponds to the

deterministic transformations with complete information exchange.

ExampLE 4.4. (Two BINARY UNITS IT) Consider again two binary units

with the state sets {0, 1} and the transition probabilities

KO | (z,y) | 0 1 KO(y' | (z,y)) | 0 1
(0,0) 1 0 (0,0) 0 1
(0,1) l—c| ¢ (0,1) l—e| ¢
(1,0) e |1-¢ (1,0) e |1-¢
(1,1) 0 1 (L, 1) 1 0

The transition kernel K € K({0,1} x {0,1}) of the corresponding parallel
dynamics is given by
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K((«"y)| (=) | (0,0) | (0,1) | (L,0) | (L,1)
(0,0) 0 1 0 0
(0,1) (1=e)" | (1—e)e|e(l—2)| &
(1,0) e Je(l—e)| (L) | (1—¢)
(1,1) 0 0 1 0

Note that for ¢ € {0,1}, K corresponds to the deterministic transformations
e=0: (z,y)— (z,1—y), and e=1: (z,y)— (y,1—2x).

Thus in an intuitive sense, for £ = 1 the units completely interact with each other,
and for £ = 0 there is no interaction. For £ €]0, 1] we compute the interaction

with respect to the unique stationary probability distribution

p:Ami%n@g_2ﬂ+L1,1,%l—%+l)

With the corresponding marginal kernels

K (2| x) 0 1 Ky(y'|y) 0 1
0 L= 2(62—654-1) 2(62—654-1) 0 2(52—85—1—1) L= 2(52—85—1—1)
1 2(52554»1) L - 2(52554»1) 1 L - 2(8255+1) 2(8255+1)

and formula (7), we get

£
e2—e+1

+2(e*—e+1)In2(e* —e+1) + (1—5)ln(1—5)>

X} = ( —(26% — 3¢ + 2) In(2e% — 3¢ + 2)
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(e}
= e
.

Fic. 4.

This function is monotonically increasing from the minimal value 0 (no inter-

action) in ¢ = 0 to its maximal value 2In2 (complete interaction) in ¢ = 1
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5 Conclusion

Following the general concept that complexity is characterized by the divergence
of a composed system from the superposition of its elementary parts, information
geometry has been used to derive a measure for spatio-temporal interdependen-
cies among a finite set of units, which is referred to as stochastic interaction. This
generalizes the well-known measure for spatial interdependence that is quantified
by the Kullback-Leibler divergence of a probability distribution from its factor-
ization [2], [4]. Thereby, previous work by Ay [5] is continued, where the opti-
mization of dependencies among stochastic units has been proposed as a principle
for neural organization in feed-forward networks. Of course, the present setting is
much more general and provides a way to consider also recurrent networks (This
work is in progress). The dynamical properties of strongly interacting units in
the sense of the present paper are studied by Ay and Wennekers in [6], where the

emergence of determinism and structure in such systems is demonstrated.
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6 Appendix: Proofs

PROPOSITION 6.1. The manifold MC . (Qy) is an exponential family in MC(Qy).

PrOOF. To see this, consider the functions 2y x Q0 = R

, 1, fw=o0
Vo(w,w') := , o € Qy,
0, otherwise

and

1, fwsg=o0, =0
Vg, o (W, w') := , (A,B) € ., 0 €Qy, 0 €Qp.
0, otherwise

It is easy to verify that the image of MC & (€2y) under the map ® is the following

exponential family in P(Qy x Qy):

PSS dotet D DY Xwtow — 00, A A ER

oEQy AB EyUEQA o'eQp

Here, © denotes the normalization factor, which depends on the A-parameters.

In particular, each element in MC & (£2y,) can be expressed in the following way

[T Kiawslwa)

(A,B)es

= expX Inp(w) + Z In Kp(w'y |wa)
(A,B)es

= exp Z Inp(o) vy(w,w') Z Z In Kp(0'|0) vy (w,w')

cEQy AB €S o€y, 0’ €0p
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PROOF OF IMPLICATION (4). If
S ={(A1,B1),...,(4,,Bn)} = S{(A},B)),...,(A,B))},

then there exists a partition M;, i = 1,...,n, of the index set {1,...,m} such

that

B, = |H B, i=1..,n
JEM;

Let (p, K) be a Markov chain in MC»(Qy-). Then there exist Kg € K(Qp|Q4)

with

KWlw) = [ Kpslwa)
(A,B)e.

n
— Ajo o !
= H H K (W, [wa,), w,w € Qy.
i=1 (4;.B))es
JjeEM;
. ~~ >y
!

Al
=i K Wy [041)
i i J

The kernels K;‘:i are contained in Iy, and therefore we get (p, K) € MC o (Qy).

O

PROOF OF PROPOSITION 3.2.
(i) Consider the following strictly convex function (R’ denotes the set of positive
real numbers)

F: (R x I1 (R)™ 7 ) & R
(A,B)es

(l‘hy) = (l‘UJ? w € QV;yUJA,UJBa wa € QAawB € QB) —
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K(W'|w)

H(A,B)ey Yy

F(z,y) = Z p(w)In + Z (W' |w)In

wENy w,w' EQy
+A(zxw - ) D SED SR Do
weNy (A,B)eS wa€Qa WwEENR

Here, A and the ] are Lagrangian parameters. Note that in the case z € P(Qy)
and y € [ 4 pjesr K(Qp |$24), the value F(z,y) is nothing but the divergence of
(p, K) from (z,®4(y)). In order to get the Markov chain that minimizes the

divergence we have to compute the partial derivatives of F"

oF 1
or _ L5+ A
8x(,(m’y) ;p(w)% w T
weNy
_ po) o,y
Lo
and
oF 1
———(wy) = = Y PWEKW W) Y i uee )
Yoc,oh W €Qy (A.Bjey Jwawy
+ Z D N D Owasioeh)
VES wAEQA wBeQB
1
= - Z P(w) K(W'|0)——0we wp) o) + Ao
ww' EQy woWp
1
= — Z plw) KW' |w) + AL
ya—C’O—ID w,w’EQV

wo=o(r, uJ’D=a"D

For a critical point (z,y), the partial derivatives vanish. We get the following

solution:

28



and

1
Yoooly = = pw)K(W'|w)  oc €Qc, o) € Qp.
oo ZwCGQC p((.U) Z P

WOSJZI,EWS}DV:G'D

From Theorem 3.10 in [3] we know that this solution is the (—1)-projection of
(p, K) onto MC (). It is given by the initial distribution p and the corre-
sponding marginals K5, (A4, B) € ., of K.

(ii) With (i) we get
D((p, K) |MC(Qv))
= Dy(K | Ky)

= Y ) KW ) g

w,w' EQy

K(w'|w)

(A,B)e.s Kg(wy|wa)

= —H(p, K)

- > > W' |w) In K (i | wa)

(A,B)eS ww' €y

= —H(p,K)
- Y Y wEWle) Y b))
A B cs WGQA [ EQB a',a”efllv
o’A:w,oB:w’

pa(w) K (' |w)

= Y H(paKp) — H(p,K).
(A,B)es

(iii) According to (4) we have MC »(€y,) € MC/(€y ), and the statement follows

from the Pythagorian relation ([3], p. 62, Theorem 3.8). O
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PROOF OF PROPOSITION 4.1.

(i) This follows from Proposition 3.2 (ii).

(ii) We apply (i):

—~
.
=

H{X,} = ZH(Xv,n-I—l |XV,n) — H(Xpi1| Xy)
veV
- (Z H(Xu,n-l—l | Xz/,n) - H(XA,n—l—l |XA,n)>
VEA

+ <Z H(Xu,n+1 |X1/,n) - H(XB,TL+1 | XB,n))

veB

 (F(X a1 | Xan) + H(Xp s | Xp,a) = (X1 | X0))

—~
.
=

H{Xan}+I{Xpn}+ Ias{Xn}.
(iii) For parallel processing, one has

H(Xps1 [ Xn) = Z H(Xyni1| Xn).

vev

The statement is then implied by (i).
(iv) This follows from (iii) and the Markov property for (V| E')-adapted Markov

chains.
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