Aspect-Oriented Programming with Jiazzi

Sean McDirmid, Wilson C. Hsieh
School of Computing, University of Utah
50 S. Central Campus Dr.

Salt Lake City, Utah USA

{mcdirmid,wilson}@cs.utah.edu

ABSTRACT of an expressive linking language, which acts as Jiazzi's as-
pect configuration language: the inclusion and configuration of
We present aspect-oriented programming in Jiazzi. Jiazzi eneode that implements a concern amounts to unit linking. Units
hances Java with separately compiled, externally linked codeindergoseparate compilation[2]: the internal implementa-
modules calledinits. Units can act as effective “aspect” con- tions of units are compiled and type-checked independently of
structs with the ability to separate crosscutting concern code ithow they will be linked. Separate compilation makes concern
anon-invasive and safeway. Unit linking provides a conve- composition more robust, because the integration of multiple
nient way for programmers to explicitly control the inclusion concern implementations together cannot result in unseen type
and configuration of code that implements a concern, whileerrors. Separate compilation promotes the separate reasoning,
separate compilation of units enhances the independent develhdependent development, and binary deployment of code that
opment and deployment of the concern. The expressivenedmplements concerns.
of concern separation is enhanced by units in two ways. First,
classes can be made open to the addition of new behavior, fieldsinits in Jiazzi directly facilitate concern modularization in two
and methods after they are initially defined, which enables thaeyays. First, units enable the creationopen classefs], which
direct modularization of concerns whose code crosscut objecére classes that can be enhanced with new behavior, methods,
boundaries. Second, the signatures of methods and classagad fields without invasively editing their original definitions
can also be made open to refinement, which permits more agar breaking their existing subclasses. Such extensibility cannot
gressive modularization by isolating the naming and calling re-be achieved with class inheritance alone. Open classes allows
quirements of a concern implementation. units to modularize concerns whose implementations crosscut
object and class boundaries. Second, units supE®h sig-

. natures where details necessary for the use of methods and

1. Introduction classes can be refined as the unit undergoes linking. In object-

N . oriented languages such as Java, these details are class and
Jiazzi [17] is an enhancement of Java that adds support for efla1h6q names, as well as method (and constructor) arguments.

capsulated Cl?d?j m_odulgs knowkn m@sgram units[8]. Units 4, With an open signature, a unit can modularize the code of a
:Nerbe orlglr.]g. y fe5|?]ne t(lj_ ma edprofgrammlng more rfno C‘;'concern even if the concern depends on classes and methods
ar by providing for the explicit and safe management of code,, i, nfixed names or requires new arguments to be propagated
modules. Th|§ heritage also ma](es units ideal cqnstructs to supb-y existing method calls. Open classes and open signatures can
port aspectto_rlented progrqmmr{gS] (AOP), Wh_'Ch focuseg e utilized in a program organization with separate compilation
on modularizing programming concerns not easily modularized, 4 modular type checking, which makes their use more safe

by classes or other traditional modularity constructs. In J|a22|?nd robust.

the code of a concern can be modularized into a unit, even i

this code crosscuts Java classes, refers to different names, or 1gnp iy 3iaz7i can separate concerns at the granularity of classes,
quires extra arguments to be propagated through method callg,| 355 members, and sections of method implementations. Jiazzi
o . . . cannot separate concerns whose implementations are deeply
Units in Jiazzi contain the code multiple Java classes, Whlcnang"sd with other code, which would require more invasive
is an ideal granularity for modularizing concerns that Cross'weaving and meta-progr;:lmming mechanisms; e.g., as provided
cut multiple classes. Units are linked together through the us%y Aspect] [12]. In Aspect] terminology, Jiazzi is limited to
member and “around method” advice. Instead, Jiazzi concen-
trates on simplifying and advancing code modularization with
a simple linking paradigm. In contrast to other AOP systems
personal or classroom use is granted without fee provided that copiesSl.'ICh as AspectJ and Hyper/J [20.]’ Jiazzi supports_sep_arate com-
are not made or distributed for profit or commercial advantage and th& ilation and mOF’“'ar tYPe, checking. The use of Jiazzi can eas-
copies bear this notice and the full citation on the first page. To copy Iy be adopted into existing Java program development prac-
otherwise, to republish, to post on servers or to redistribute to lists, ~ tices, as Jiazzi does not change the syntax of the core Java lan-
requires prior specific permission and/or a fee. guage nor does it greatly influence programming style.
AOSD 2003 Boston, MA USA
Copyright ACM 2003 1-58113-660 —9 /03/00%5.00

Permission to make digital or hard copies of all or part of this work for

70

signature mzbase = { atom driver

class Maze extends Object { Maze(); ...} { import maze : mzbase;
abstract class Entity — extends Object export main : program; }
{ Entity(); abstract void display(); .o} signature program = {

class Room extends Entity

; : lass Main extends Object
Room(); Item item int n); . ¢) . ; 0]
<{:Iass I(D)oor extends(Entity) } { static void main(String args[)); }
{ Door(); boolean enter(Player p); . ¥))) o
class Player extends Entity Il file: driver/main/Main.java
{ Player(String name); void exec(); o} package main;
class Item extends Entity { ltem(); ...} class MyMaze extends maze.Maze {...}
}_ public class Main extends Object {
Elgure 1:The package signaturezbase describes a package of ba- public static void main(String args(])
sic maze-game classes. { maze.Maze maze = new MyMaze();
maze.Player p = new maze.Player(args[0]);
maze.Room rooms[] = {...};
This paper concentrates on how Jiazzi can be used in AOP, Maze.Door doors[] = {h
rather than the details behind the design of Jiazzi's unit model._ ~~~ P-€x€c0: ...} }

The rest of this paper is organized as follows. Section 2 brieflyr19ureé 2: The package signatugrogram , the atomdriver and

introduces Jiazzi's unit model and linking language. Section 3%ava source code of the atafriver
describes how open classes are used in Jiazzi to modularize OQt'om base

ject crosscutting concerns. Section 4 describes how open signz- export maze : mzbase: }
ture are used in Jiazzi to make concern implementations mor '
generic and reusable. Section 5 discusses type checking an%
implementation in Jiazzi. Section 6 presents related work ani
Section 7 summarizes our conclusions.

mpound game

export main : program;
export maze : mzbase;

link unit base, driver; }

. . . Figure 3:The atombase and the compoundame; the Java source
2. Jiazzi Overview code implementation dfase is not shown.

This section describes much of what we have already published

about Jiazzi [17]. Since this paper focuses on the usability ofyascribed to clients by the package signatupgram shown

Jiazzi for AOP, the syntax presented in this paper has moreg, Figure 1.

features than previous work. For a more in-depth discussion

of Jiazzi's unit model, including the details behind its mecha-The java source code of atamiver can refer to basic maze-

nisms and implementation, see our OOPSLA 2001 paper [17]game classes imported in the packageze as if they were

We describe Jiazzi by using it to constructr@ze game[9, normal Java classes because of their descriptions in package

10] software application. The basic version of this maze gamesignaturemzbase . In the Java source code implementation of

involves a player exploring a maze of rooms, which are con-the atomdriver ~ shown at the bottom of Figure 2, the im-

nected together by doors and populated with items. ported basic maze-game classes are used as types, instantiated
)) o using thenew operator, and extended using inheritance. Con-

A basic maze game can be implemented packagen Jiazzi \grsely, the implementation of the clagsin in exported pack-

with the following core classesviaze, Entity , Room Door, agemain must conform to its description in the package signa-
Player , anditem . A package in Jiazzi is similar to a pack- tureprogram .

age in Java: both are constructs that group classes together.

The basic structure of these maze-game classes are describeghing in Jiazzi specifies which unit will provide the imple-

by thepackage signaturezbase in Figure 1. Package signa- mentation of the basic maze-game classes to the atioen

_tures descrlpe the classes ina package independently of thejfy,;g linking occurs in the unigame, which is acompound A

|mE)!emgntaE|ons. Package signatures are somewhat analogoggmpound is a kind of unit that is constructed by linking other

to “link-time” Java interfaces for packages rather than classes. jitg together. The provider of the basic maze-game classes to
o) the atomdriver is the atombase , which exports the maze-

Modules of Java code in Jiazzi are encapsulatedunits In game classes in its packagaze described by the package sig-

Figure 2, a maze-game application driver is encapsulated int@ 5t ,remzbase from Figure 1. Linking occurs by specifying
theatomdriver . An atomis a kind of unit that is constructed e atomsase anddriver in thelink unit clause of the

directly from Java_ source code. The atdriver imports_,the compoundyame.

packagemaze, which creates a dependency of the basic maze-

game classes that must be provided by another unit. Specifig,snnections between imported and exported packages of the
implementations of the basic maze-game classes imported injs |inked in the compoungame are established automati-
maze are not hardcoded idriver ; instead the structure of cally using package name matchihgThe packagenaze ex-
these classes are constrained by the package sigmatbase ported from the atorbase is connected to the packageze

from Figure 1. The atondriver ~ exportsthe packagenain, jnnorted into the atordriver . The result of this connection is
which provides an application entry-point class to other units.

The implementation of atonriver is hidden fromiits clients: Connections can always be specified manually with linking syntax not
the structure of the clagdain exported in packageain is used in this paper. See the Jiazzi manual [16] for details.

71

atom opmagic
gane maze ° rrzbase) { open maze : mzbase -> mzmagic; }
base driver Il file: opmagic/maze/Door.java
- package maze;
(mize . nebase (”m n:. pr ogra@ public class Door extends _super _Door {
* * private Spell spell = null
public Door() { super (); }
Crraze : rrzbase> @ai n : progr an) public void setSpell(Spell s) { spell = s; }
public Spell neededSpell() { return spell; }
public boolean enter(Player p)
Figure 4: An illustration of the linking that occurs in compound { if (neededSpell() = null)
game; imported packages are on top of unit rectangles; exported pack- if (p.casting != this.neededSpell())
ages are on bottom of unit rectangles; arrows point from connection return false
. return super .enter(p); b
sources to sinks. }
signature mzmagic = mzbase + { /I file: opmagic/maze/Player.java
class Spell extends Item { Spell(); } package maze;
class Door += public class Player extends _super _Player
{ Spell neededSpell(); { Spell casting; .
void setSpell(Spell spell); o}
class Player += Figure 6:The atomopmagic and Java source codeapmagic for

{ void addSpell(Spell spell);
boolean hasSpell(Spell spell);
void castSpell(Spell spell); oo}

the enhancement to open clasBemr andPlayer .

}

Figure 5: The package signatumzmagic , which is built out of
package signatumazbase .

cerns whose code commonly “crosscut” across the classes of a
system; e.g., the implementation for thegicfeature must add
additional code to the maze-game clasBesr andPlayer .
Conventional inheritance cannot be used because it suffers from

that any uses of the basic maze-game classes in the Java codedtextensibility probleni7]: implementation added to a class
the atomdriver become uses of the basic maze-game classeBY creating a new subclass leaves the class’s existing subclasses
implemented in the atotase . outdated. In Jiazzi, we solve this problem wiipen classefs,

19], which are classes that can be enhanced with new imple-
All the connections between packages established in compoungiéntation without the need to modify their original source code.
game are illustrated in Figure 4. Besides making connections'When new implementation is added to an open class, its exist-
between linked units, the packageaze andmain , exported INg subclasses are updated to reflect the addition.
from the atomsase anddriver , respectively, are both con- o))
nected to packages exported from the compogmde. As a The atomopmagic in Figure 6 add_s new |mplementat|o_n to
result, these packages can be provided to units when the contb€open packagenaze, which by using thepen keyword, is
poundgame itself is linked by other compounds. Because the @ Package of open maze-game classes. Unlike an imported or
compoundyame does notimport any packages, the Java classe§xPorted package, the open packagee is described by two
it contains can be loaded directly into a Java virtual machine Package signatures separated by an arrewy; (the first pack-
By providing the executable claséin in the packagenain, @de Signaturenzbase from Figure 1 describes thienported

the compoundjame acts as a self-contained Java application. Structureof the maze-game classes, while the second pack-
age signaturenzmagic from Figure 5 describes thexported

structureof the mase-game classes. As a result, the open pack-

3. Open Classes agemaze is enhanced from a normal base maze-game package
(described bynzbase) to a package of maze-game classes en-
Suppose the maze game is enhanced with a mewic “fea- hanced with thenagicfeature (described byizmagic).

ture.” Themagicfeature requires players to find and cast spells

to open some doors. The additional classes and methods th&hown in Figure 6, the Java source code for the open class
are added to the basic maze-game package to supportitfie Door in atomopmagic can freely refer to the imported struc-
feature are described by the new package signatuamegic in ture of the open packageaze. The Java source definition of
Figure 5, which uses the additior)(operator to add new struc- open clas®Door extends the classuper _Door , which is a

ture to the package signaturebase from Figure 1. The pack- special class name automatically generated by Jiazzi. Jiazzi
age signaturenzmagic describes structure already described does not require changes to the Java language or Java source
by mzbase, adds a new description for the claSsell , and compiler to support open classes. Instead of adding new com-
uses the accumulate=)) operator to add new method descrip- plexity to the Java language, special class names dikeer-

tions to classes that are already described by the package sigdoor) are used to expose open class functionality to conven-
naturemzbase. tional Java source code.

The magic feature is characterized as an optional and replace©Open classes can be enhanced in two ways. First, new mem-

able concerns, so its code must be separated from the basiers can be added to an open class; e.g., the methspell
maze-game Java source code. However, features are also cas-added to the open clabsor and the fielctasting is added

72

signature mzlocked = mzbase + { atom opbase {

class Key extends Item { Key(); } open maze : empty -> mzbase;
class Door += ¥
{ Key neededKey(); compound game2 {
void setKey(Key key); o} export main : program;
class Player += export maze : mzmagloc;
{ void addKey(Key key); boolean hasKey(Key key); link unit driver;
y void useKey(Key key, Door door); -} link unit opbase, opmagloc;
atom oplocked { Figure 8: The atomopbase and the compoundame?2; the Java
open locked : mzbase -> mzlocked; source code for atofibase is not shown.
}
signature mzmagloc = mzmagic + mzlocked;
gane2
compound opmagloc {
open maze : mzbase -> mzmagloc; ',.(maze : enpty) maze : nebase
link unit opmagic, oplocked; s ;
. opmagi ¢ ! C_ma:gil oc
Figure 7: The package signatureszlocked andmzmagloc , the ., : maze :© nmzbasede.
atom oplocked , and the compoundpmagloc ; the Java source ™ E : \‘
code of atonoplocked is not shown. : opnegi ¢ '5
' -> nzmagi cy-*
to the open clas®layer . Some newly added members are :
required by the open packages exported structure, such as t i maze : NMEbasep-,
methodsetSpell of Door , while other newly added mem- i \
bers are only used privately inside the unit, such as the fielg ! opl ocked)
casting of Player . Second, existing methods can be en- nmaze : i —> nzl ocked»—"
hanced with new implementation that can refer to the newly dri ver i CT)
added members of open classes; e.g., the methad of \
open clas®oor is enhanced with new code that addresses the main : program -> nzmagl oc
magic feature and refers to the newly added methedded-
Spell of Door and fieldcasting of Player . Enhancing ex-
isting methods appears as method overriding in the Java la

guage, where the new implementation of mettmeer of main : program maze : memagl oc

Door can call the previous implementation using a super call.
Figure 9: An illustration of the connections established in the link-
Besides thenagicfeature, the maze game can be enhanced withing of compoundgiame2 andopmagloc ; the top imported and bot-
other features, such as theked feature where players must tom exported portions of an open package are connected together by a
find and use keys to open some doors. The package signatutiashed handles to illustrate their interdependency.
mzlocked and the atontocked in Figure 7 describe and im-
plement thdockedfeature in a manner similar to how the pack-
age signaturenzmagic and the atoropmagic describe and
implement themagicfeature. The package signaturesmagic
andmzlocked are combined into the package signatare
magloc , which describes the structure of maze-game classe
enhanced with the compositegic lockedfeature. By compos-
ing both of these package signaturegmagloc describes a
package of maze-game classes with all structure ofoitied
and magic features. That is, the package described has botfﬁ
classespell andKey and the clas®oor has both the meth-
odsneededSpell andneededKey .

merges them into a single open package that contains the maze-
game implementations of both teagic and locked features.
gecause it determines the overriding order for methods that are
overridden, the order that atorapmagic andoplocked are
linked is important. In compoundpmagloc the atomop-

locked is linked after the atonepmagic , so the implemen-
ation of the methoénter of classDoor is last overridden in

he atomoplocked

To form complete maze-game classes with bothntiagic and
lockedfeatures, the compourydme? in Figure 8 links the com-
poundopmagloc with the atonmopbase , which provides a ba-
sic implementation of the maze-game open classes. The i
ported structure of open packageze in opbase is described
with the built-in package signaturenpty , which describes a
hpackage with no classes. The compowathe2 in Figure 8
links the unitsopbase andopmagloc together with the atom
driver from Figure 2 to create a complete maze-game appli-
cation. The compoundame2 does not have any imported or
2Connections can be specified manually with linking syntax not usedoPen packages, so its classes can be loaded directly into a Java
in this paper. See the Jiazzi manual [16] for details. virtual machine.

The compositenagic lockedfeature is implemented by linking
the atomsopmagic andoplocked together in the compound
opmagloc defined at the bottom of Figure 7. Connections be-
tween the imported and exported structure of teeze open
packages of atomspmagic andoplocked are established au-
tomatically by matching their names and by the order in whic
the linked units are specified in the compound’s link clatse.
Connecting thesenaze open packages together conceptually

3

73

Connections made in compoundame2 and opmagloc are ~ Sgnature mzsecure = mzbase + {
name [DEVICE];

illustrated in Figure 9. Connections to the imported and ex- class [DEVICE] extends ltem { [DEVICE](): }
ported open packageaze structure of compoundpmagloc class Door += '

in compoundyame2 create indirect connections to and fromthe ¢ [DEVICE] needed[DEVICE]();

imported and exported open packageze structure of atoms void set[DEVICE]([DEVICE] dvc); .}
opmagic andoplocked . The exported open packageze class Player +=

structure of compoundpmagloc is connected to the imported 1 ‘éo'dl add[EEV'CE]([DEV'CE] dVC)c?j _

maze package of atondriver and the exportethaze pack- } oolean has[DEVICE]([DEVICE] dve); o}
age of compoungame2. Connecting an open package to an atom opsecure {

imported or exported non-open package “closes” the classesoIoen maze : mzbase -> mzsecure:
in the open package: they can no longer be enhanced as opgn '

classes. InS|de_ the atodniver and outside the compound Figure 10:The package signaturezsecure and the atonopsec-
game2, classes in the packageze do not appear as open,and |, o

no new implementation can be added from these contexts.

/I file: opsecure/maze/Door.java

By selectively linking the atomspmagic and oplocked to Backage maze:

form a maze-game application, other variations can be created .
; public class Door extends _super _Door {
that have only themagic feature, only thelocked feature, or DEVICE dve:
peither f(_afature. EeatL_Jre_inc_Iusion is controlled through Iink_- public void ' SetDEVICE(DEVICE d)
ing specified by Jiazzi's linking language, and source code is{ dvc = d
not modified when a new configuration of the maze game is public = DEVICE neededDEVICE() { return dvc; }
created. Open classes in Jiazzi enables a system to be orga- }
nized according to its features as well as its classes. In conven-
tional Java, such separation of features could only be obtained file: opsecure/maze/DEVICE java
with various object composition design patterns [10], which ob-package maze;
scures intent and sacrifices static type checking. Open classgsiblic class DEVICE extends Item
enable feature modularization to be explicit as well as statically{ public DEVICE() { ... } ... }

type safe.)
Figure 11: The Java source code for the open maze game classes

Door and[DEVICE] in the implementation of atoropsecure .

4. Open Signatures

While open classes can modularize concern code that crosscybye tg a commomaming convention The package signa-
class boundaries, the modularization of such code can be liMgresmzmagic (Figure 5) andnzlocked (Figure 7) both fol-

ited because of the signatures of classes and methods shargg; the same naming convention in naming methods added to
between units. Such problematic concern code can apply t¢he signatures of classewor andPlayer , where a name is
multiple situations where signatures differ, or can require eN-composed of a verb, which describes the action of the method,

hancements in the signatures of classes and methods provideg,q 5 subject, which is the name of the item the method uses,
by existing code. In this section, we describe constructs thag 4 “needed-Spell” and “needed-Key.”

enable the modularization of such code.

This naming convention can be codified in Jiazzi usipgn
4.1 Name Parameters signatures which are unit signatures that are open to refine-

ment. The package signaturesecure in Figure 10 declares
There is significant overlap between the functionality of the thename parametelDEVICE] with thename keyword, where
maze gamenagic and locked features. Both features restrict a name parameter can be used only as part of a class or method
access to doors by requiring certain items that the player mustame: e.g., in the name of methoeeded[DEVICE] or class
have in order to enter. The implementations of tihyic and [DEVICE] . The name paramet@DEVICE] is a placeholder
locked features potentially overlap. However, the overlapping for the parts of method and class names that are unbound in
implementation is difficult to modularize because names usedhe naming convention secure features. The adpsecure
between the features’ implementations are different. For exin Figure 10 uses the package signatuesecure to describe
ample, the item needed by a door is queried using the methothe open packagmaze. The[DEVICE] name parameter in
neededSpell of classDoor in the magicfeature implementa- atomopsecure thatis used in package signatunesecure is
tion, while the methodheededKey is used in thdocked fea- unbound, which allows the signature of atopsecure to be
ture implementation. The similarities between these two featefined later when it is linked with other units afEVvICE] is
tures implies that they share the code of a common concerbound.
that should be modularized.

Shown in Figure 11, the Java source code for atpsec-
Forcing both feature implementations to agree on method andre can effectively provide the common implementation of the
class naming would create irresolvable ambiguities; e.g., callmagic andlockedfeatures because tfieEVICE] name param-
ing two distinctneeded methods from the clas3oor is not eter isolates the source codeafsecure from the features’
possible in the Java language. Rather than force naming agreeifferent naming requirements. As with open classes, name
ment, bothmagic and locked feature implementations can ad- parameters do not require changes to the Java core language.

74

signature mzmagic2 = mzsecure + { atom opmagic2

[DEVICE] = Spell; { open maze : mzsecure -> mzmagic2; }

class_ Player +=

{ void castSpell(Spell spell); } compound opmagloc2 {

}_ open maze : mzbase -> mzmagloc;

signature mzlocked2 = mzsecure + { link unit opsecure, opmagic2;

[DEVICE] = Key; link unit opsecure, oplocked2;

class Player +=

{ void useKey(Key key, Door door); } Figure 14:The atomopmagic2 and the compoundpmagloc2 .
}

Figure 12:The package signaturezmagic2 andmzlocked2 .
turemzlocked , which describes the exported structure of open

atom oplocked2 { packagemaze. As a result, the open clas®y is a member

open maze : mzsecure -> mzlocked2; of the open packageaze, not the open clag®EVICE] , and

} the methodheededKey is a member of the open clabsor ,

I file: oplocked2/maze/Door.java not the methodeeded[DEVICE] . Classes and methods whose

package maze; names have been enhanced in an open package can be enhanced

public class Door extends _super _Door { as normal; e.g., the methodededkey can be overridden even

bﬁg:iecarg)ooilse;?fked;enter(PIa er p) though the previous implementation of the method was called

? if (isLocked) return fglsep ; needed[DEVICE]

return super .enter(p); } . -

public Key neededKey() The atonmopmagic2 (Java source code not shown) in Figure 14

{ ... return super .neededKey(); } provides an implementation of theagic feature. The com-

} poundopmagloc2 in Figure 14 links the atorapsecure twice

Il file: oplocked2/maze/Player.java to provide the structure required by the atoopsagic2 and

package maze; oplocked2 . In the first linking of atornmopsecure , the [DE-

public class Player extends _super _Player { VICE] name parameter is bound to the fixed identiipell

public void ~ useKey(Key k, Door d) to accommodate the immediately following linking of atom

{ if (this.hasKey(k) && d.neededKey() == k) opmagic2 , while in the second linking of atompsecure ,
disLocked = !d.isLocked; t the [DEVICE] name parameter is bound to the fixed identi-

}

Figure 13: The atomoplocked2 and its implementation of Java
source code.

fier Key to accommodate the immediately following linking of
atomoplocked2 . The compiled Java bytecode gfsecure
is automatically duplicated and rewritten to rename classes and
methods according to hofEVICE] is bound. Rewriting is
Instead, method and class hames parameterizédebyICE] performed over bytecode by Jiazzi’s linker, and does not affect
appear as normal Java identifiers without the brackets; e.gseparate compilation because correct usage and implementa-
the methocheeded[DEVICE] the clas§DEVICE] canrespec- tion of methods and classes can be verified independently of
tively be referred to aseededDevice andDEVICE in Java their actual naming requirements. The compoupgiagloc2
source code. Any uses tBEVICE" in an identifier in the Java IS @ more modular version of the compouegmagloc from
source code of atormpsecure do not require any special rea- Figure 7, and the former can be linked instead of the latter in
soning and do not create any accidental interactions as the naniée compoundame2 from Figure 8.
parametefDEVICE] is bound.

Name parameters allow for a more aggressive modularization
The name parametfEVICE] in package signaturezsecure of concern code that would not be possible if class and method
is gi\/en a value using the b|nd|ng opera’[g) (Nhen package names were always fixed. Name parameters are also scalable,
signaturemzsecure is used by the package signatures- since they can take advantage of naming conventions to param-
magic2 and mzlocked2 in Figure 12. [DEVICE] becomes eterize multiple class and method names at once. By assigning
fixed identifierSpell in package signatunezmagic2 , while ~ each method and class its own name parameter, name parame-
it becomes the fixed identifiecey in package signaturemz- ters could be used to perform fine-grained renaming. However,
locked2 . These fixed identifiers replace use§mEVICE] in we would consider this usage to be an abuse, as the code of a
mzsecure . In mzmagic2 , the clas§DEVICE] is renamed as concern should not require extensive micro-management to fit

the classspell , while the methodheeded[DEVICE] of class into a program.

Door is renamed as the metho@ededSpell . The pack-

age signaturesizmagic2 andmzlocked2 describe classes and 4.2 Argument Parameters

methods that are equivalent to those described in the package

signaturesmzmagic from Figure 5 andnzlocked from Fig- Displaying the maze game application is the responsibility of

ure 7, respectively. the methoddisplay , which is declared abstract by the class
Entity and implemented by the various maze game classes.

The atonoplocked2 in Figure 13 provides the maze game im- The methoddisplay is an example of a traversal method;

plementation of théockedfeature that builds on an implementa- whendisplay called on an object, the object will calikplay

tion of the secure feature. In the Java source implementation ofn its sub-objects as appropriate; e.g., acalldplay aroom

oplocked2 , the [DEVICE] name parameter is replaced with will cause calls tadisplay on items in the room. Player ac-

the fixed identifierkey by the binding in the package signa- tions also triggetlisplay calls; e.g., when the metheaiter

75

signature mzbase2 = { atom opbase2 {

arg [DISPLAY]; open maze : empty -> mzbase2;
class Maze extends Object { Maze(); ...} 1
e{\bétr:?tct()class Entity ~ extends Object /I file: opbase2/maze/Entity.java
1ty () .
abstract void display()[DISPLAY];) package maze; _
class Room extends Entity public class Entity extends Object
Room(); Item item int n); ... public abstract void display();
{ 0; (); }
class Door extends Entity /I file: opbase2/maze/Player.java
{ Door(); package maze;
boolean enter(Player p)[DISPLAY]; e public class Player extends Entity {
class Player extends Entity . i .
{ Player(String name); public void display() { ...}
void exec()[DISPLAY];) public void exec() { _ _ _
class Item extends Entty { ltem(); ...} ... Room current = ...; current.display();
} ... Door toEnter = ...; toEnter.display();
Figure 15:The package signaturezbase? . }}

/I file: opbase2/maze/Room.java
package maze;
of classDoor is called, calls tadisplay —are made to inform public class Room extends Entity ~ {
the player of the action’s result. public void display()
{ Entity in[] = ...; in[0].display(); .}
. . o)
gii;?:;: dltv\lliggttﬁitggg\évrrhlgzvghga;rw:%Itgsesg]:;?egi%rgfemgr?tee':.gure 16:The atomopbase2 .and the Java source implementation
. . . . orf'its open maze game clasdestity , Player , andRoom
the display = methods can only be partially implemented in
these classes. Code for thieandgui features will determine
if the maze game displays on a command line interface (cli) Ofsignature ~ mzcli = mzbase2 + {
graphical user interface (gui). This presents a dilemma: eitheryse package java.io;
choice for the display feature will require different arguments [DISPLAY] = (PrintStream out, int indent);
for thedisplay method. Theli display method will require
a stream interface to the command line, while will require ~ atom opcli {
a graphics context. As a result, arguments required by displayopen maze : mzbase2 -> mzcli;
feature code of thdisplay method cannot be specified in the }
basic implementation of the maze game classes. Similiar sitSignature mzgui = mzbase2 + {
uations often occur when concern code implements a serviceUSe package java.awt;
whose calling requirements cannot be specified without com- [PISPLAY] = (Graphics g); . _
o P . - class Entity += { Component widget(); }
mitting to a specific implementation of the service. }
. . . atom opgui {
Solutions to thls proplem coulq abstrﬂetplgy method argu- open maze : mzbase2 -> mzgui:
ments as static and instance fields in various classes. These sp-
lutions must be carefully crafted because the maze game COU'ﬁigure 17:The package signatureszcli
be executed concurrently. For example, there could be mul
tiple players using separate displaysdisplay method ar-
guments could change as they are passed to deipay
method calls. Ideally, new arguments could be added to the
display method when the display feature to be implemented
becomes known, but in Java this cannot be done without editargument parameter fromzbase2 in atomopbase2 is un-
ing the source code of the origindikplay declarations and bound, which allows the signature @fbase2 to be redefined
definitions. when it is linked with other units. In the Java source implemen-
tation of atonopbase2 , [DISPLAY] is invisible: thedisplay
Besides codifying naming conventions, open signatures can bmethod appears as if it has no arguments at all.
used in Jiazzi to add new arguments to methods after they have
been declared and defined. The package signateisase2 in One significant restriction is placed on methods whose decla-
Figure 15 declares thargument parametefDISPLAY] with rations are modified with an unboundISPLAY] argument
thearg keyword. Argument parameters can be used only af-parameter: the methods can only be called by other methods
ter argument lists in method signatures. The argument paramwhose declarations are also modified[DySPLAY] . As a re-
eter[DISPLAY] abstractslisplay method arguments. This sult, only definitions of the methodsisplay , enter , and
includes the methodsxec andenter in classe®layer and exec may call each other. This restriction ensures that the new
Door , whose implementations can potentially call display meth-arguments bound tiDISPLAY] are available to calls of these
ods. As a result, these two methods must have access to thethods. It also mimics traversal method structure, where def-
display method arguments, which is reflectechinbase? . initions of the same method declaration are recursively called.
Before a traversal method entry-point can be called, e.g., the
The atomopbase2 in Figure 16 uses the package signature methodexec in classPlayer , [DISPLAY] must be bound so
mzbase2 to describe the open packagaze. The[DISPLAY] all display method arguments are known.

andmzgui and the atoms
opcli andopgui ; theuse package clause inserts the classes of
the specified package into the package signature’s namespace.

76

/I file: opcli/maze/Player.java

package maze: ment list in the package signaturecli , the methodnain in

the Java source code of atafitriver shown in Figure 19

public class Player extends Entity { can call the methoelxec , even though itis not also modified by

public. void d'SpIaY(P”?rt]tStirﬁggt)OUt' [DISPLAY] . The compoundame3 at the bottom of Figure 19

{ ... super.display(out,indent); links atomsopbase2 , opcli , andclidriver together. Ar-
out.print(this.name()); . gument parameters are bound in compounds in the same way

public void exec(PrintStream out, int indent) that name parameters are. When the atpbase2 is linked,

{ outprint("Begin"); super.exec(out, 1); } its [DISPLAY] argument parameter is bound as specified by

the package signaturezcli , and as a result, the bytecode of
opbase2 is duplicated and rewritten to add the fixed CLI argu-
ment list to the definitions and declarations of methods modi-

/I file: opcli/maze/Room.java
package maze;

p“bglc_ Clas_z ggoolm e;t_engs Entity - { fied by[DISPLAY] , and propagate arguments to calls of these
public vor isplay(”?rtlt tirsgé?]t)om’ methods withiropbase2 .
{ ... super.display(out, indent + 1); .}
The use of argument parameters enables the modularization of
Figure 18:The Java source code for open maze game cl&@ager concern code that requires the propagation of additional values
andRoomin the implementation of atompcli . through calls to existing methods to the concern code. When
compared to the alternatives of using extra fields, argument pa-
atom clidriver { rameters are safer and more efficient because they use explicit
import maze : mzcli; language mechanisms that enable type checking and efficient
export main : program; method calls. Like name parameters, argument parameters are

more effective when used at a coarse granularity, where multi-
ple methods involved in the same traversal can be modified by
the same argument parameter.

/I file: clidriver/main/Main.java
package main;

public class Main extends Object {
public static void main(String argsl])
{ maze.Player p = new maze.Player(args[0]); 5. Using Jiazzi
. p.exec(System.out, 0); o}
compound game3 { In the previous sections, we have demonstrated Jiazzi's features
export main : program; in AOP using an in-depth example. In this section we discuss
export ~maze : mzcli; details necessary for development using Jiazzi.
link unit opbase2, opcli, clidriver;

Figure 19:The atomclidriver the Java source code for the im- 5§ 1 Type Checking
plementation otlidriver , and the compoungame3.

Type checking of a unit in Jiazzi occurs in arternal-stage

which occurs when the unit is constructed, andeaternal-
The [DISPLAY] argument parameter is bound to fixed argu- stage which occurs when the unit is linked by a compound.
ment lists when the package signaturgbase2 is composed The separation of a unit's internal and external type checking
in the package signatureszcli andmzgui of Figure 17. In is what enables separate compilation in Jiazzi. The Java source
package signatunezcli , [DISPLAY] is bound to the new ar- compiler does standard type checking for Java classes in atoms.
guments of a print stream (from Java’s IO library) and an in- The linker performs checks during internal-stage type checking
teger indent level. In package signatuiegui , [DISPLAY] is to ensure the unit's exports are connected correctly. During
bound to the new argument of a graphics context (from Java'she external-stage type checking of a unit, the linker performs
AWT library). The atomopcli andopgui in Figure 17 use checks to ensure the unit’'s imported packages are connected
openmaze packages with exported structure describe by pack-correctly. A complete and formal discussion of type checking
age signaturesizcli andmzgui to add implementations of the in Jiazzi is presented in [18].
cli andgui features to the maze game classes.

Argument parameters require extra internal-stage type check-
By using the package signatumescli andmzgui to describe ing in atoms to ensure that methods modified by an unbound
the maze open packages, new arguments bound to argumenargument parameter are only called by other methods modi-
parametefDISPLAY] in those package signatures are visible fied by the same argument parameter. This type checking is
within the Java source code implementations of atopté performed by a post-compiler provided in Jiazzi's implemen-
andopgui . Shown in Figure 18, the Java source code for atomtation. Name and argument parameters require checks when
opcli can “see” the print stream and indent level argumentsthey are assigned during a unit’s external-stage type checking
added by the binding in package signatongli . These argu- to ensure their assignments do not create any ambiguities in
ments are added to the method declarations in impontege the unit’s signature. For example, if the name paramefer
structure, and super class calls to tlisplay methods must is assigned to the fixed identifiebo, but a class described in
provide values for these arguments. the unit’s signature has both the methedgA] andsetFoo

then the assignment must be rejected because it creates an am-
The atomclidriver in Figure 19 implements an application biguity. Because the linker renames methods and classes of a
driver for the maze game in the contextdtiffeature. Because unit as they are linked into a compound, ambiguities cannot
the [DISPLAY] argument parameter is bound to a fixed argu- occur unless they are apparent in the signature of a unit.

77

5.2 Implementation 6. Related Work

Jiazzi does not require extensions to the Java language: all dfhe code modularization enabled by units has long been known
Jiazzi's features are implemented in the linking language that iso enable some amount of AOP. A survey of how units and as-
used to define package signatures, atoms, and compounds. Arects are related is presented in [6]. Jiazzi’s support for AOP is
atom is implemented with source code written in the conven-similar to that of Hyper/J [20], which also focuses on the mod-
tional Java language. The linker in Jiazzi does not process Javalarization of code and concerns with crosscutting implementa-
source code; the interface between Java and Jiazzi occurs at thiens. Comparing Jiazzi to Hyper/J, atoms are like hyperslices
level of Java bytecode. Before the Java source code implemerand compounds are like hypermodules. Both Hyper/J and Ji-
tation of an atom can be processed by the linker in Jiazzi, itazzi do not change the Java language. In many ways, Hyper/J
must be compiled into Java bytecode by a conventional Javés more powerful than Jiazzi: it provides very fine grained com-
source compiler (e.g., javac). position mechanisms to integrate concern code together. On the
other hand, Jiazzi uses a simple linking metaphor for concern
Because conventional Java source compilers do not understartegration that can be supported with separate compilation and
an atom’s imported and open packagestuab generator is modular type checking. Hyper/J does not support the descrip-
provided that examines an atom and the package signaturdin of a concern independent from its code, which can be done
used to describe its packages, and generates Java bytecode thath Jiazzi package signatures. Aspectual components [15] are
expose the classes in these packages to Java source compilatso useful for modularizing object crosscutting concerns and,
and other Java tools that understand Java bytecode but not Jike Jiazzi, emphasize modularity to enable separate reasoning
azzi. To ease the implementation of classes in exported andbout concern implementations.
open packages, the stub generator will also generate skeleton
Java source files for classes in these packages if they do not eXspectJ [12] modularizes concerns using a weaving metaphor,
ist already. The generated skeleton file will automatically setupwhere concern implementations, known as aspects, are wo-
the required open class inheritance relationships, eags ven into well-defined points of code modules. AspectJ allows
Door extends _super _Door, and provide skeleton implemen- meta-programs to directly access the internals of a code mod-
tations of methods that must be implemented to satisfy the exule while Jiazzi only supports access to code modules through
ported structure of the open class. well-defined signatures. AspectJ does not support separate com-
pilation; aspects and the code fragment they are woven into
After the Java source code implementation of an atom is comare compiled at the same time. Additionally, while Jiazzi is
piled into Java bytecode, it undergoes processing by Jiazzi'®nly adept at modularizing object crosscutting concerns, As-
linker. The linker internally links the atom by performing its pectJ can modularize a more general class of concerns with its
portion of first-stage type checking over the atom and then packemphasis on aspect weaving.
aging its implementation into its linked form, which is a Java
archive (JAR) file of Java bytecode and meta information. AOpen classes in Jiazzi are based on mixins [1], where exten-
compound is only processed by the linker. The linker performssibility is gained with classes whose super classes are initially
type checking over all the units linked by the compound. Fi- unfixed. Role-model components [23] use individual mixins to
nally, the linker duplicates the Java bytecode in the linked formmodularize the many “roles” an object is involved in. Mixin
of each unit that is linked in the compound, rewrites the byte-layers [22] improve on this by using a layer of mixins to mod-
code, and coalesces the rewritten Java bytecode into the conlarize a collaboration between many objects. Java Layers [4,
pound’s linked form, which has the same format as an atom’'s3] adds mixin layers to the Java language. There are many
linked form. stylistic differences between mixin layers and Jiazzi; e.g., the
use of units in Jiazzi as opposed to parameterized classes in
How the duplicated Java bytecode of linked units are rewrittenmixin layers. Unlike Jiazzi, mixin layers do not support sep-
in a compound depends on how packages are connected ardate compilation. Delegation layers [21] improves on mixin
how name and argument parameters are bound within the comayers by allowing new collaborations to be added at run time.
pound. The binding of a name parameter will cause the namegiazzi does not provide any support for dynamic extensibility.
of classes and methods that embed it to be renamed according
to the binding. The binding of an argument parameter causeMultiJava [5] adds direct support for open classes with an ex-
new arguments to be added to methods modified by it, and #&nsion to the Java language. T$ibling class patterij3] en-
rewriting of modified method implementations to propagate theabled by Java Layers provides the same functionality as Jiazzi's
new arguments to calls of modified methods. Finally, methodsppen packages. As in Jiazzi, open classes in MultiJava are
classes, and packages not visible outside of the compound afally supported with principled separate compilation. Multi-
alpha-renamed so that they are hidden. Java open classes are more flexible in that new methods can be
added to a class at run time after program execution has begun,
Open packages are implemented in Jiazzi using a special inhewhile Jiazzi only supports addition to an open class during pro-
itance and linking pattern referred to as tigen class pattern gram linking. Conversely, Jiazzi supports the addition of new
Through this pattern, the new implementation of an open classields and methods to an open class, while MultiJava only sup-
is added “into” the class inheritance hierarchy between existingoorts the addition of new methods.
classes using mixin-like inheritance [1] rather than at the bot-
tom, which is the only option with conventional inheritance. The Jiazzi name parameters enable the manageable renaming
A detailed explanation of how the open class pattern works if classes and methods. Programmers commonly use conven-
given in our OOPSLA 2001 paper [17]. tions for naming methods and classes, and name parameters

78

allow these conventions to be codified by units. AspectJ alsd3. REFERENCES

takes advantage of naming conventions in wild-carded pointcut[1] G. Bracha and W. Cook. Mixin-based inheritanceProc. of
definitions that identify where in a code fragment code should =~ OOPSLApages 303-311, Oct. 1990.

be added. Name parameters provide a simple way to perform[2] L. Cardelli. Program fragments, linking and modularization. In
the explicit renaming or name resolution that is useful when- Proc. of POPL pages 266-277, Jan. 1997.

ever an OO language supports a forms of multiple inheritance, [3] R. Cardone, A. Brown, S. McDirmid, and C. Lin. Using mixins
such as mixins [9]. Method renaming mechanisms have also to build flexible widgets. IrProc. of AOSDJune 2002.

been added to some OO languages that support multiple in-[4] R. Cardone and C. Lin. Comparing frameworks and layered

heritance, like Eiffel, to avoid ambiguity. However, Eiffel's refinement. IrProc. of ICSE pages 285-294, May 2001.
renaming mechanisms lack the scalability of Jiazzi's renaming (5] c. ciifton, G. Leavens, C. Chambers, and T. Millstein.
mechanisms: methods in Eiffel must be explicitly renamed in- MultiJava: Modular open classes and symmetric multiple
dividually. Hyper/J also supports renaming, but, like Eiffel, dispatch for Java. IRroc. of OOPSLApages 130-146, Oct.
each class or method must be explicitly renamed individually. 2000.

[6] E.Eide, A. Reid, M. Flatt, and J. Lepreau. Apsect weaving as
The argument parameter construct enables context required by ~ component kniting: Separating concerns with knitWarkshop
method definitions to be encapsulated across concern imple- ~ on Advanced Separation of Concerns in Software Enginegring
mentations. An alternative approach is to provide in-language May 2001.
support for variables whose bindings are specified over a dy-[7] R.Findler and M. Flatt. Modular object-oriented programming
namic scope. Dynamic scoping is supported in some Lisp-like with units and mixins. IrProc. of ICFR, pages 98-104, Sept.
languages as well as in many domain specific languages like 1998.
TeX and PostScript. Calls to methods affected by argument pa-[8] M. Flatt and M. Felleisen. Units: Cool modules for HOT
rameters are restricted in Jiazzi so the linker can add and pass ~anguages. IProc. of PLDI pages 236-248, May 1998.
new method arguments automatically. Rather than use such9] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and
restrictions, an implicit parameters [14] extension to Haskell ~ Mixins. InProc. of POPL, pages 171-183, Jan. 1999.
uses inference to determine which functions are affected by th§l0] E. Gamma, R. Helm, R. Johnson, and J. Vlissi@ssign
implicit parameters. Dynamically-scoped variables have also ~ Patterns: Elements of Reusable Object-Oriented Software
been proposed as an extension to C# [11]. Addison-Wesley, 1994.
[11] D. R.Hanson and T. A. Proebsting. Dynamic variablesRtoc.
of PLDI, May 2000.
7. Conclusions and Future Work [12] G.Kiczales, E. Hilsdale, J. Hungunin, M. Kersten, J. Palm, and
W. Griswold. An overview of AspectJ. IRroc. of ECOOR June
Jiazzi supports expressive aspect-oriented programming with 2001
units that enable open classes and open signatures. Additiofit3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
ally, by supporting separate compilation, Jiazzi enables stronger ~ J. Loingtier, and J. Irwin. Aspect-oriented programming. In
separate reasoning about concern implementations. While Ji- Proc. of ECOORJune 1997.
azzi is adept at modularizing concerns whose implementation§l4] J. R. Lewis, M. B. Shields, E. Meijer, and J. Launchbury.
cleanly crosscut object boundaries, Jiazzi cannot modularize ~ Implicit parameters: Dynamic scoping with static typesPhoc.
other concerns whose implementations are tangled into the state- °f POPL pages 108-118, Jan. 2000.
ments and expressions of method definitions. These concerr45] K. Lieberherr, D. Lorenz, and M. Mezini. Programming with
are best modularized using code weaving mechanisms, such ~ aspectual components. 1999.
as AspectJ [12]. However the weaving mechanisms in Aspectfi6] S. McDirmid.The Jiazzi Manual2002.
severely complicate separate compilation. Our future work will ;17] s McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi: New-age
explore how weaving mechanisms can support separate compi- components for old-fashioned JavaRroc. of OOPSLAOCt.

lation. 2001.
o o) [18] S. McDirmid, M. Flatt, and W. C. Hsieh. Expressive modular
Jiazzi is very pragmatic: it does not modify the syntax of the linking for object-oriented languages. Technical Report

core Java language and creates binaries that can execute in a UUCS-02-014, 2002.

Java virtual machine. An implementation of Jiazzi is available[19] T. Millstein and C. Chambers. Modular statically typed

for download, and we are currently preparing a new release multimethods. IrProc. of ECOOR pages 279-303, July 1999.
and tutorial that focuses on the AOP-centric features presentegg) H. Ossher and P. Tarr. Hyper/J: multi-dimensional separation of

in this paper. For more information, see the Jiazzi website: concerns for Java. IRroc. of ICSE pages 734—737, June 2000.

http://www.cs.utah.edu/plt/jiazzi [21] K. Ostermann. Dynamically composable collaborations with

delegation layers. 2002.

[22] Y. Smaragdakis and D. Batory. Implementing layered designs
ACKNOWLEDGEMENTS with mixin layers. InProc. of ECOOPRpages 550-570, June

1998.
We thank Eric Elde_and the anonymous reviewers for Com;{ZS] M. VanHilst and D. Notkin. Using role components to
ments on drafts of this paper. Sean McDirmid was supported i implement collarboration-based designsPhac. of OOPSLA
part and Wilson Hsieh in full by NSF CAREER award CCR— pages 359-369, Oct. 1996.
9876117.

79

