
Aspect-Oriented Programming with Jiazzi

Sean McDirmid, Wilson C. Hsieh
School of Computing, University of Utah

50 S. Central Campus Dr.
Salt Lake City, Utah USA

{mcdirmid,wilson}@cs.utah.edu

ABSTRACT

We present aspect-oriented programming in Jiazzi. Jiazzi en-
hances Java with separately compiled, externally linked code
modules calledunits. Units can act as effective “aspect” con-
structs with the ability to separate crosscutting concern code in
a non-invasiveandsafeway. Unit linking provides a conve-
nient way for programmers to explicitly control the inclusion
and configuration of code that implements a concern, while
separate compilation of units enhances the independent devel-
opment and deployment of the concern. The expressiveness
of concern separation is enhanced by units in two ways. First,
classes can be made open to the addition of new behavior, fields,
and methods after they are initially defined, which enables the
direct modularization of concerns whose code crosscut object
boundaries. Second, the signatures of methods and classes
can also be made open to refinement, which permits more ag-
gressive modularization by isolating the naming and calling re-
quirements of a concern implementation.

1. Introduction

Jiazzi [17] is an enhancement of Java that adds support for en-
capsulated code modules known asprogram units[8]. Units
were originally designed to make programming more modu-
lar by providing for the explicit and safe management of code
modules. This heritage also makes units ideal constructs to sup-
port aspect-oriented programming[13] (AOP), which focuses
on modularizing programming concerns not easily modularized
by classes or other traditional modularity constructs. In Jiazzi,
the code of a concern can be modularized into a unit, even if
this code crosscuts Java classes, refers to different names, or re-
quires extra arguments to be propagated through method calls.

Units in Jiazzi contain the code multiple Java classes, which
is an ideal granularity for modularizing concerns that cross-
cut multiple classes. Units are linked together through the use

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AOSD 2003 Boston, MA USA
Copyright ACM 2003 1–58113–660 –9 /03/002...$5.00

of an expressive linking language, which acts as Jiazzi’s as-
pect configuration language: the inclusion and configuration of
code that implements a concern amounts to unit linking. Units
undergoseparate compilation [2]: the internal implementa-
tions of units are compiled and type-checked independently of
how they will be linked. Separate compilation makes concern
composition more robust, because the integration of multiple
concern implementations together cannot result in unseen type
errors. Separate compilation promotes the separate reasoning,
independent development, and binary deployment of code that
implements concerns.

Units in Jiazzi directly facilitate concern modularization in two
ways. First, units enable the creation ofopen classes[5], which
are classes that can be enhanced with new behavior, methods,
and fields without invasively editing their original definitions
or breaking their existing subclasses. Such extensibility cannot
be achieved with class inheritance alone. Open classes allows
units to modularize concerns whose implementations crosscut
object and class boundaries. Second, units supportopen sig-
natures, where details necessary for the use of methods and
classes can be refined as the unit undergoes linking. In object-
oriented languages such as Java, these details are class and
method names, as well as method (and constructor) arguments.
With an open signature, a unit can modularize the code of a
concern even if the concern depends on classes and methods
with unfixed names or requires new arguments to be propagated
by existing method calls. Open classes and open signatures can
be utilized in a program organization with separate compilation
and modular type checking, which makes their use more safe
and robust.

AOP in Jiazzi can separate concerns at the granularity of classes,
class members, and sections of method implementations. Jiazzi
cannot separate concerns whose implementations are deeply
tangled with other code, which would require more invasive
weaving and meta-programming mechanisms; e.g., as provided
by AspectJ [12]. In AspectJ terminology, Jiazzi is limited to
member and “around method” advice. Instead, Jiazzi concen-
trates on simplifying and advancing code modularization with
a simple linking paradigm. In contrast to other AOP systems
such as AspectJ and Hyper/J [20], Jiazzi supports separate com-
pilation and modular type checking. The use of Jiazzi can eas-
ily be adopted into existing Java program development prac-
tices, as Jiazzi does not change the syntax of the core Java lan-
guage nor does it greatly influence programming style.

70

signature mzbase = {
class Maze extends Object { Maze(); . . .}
abstract class Entity extends Object
{ Entity(); abstract void display(); . . . }
class Room extends Entity
{ Room(); Item item(int n); . . . }
class Door extends Entity
{ Door(); boolean enter(Player p); . . . }
class Player extends Entity
{ Player(String name); void exec(); . . . }
class Item extends Entity { Item(); . . . }
}
Figure 1:The package signaturemzbase describes a package of ba-
sic maze-game classes.

This paper concentrates on how Jiazzi can be used in AOP,
rather than the details behind the design of Jiazzi’s unit model.
The rest of this paper is organized as follows. Section 2 briefly
introduces Jiazzi’s unit model and linking language. Section 3
describes how open classes are used in Jiazzi to modularize ob-
ject crosscutting concerns. Section 4 describes how open signa-
ture are used in Jiazzi to make concern implementations more
generic and reusable. Section 5 discusses type checking and
implementation in Jiazzi. Section 6 presents related work and
Section 7 summarizes our conclusions.

2. Jiazzi Overview

This section describes much of what we have already published
about Jiazzi [17]. Since this paper focuses on the usability of
Jiazzi for AOP, the syntax presented in this paper has more
features than previous work. For a more in-depth discussion
of Jiazzi’s unit model, including the details behind its mecha-
nisms and implementation, see our OOPSLA 2001 paper [17].
We describe Jiazzi by using it to construct amaze game[9,
10] software application. The basic version of this maze game
involves a player exploring a maze of rooms, which are con-
nected together by doors and populated with items.

A basic maze game can be implemented as apackagein Jiazzi
with the following core classes:Maze, Entity , Room, Door ,
Player , andItem . A package in Jiazzi is similar to a pack-
age in Java: both are constructs that group classes together.
The basic structure of these maze-game classes are described
by thepackage signaturemzbase in Figure 1. Package signa-
tures describe the classes in a package independently of their
implementations. Package signatures are somewhat analogous
to “link-time” Java interfaces for packages rather than classes.

Modules of Java code in Jiazzi are encapsulated intounits. In
Figure 2, a maze-game application driver is encapsulated into
theatomdriver . An atom is a kind of unit that is constructed
directly from Java source code. The atomdriver importsthe
packagemaze, which creates a dependency of the basic maze-
game classes that must be provided by another unit. Specific
implementations of the basic maze-game classes imported in
maze are not hardcoded indriver ; instead the structure of
these classes are constrained by the package signaturemzbase
from Figure 1. The atomdriver exportsthe packagemain ,
which provides an application entry-point class to other units.
The implementation of atomdriver is hidden from its clients:
the structure of the classMain exported in packagemain is

atom driver
{ import maze : mzbase;

export main : program; }
signature program = {
class Main extends Object
{ static void main(String args[]); }
}
// file: driver/main/Main.java
package main;
class MyMaze extends maze.Maze {. . .}
public class Main extends Object {
public static void main(String args[])
{ maze.Maze maze = new MyMaze();

maze.Player p = new maze.Player(args[0]);
maze.Room rooms[] = {. . .};
maze.Door doors[] = {. . .};
. . . p.exec(); . . . } }

Figure 2: The package signatureprogram , the atomdriver and
Java source code of the atomdriver .

atom base
{ export maze : mzbase; }

compound game
{ export main : program;

export maze : mzbase;
link unit base, driver; }

Figure 3:The atombase and the compoundgame; the Java source
code implementation ofbase is not shown.

described to clients by the package signatureprogram shown
in Figure 1.

The Java source code of atomdriver can refer to basic maze-
game classes imported in the packagemaze as if they were
normal Java classes because of their descriptions in package
signaturemzbase . In the Java source code implementation of
the atomdriver shown at the bottom of Figure 2, the im-
ported basic maze-game classes are used as types, instantiated
using thenew operator, and extended using inheritance. Con-
versely, the implementation of the classMain in exported pack-
agemain must conform to its description in the package signa-
tureprogram .

Linking in Jiazzi specifies which unit will provide the imple-
mentation of the basic maze-game classes to the atomdriver .
This linking occurs in the unitgame, which is acompound. A
compound is a kind of unit that is constructed by linking other
units together. The provider of the basic maze-game classes to
the atomdriver is the atombase , which exports the maze-
game classes in its packagemaze described by the package sig-
naturemzbase from Figure 1. Linking occurs by specifying
the atomsbase anddriver in the link unit clause of the
compoundgame.

Connections between imported and exported packages of the
units linked in the compoundgame are established automati-
cally using package name matching.1 The packagemaze ex-
ported from the atombase is connected to the packagemaze
imported into the atomdriver . The result of this connection is

1Connections can always be specified manually with linking syntax not
used in this paper. See the Jiazzi manual [16] for details.

71

game

driver

maze : mzbase

main : program

base

maze : mzbase

maze : mzbase
 main : program

Figure 4: An illustration of the linking that occurs in compound
game; imported packages are on top of unit rectangles; exported pack-
ages are on bottom of unit rectangles; arrows point from connection
sources to sinks.

signature mzmagic = mzbase + {
class Spell extends Item { Spell(); }
class Door +=
{ Spell neededSpell();

void setSpell(Spell spell); . . . }
class Player +=
{ void addSpell(Spell spell);

boolean hasSpell(Spell spell);
void castSpell(Spell spell); . . . }

}
Figure 5: The package signaturemzmagic , which is built out of
package signaturemzbase .

that any uses of the basic maze-game classes in the Java code of
the atomdriver become uses of the basic maze-game classes
implemented in the atombase .

All the connections between packages established in compound
game are illustrated in Figure 4. Besides making connections
between linked units, the packagesmaze andmain , exported
from the atomsbase anddriver , respectively, are both con-
nected to packages exported from the compoundgame. As a
result, these packages can be provided to units when the com-
poundgame itself is linked by other compounds. Because the
compoundgame does not import any packages, the Java classes
it contains can be loaded directly into a Java virtual machine.
By providing the executable classMain in the packagemain ,
the compoundgame acts as a self-contained Java application.

3. Open Classes

Suppose the maze game is enhanced with a newmagic “fea-
ture.” Themagic feature requires players to find and cast spells
to open some doors. The additional classes and methods that
are added to the basic maze-game package to support themagic
feature are described by the new package signaturemzmagic in
Figure 5, which uses the addition (+) operator to add new struc-
ture to the package signaturemzbase from Figure 1. The pack-
age signaturemzmagic describes structure already described
by mzbase , adds a new description for the classSpell , and
uses the accumulate (+=) operator to add new method descrip-
tions to classes that are already described by the package sig-
naturemzbase .

The magic feature is characterized as an optional and replace-
able concerns, so its code must be separated from the basic
maze-game Java source code. However, features are also con-

atom opmagic
{ open maze : mzbase -> mzmagic; }

// file: opmagic/maze/Door.java
package maze;
public class Door extends super Door {
private Spell spell = null ;
public Door() { super (); }
public void setSpell(Spell s) { spell = s; }
public Spell neededSpell() { return spell; }
public boolean enter(Player p)
{ if (neededSpell() != null)

if (p.casting != this.neededSpell())
return false ;

return super .enter(p); } . . .
}
// file: opmagic/maze/Player.java
package maze;
public class Player extends super Player
{ Spell casting; . . . }

Figure 6:The atomopmagic and Java source code ofopmagic for
the enhancement to open classesDoor andPlayer .

cerns whose code commonly “crosscut” across the classes of a
system; e.g., the implementation for themagicfeature must add
additional code to the maze-game classesDoor andPlayer .
Conventional inheritance cannot be used because it suffers from
an extensibility problem[7]: implementation added to a class
by creating a new subclass leaves the class’s existing subclasses
outdated. In Jiazzi, we solve this problem withopen classes[5,
19], which are classes that can be enhanced with new imple-
mentation without the need to modify their original source code.
When new implementation is added to an open class, its exist-
ing subclasses are updated to reflect the addition.

The atomopmagic in Figure 6 adds new implementation to
theopen packagemaze, which by using theopen keyword, is
a package of open maze-game classes. Unlike an imported or
exported package, the open packagemaze is described by two
package signatures separated by an arrow (->); the first pack-
age signaturemzbase from Figure 1 describes theimported
structure of the maze-game classes, while the second pack-
age signaturemzmagic from Figure 5 describes theexported
structureof the mase-game classes. As a result, the open pack-
agemaze is enhanced from a normal base maze-game package
(described bymzbase) to a package of maze-game classes en-
hanced with themagic feature (described bymzmagic).

Shown in Figure 6, the Java source code for the open class
Door in atomopmagic can freely refer to the imported struc-
ture of the open packagemaze. The Java source definition of
open classDoor extends the classsuper Door , which is a
special class name automatically generated by Jiazzi. Jiazzi
does not require changes to the Java language or Java source
compiler to support open classes. Instead of adding new com-
plexity to the Java language, special class names (likesuper-
Door) are used to expose open class functionality to conven-
tional Java source code.

Open classes can be enhanced in two ways. First, new mem-
bers can be added to an open class; e.g., the methodsetSpell
is added to the open classDoor and the fieldcasting is added

72

signature mzlocked = mzbase + {
class Key extends Item { Key(); }
class Door +=
{ Key neededKey();

void setKey(Key key); . . . }
class Player +=
{ void addKey(Key key); boolean hasKey(Key key);

void useKey(Key key, Door door); . . . }
}
atom oplocked {
open locked : mzbase -> mzlocked;
}
signature mzmagloc = mzmagic + mzlocked;

compound opmagloc {
open maze : mzbase -> mzmagloc;
link unit opmagic, oplocked;
}
Figure 7: The package signaturesmzlocked andmzmagloc , the
atom oplocked , and the compoundopmagloc ; the Java source
code of atomoplocked is not shown.

to the open classPlayer . Some newly added members are
required by the open packages exported structure, such as the
methodsetSpell of Door , while other newly added mem-
bers are only used privately inside the unit, such as the field
casting of Player . Second, existing methods can be en-
hanced with new implementation that can refer to the newly
added members of open classes; e.g., the methodenter of
open classDoor is enhanced with new code that addresses the
magic feature and refers to the newly added methodneeded-
Spell of Door and fieldcasting of Player . Enhancing ex-
isting methods appears as method overriding in the Java lan-
guage, where the new implementation of methodenter of
Door can call the previous implementation using a super call.

Besides themagicfeature, the maze game can be enhanced with
other features, such as thelocked feature where players must
find and use keys to open some doors. The package signature
mzlocked and the atomlocked in Figure 7 describe and im-
plement thelockedfeature in a manner similar to how the pack-
age signaturemzmagic and the atomopmagic describe and
implement themagicfeature. The package signaturesmzmagic
and mzlocked are combined into the package signaturemz-
magloc , which describes the structure of maze-game classes
enhanced with the compositemagic lockedfeature. By compos-
ing both of these package signatures,mzmagloc describes a
package of maze-game classes with all structure of thelocked
and magic features. That is, the package described has both
classesSpell andKey and the classDoor has both the meth-
odsneededSpell andneededKey .

The compositemagic lockedfeature is implemented by linking
the atomsopmagic andoplocked together in the compound
opmagloc defined at the bottom of Figure 7. Connections be-
tween the imported and exported structure of themaze open
packages of atomsopmagic andoplocked are established au-
tomatically by matching their names and by the order in which
the linked units are specified in the compound’s link clause.2

Connecting thesemaze open packages together conceptually

2Connections can be specified manually with linking syntax not used
in this paper. See the Jiazzi manual [16] for details.

atom opbase {
open maze : empty -> mzbase;
}
compound game2 {
export main : program;
export maze : mzmagloc;
link unit driver;
link unit opbase, opmagloc;
}
Figure 8: The atomopbase and the compoundgame2; the Java
source code for atombase is not shown.

game2

opmagloc

opmagic

maze : mzbase

->
 mzmagic

oplocked

maze : mzbase

->
 mzlocked

maze : mzbase

->
 mzmagloc

opmagic

maze : empty

->
 mzbase

driver

maze : mzbase

main : program

main : program
 maze
:
mzmagloc

Figure 9: An illustration of the connections established in the link-
ing of compoundsgame2 andopmagloc ; the top imported and bot-
tom exported portions of an open package are connected together by a
dashed handles to illustrate their interdependency.

merges them into a single open package that contains the maze-
game implementations of both themagic and locked features.
Because it determines the overriding order for methods that are
overridden, the order that atomsopmagic andoplocked are
linked is important. In compoundopmagloc the atomop-
locked is linked after the atomopmagic , so the implemen-
tation of the methodenter of classDoor is last overridden in
the atomoplocked .

To form complete maze-game classes with both themagic and
lockedfeatures, the compoundgame2 in Figure 8 links the com-
poundopmagloc with the atomopbase , which provides a ba-
sic implementation of the maze-game open classes. The im-
ported structure of open packagemaze in opbase is described
with the built-in package signatureempty , which describes a
package with no classes. The compoundgame2 in Figure 8
links the unitsopbase andopmagloc together with the atom
driver from Figure 2 to create a complete maze-game appli-
cation. The compoundgame2 does not have any imported or
open packages, so its classes can be loaded directly into a Java
virtual machine.

73

Connections made in compoundsgame2 and opmagloc are
illustrated in Figure 9. Connections to the imported and ex-
ported open packagemaze structure of compoundopmagloc
in compoundgame2 create indirect connections to and from the
imported and exported open packagemaze structure of atoms
opmagic and oplocked . The exported open packagemaze
structure of compoundopmagloc is connected to the imported
maze package of atomdriver and the exportedmaze pack-
age of compoundgame2. Connecting an open package to an
imported or exported non-open package “closes” the classes
in the open package: they can no longer be enhanced as open
classes. Inside the atomdriver and outside the compound
game2, classes in the packagemaze do not appear as open, and
no new implementation can be added from these contexts.

By selectively linking the atomsopmagic and oplocked to
form a maze-game application, other variations can be created
that have only themagic feature, only thelocked feature, or
neither feature. Feature inclusion is controlled through link-
ing specified by Jiazzi’s linking language, and source code is
not modified when a new configuration of the maze game is
created. Open classes in Jiazzi enables a system to be orga-
nized according to its features as well as its classes. In conven-
tional Java, such separation of features could only be obtained
with various object composition design patterns [10], which ob-
scures intent and sacrifices static type checking. Open classes
enable feature modularization to be explicit as well as statically
type safe.

4. Open Signatures

While open classes can modularize concern code that crosscut
class boundaries, the modularization of such code can be lim-
ited because of the signatures of classes and methods shared
between units. Such problematic concern code can apply to
multiple situations where signatures differ, or can require en-
hancements in the signatures of classes and methods provided
by existing code. In this section, we describe constructs that
enable the modularization of such code.

4.1 Name Parameters
There is significant overlap between the functionality of the
maze gamemagic and locked features. Both features restrict
access to doors by requiring certain items that the player must
have in order to enter. The implementations of themagic and
locked features potentially overlap. However, the overlapping
implementation is difficult to modularize because names used
between the features’ implementations are different. For ex-
ample, the item needed by a door is queried using the method
neededSpell of classDoor in themagic feature implementa-
tion, while the methodneededKey is used in thelocked fea-
ture implementation. The similarities between these two fea-
tures implies that they share the code of a common concern
that should be modularized.

Forcing both feature implementations to agree on method and
class naming would create irresolvable ambiguities; e.g., call-
ing two distinctneeded methods from the classDoor is not
possible in the Java language. Rather than force naming agree-
ment, bothmagic and locked feature implementations can ad-

signature mzsecure = mzbase + {
name [DEVICE];
class [DEVICE] extends Item { [DEVICE](); }
class Door +=
{ [DEVICE] needed[DEVICE]();

void set[DEVICE]([DEVICE] dvc); . . . }
class Player +=
{ void add[DEVICE]([DEVICE] dvc);

boolean has[DEVICE]([DEVICE] dvc); . . . }
}
atom opsecure {
open maze : mzbase -> mzsecure;
}
Figure 10:The package signaturemzsecure and the atomopsec-
ure .

// file: opsecure/maze/Door.java
package maze;
public class Door extends super Door {
DEVICE dvc;
public void setDEVICE(DEVICE d)
{ dvc = d; }
public DEVICE neededDEVICE() { return dvc; }

. . . }

// file: opsecure/maze/DEVICE.java
package maze;
public class DEVICE extends Item
{ public DEVICE() { . . . } . . . }

Figure 11: The Java source code for the open maze game classes
Door and[DEVICE] in the implementation of atomopsecure .

here to a commonnaming convention. The package signa-
turesmzmagic (Figure 5) andmzlocked (Figure 7) both fol-
low the same naming convention in naming methods added to
the signatures of classesDoor andPlayer , where a name is
composed of a verb, which describes the action of the method,
and a subject, which is the name of the item the method uses,
e.g., “needed-Spell” and “needed-Key.”

This naming convention can be codified in Jiazzi usingopen
signatures, which are unit signatures that are open to refine-
ment. The package signaturemzsecure in Figure 10 declares
thename parameter[DEVICE] with thename keyword, where
a name parameter can be used only as part of a class or method
name: e.g., in the name of methodneeded[DEVICE] or class
[DEVICE] . The name parameter[DEVICE] is a placeholder
for the parts of method and class names that are unbound in
the naming convention secure features. The atomopsecure
in Figure 10 uses the package signaturemzsecure to describe
the open packagemaze. The [DEVICE] name parameter in
atomopsecure that is used in package signaturemzsecure is
unbound, which allows the signature of atomopsecure to be
refined later when it is linked with other units and[DEVICE] is
bound.

Shown in Figure 11, the Java source code for atomopsec-
ure can effectively provide the common implementation of the
magic andlocked features because the[DEVICE] name param-
eter isolates the source code ofopsecure from the features’
different naming requirements. As with open classes, name
parameters do not require changes to the Java core language.

74

signature mzmagic2 = mzsecure + {
[DEVICE] = Spell;
class Player +=
{ void castSpell(Spell spell); }
}
signature mzlocked2 = mzsecure + {
[DEVICE] = Key;
class Player +=
{ void useKey(Key key, Door door); }
}
Figure 12:The package signaturesmzmagic2 andmzlocked2 .

atom oplocked2 {
open maze : mzsecure -> mzlocked2;
}
// file: oplocked2/maze/Door.java
package maze;
public class Door extends super Door {
boolean isLocked;
public boolean enter(Player p)
{ if (isLocked) return false ;

return super .enter(p); }
public Key neededKey()
{ ... return super .neededKey(); }
}
// file: oplocked2/maze/Player.java
package maze;
public class Player extends super Player {
public void useKey(Key k, Door d)
{ if (this.hasKey(k) && d.neededKey() == k)

d.isLocked = !d.isLocked; }
}
Figure 13: The atomoplocked2 and its implementation of Java
source code.

Instead, method and class names parameterized by[DEVICE]
appear as normal Java identifiers without the brackets; e.g.,
the methodneeded[DEVICE] the class[DEVICE] can respec-
tively be referred to asneededDevice and DEVICE in Java
source code. Any uses of"DEVICE" in an identifier in the Java
source code of atomopsecure do not require any special rea-
soning and do not create any accidental interactions as the name
parameter[DEVICE] is bound.

The name parameter[DEVICE] in package signaturemzsecure
is given a value using the binding operator (=) when package
signaturemzsecure is used by the package signaturesmz-
magic2 and mzlocked2 in Figure 12. [DEVICE] becomes
fixed identifierSpell in package signaturemzmagic2 , while
it becomes the fixed identifierKey in package signaturemz-
locked2 . These fixed identifiers replace uses of[DEVICE] in
mzsecure . In mzmagic2 , the class[DEVICE] is renamed as
the classSpell , while the methodneeded[DEVICE] of class
Door is renamed as the methodneededSpell . The pack-
age signaturesmzmagic2 andmzlocked2 describe classes and
methods that are equivalent to those described in the package
signaturesmzmagic from Figure 5 andmzlocked from Fig-
ure 7, respectively.

The atomoplocked2 in Figure 13 provides the maze game im-
plementation of thelockedfeature that builds on an implementa-
tion of the secure feature. In the Java source implementation of
oplocked2 , the [DEVICE] name parameter is replaced with
the fixed identifierKey by the binding in the package signa-

atom opmagic2
{ open maze : mzsecure -> mzmagic2; }

compound opmagloc2 {
open maze : mzbase -> mzmagloc;
link unit opsecure, opmagic2;
link unit opsecure, oplocked2;
}
Figure 14:The atomopmagic2 and the compoundopmagloc2 .

turemzlocked , which describes the exported structure of open
packagemaze. As a result, the open classKey is a member
of the open packagemaze, not the open class[DEVICE] , and
the methodneededKey is a member of the open classDoor ,
not the methodneeded[DEVICE] . Classes and methods whose
names have been enhanced in an open package can be enhanced
as normal; e.g., the methodneededKey can be overridden even
though the previous implementation of the method was called
needed[DEVICE] .

The atomopmagic2 (Java source code not shown) in Figure 14
provides an implementation of themagic feature. The com-
poundopmagloc2 in Figure 14 links the atomopsecure twice
to provide the structure required by the atomsopmagic2 and
oplocked2 . In the first linking of atomopsecure , the [DE-
VICE] name parameter is bound to the fixed identifierSpell
to accommodate the immediately following linking of atom
opmagic2 , while in the second linking of atomopsecure ,
the [DEVICE] name parameter is bound to the fixed identi-
fier Key to accommodate the immediately following linking of
atomoplocked2 . The compiled Java bytecode ofopsecure
is automatically duplicated and rewritten to rename classes and
methods according to how[DEVICE] is bound. Rewriting is
performed over bytecode by Jiazzi’s linker, and does not affect
separate compilation because correct usage and implementa-
tion of methods and classes can be verified independently of
their actual naming requirements. The compoundopmagloc2
is a more modular version of the compoundopmagloc from
Figure 7, and the former can be linked instead of the latter in
the compoundgame2 from Figure 8.

Name parameters allow for a more aggressive modularization
of concern code that would not be possible if class and method
names were always fixed. Name parameters are also scalable,
since they can take advantage of naming conventions to param-
eterize multiple class and method names at once. By assigning
each method and class its own name parameter, name parame-
ters could be used to perform fine-grained renaming. However,
we would consider this usage to be an abuse, as the code of a
concern should not require extensive micro-management to fit
into a program.

4.2 Argument Parameters
Displaying the maze game application is the responsibility of
the methoddisplay , which is declared abstract by the class
Entity and implemented by the various maze game classes.
The methoddisplay is an example of a traversal method;
whendisplay called on an object, the object will calldisplay
on its sub-objects as appropriate; e.g., a call todisplay a room
will cause calls todisplay on items in the room. Player ac-
tions also triggerdisplay calls; e.g., when the methodenter

75

signature mzbase2 = {
arg [DISPLAY];
class Maze extends Object { Maze(); . . .}
abstract class Entity extends Object
{ Entity();

abstract void display()[DISPLAY]; . . . }
class Room extends Entity
{ Room(); Item item(int n); . . . }
class Door extends Entity
{ Door();

boolean enter(Player p)[DISPLAY]; . . . }
class Player extends Entity
{ Player(String name);

void exec()[DISPLAY]; . . . }
class Item extends Entity { Item(); . . . }
}

Figure 15:The package signaturemzbase2 .

of classDoor is called, calls todisplay are made to inform
the player of the action’s result.

Because it is not yet known in what way the maze game will be
displayed when the basic maze game classes are implemented,
the display methods can only be partially implemented in
these classes. Code for thecli andgui features will determine
if the maze game displays on a command line interface (cli) or
graphical user interface (gui). This presents a dilemma: either
choice for the display feature will require different arguments
for thedisplay method. Thecli display method will require
a stream interface to the command line, whilegui will require
a graphics context. As a result, arguments required by display
feature code of thedisplay method cannot be specified in the
basic implementation of the maze game classes. Similiar sit-
uations often occur when concern code implements a service
whose calling requirements cannot be specified without com-
mitting to a specific implementation of the service.

Solutions to this problem could abstractdisplay method argu-
ments as static and instance fields in various classes. These so-
lutions must be carefully crafted because the maze game could
be executed concurrently. For example, there could be mul-
tiple players using separate displays ordisplay method ar-
guments could change as they are passed to deeperdisplay
method calls. Ideally, new arguments could be added to the
display method when the display feature to be implemented
becomes known, but in Java this cannot be done without edit-
ing the source code of the originaldisplay declarations and
definitions.

Besides codifying naming conventions, open signatures can be
used in Jiazzi to add new arguments to methods after they have
been declared and defined. The package signaturemzbase2 in
Figure 15 declares theargument parameter[DISPLAY] with
the arg keyword. Argument parameters can be used only af-
ter argument lists in method signatures. The argument param-
eter [DISPLAY] abstractsdisplay method arguments. This
includes the methodsexec andenter in classesPlayer and
Door , whose implementations can potentially call display meth-
ods. As a result, these two methods must have access to the
display method arguments, which is reflected inmzbase2 .

The atomopbase2 in Figure 16 uses the package signature
mzbase2 to describe the open packagemaze. The[DISPLAY]

atom opbase2 {
open maze : empty -> mzbase2;
}
// file: opbase2/maze/Entity.java
package maze;
public class Entity extends Object
{ public abstract void display(); . . . }
// file: opbase2/maze/Player.java
package maze;
public class Player extends Entity {
public void display() { . . . }
public void exec() {
. . . Room current = . . .; current.display();
. . . Door toEnter = . . .; toEnter.display(); . . .
}
}
// file: opbase2/maze/Room.java
package maze;
public class Room extends Entity {
public void display()
{ Entity in[] = . . .; in[0].display(); . . . }
}
Figure 16:The atomopbase2 and the Java source implementation
of its open maze game classesEntity , Player , andRoom.

signature mzcli = mzbase2 + {
use package java.io;
[DISPLAY] = (PrintStream out, int indent);
}
atom opcli {
open maze : mzbase2 -> mzcli;
}
signature mzgui = mzbase2 + {
use package java.awt;
[DISPLAY] = (Graphics g);
class Entity += { Component widget(); }
}
atom opgui {
open maze : mzbase2 -> mzgui;
}
Figure 17:The package signaturesmzcli andmzgui and the atoms
opcli andopgui ; theuse package clause inserts the classes of
the specified package into the package signature’s namespace.

argument parameter frommzbase2 in atom opbase2 is un-
bound, which allows the signature ofopbase2 to be redefined
when it is linked with other units. In the Java source implemen-
tation of atomopbase2 , [DISPLAY] is invisible: thedisplay
method appears as if it has no arguments at all.

One significant restriction is placed on methods whose decla-
rations are modified with an unbound[DISPLAY] argument
parameter: the methods can only be called by other methods
whose declarations are also modified by[DISPLAY] . As a re-
sult, only definitions of the methodsdisplay , enter , and
exec may call each other. This restriction ensures that the new
arguments bound to[DISPLAY] are available to calls of these
methods. It also mimics traversal method structure, where def-
initions of the same method declaration are recursively called.
Before a traversal method entry-point can be called, e.g., the
methodexec in classPlayer , [DISPLAY] must be bound so
all display method arguments are known.

76

// file: opcli/maze/Player.java
package maze; . . .

public class Player extends Entity {
public void display(PrintStream out,

int indent)
{ . . . super.display(out,indent); . . .

out.print(this.name()); . . . }
public void exec(PrintStream out, int indent)
{ out.print("Begin"); super.exec(out, 1); }
}
// file: opcli/maze/Room.java
package maze; . . .

public class Room extends Entity {
public void display(PrintStream out,

int indent)
{ . . . super.display(out, indent + 1); . . . }
}
Figure 18:The Java source code for open maze game classesPlayer
andRoomin the implementation of atomopcli .

atom clidriver {
import maze : mzcli;
export main : program;
}
// file: clidriver/main/Main.java
package main;
public class Main extends Object {
public static void main(String args[])
{ maze.Player p = new maze.Player(args[0]);

. . . p.exec(System.out, 0); . . . }
compound game3 {
export main : program;
export maze : mzcli;
link unit opbase2, opcli, clidriver;
}
Figure 19:The atomclidriver , the Java source code for the im-
plementation ofclidriver , and the compoundgame3.

The [DISPLAY] argument parameter is bound to fixed argu-
ment lists when the package signaturemzbase2 is composed
in the package signaturesmzcli andmzgui of Figure 17. In
package signaturemzcli , [DISPLAY] is bound to the new ar-
guments of a print stream (from Java’s IO library) and an in-
teger indent level. In package signaturemzgui , [DISPLAY] is
bound to the new argument of a graphics context (from Java’s
AWT library). The atomsopcli andopgui in Figure 17 use
openmaze packages with exported structure describe by pack-
age signaturesmzcli andmzgui to add implementations of the
cli andgui features to the maze game classes.

By using the package signaturesmzcli andmzgui to describe
the maze open packages, new arguments bound to argument
parameter[DISPLAY] in those package signatures are visible
within the Java source code implementations of atomsopcli
andopgui . Shown in Figure 18, the Java source code for atom
opcli can “see” the print stream and indent level arguments
added by the binding in package signaturemzcli . These argu-
ments are added to the method declarations in importedmaze
structure, and super class calls to thedisplay methods must
provide values for these arguments.

The atomclidriver in Figure 19 implements an application
driver for the maze game in the context ofcli feature. Because
the [DISPLAY] argument parameter is bound to a fixed argu-

ment list in the package signaturemzcli , the methodmain in
the Java source code of atomclidriver shown in Figure 19
can call the methodexec , even though it is not also modified by
[DISPLAY] . The compoundgame3 at the bottom of Figure 19
links atomsopbase2 , opcli , andclidriver together. Ar-
gument parameters are bound in compounds in the same way
that name parameters are. When the atomopbase2 is linked,
its [DISPLAY] argument parameter is bound as specified by
the package signaturemzcli , and as a result, the bytecode of
opbase2 is duplicated and rewritten to add the fixed CLI argu-
ment list to the definitions and declarations of methods modi-
fied by [DISPLAY] , and propagate arguments to calls of these
methods withinopbase2 .

The use of argument parameters enables the modularization of
concern code that requires the propagation of additional values
through calls to existing methods to the concern code. When
compared to the alternatives of using extra fields, argument pa-
rameters are safer and more efficient because they use explicit
language mechanisms that enable type checking and efficient
method calls. Like name parameters, argument parameters are
more effective when used at a coarse granularity, where multi-
ple methods involved in the same traversal can be modified by
the same argument parameter.

5. Using Jiazzi

In the previous sections, we have demonstrated Jiazzi’s features
in AOP using an in-depth example. In this section we discuss
details necessary for development using Jiazzi.

5.1 Type Checking
Type checking of a unit in Jiazzi occurs in aninternal-stage,
which occurs when the unit is constructed, and anexternal-
stage, which occurs when the unit is linked by a compound.
The separation of a unit’s internal and external type checking
is what enables separate compilation in Jiazzi. The Java source
compiler does standard type checking for Java classes in atoms.
The linker performs checks during internal-stage type checking
to ensure the unit’s exports are connected correctly. During
the external-stage type checking of a unit, the linker performs
checks to ensure the unit’s imported packages are connected
correctly. A complete and formal discussion of type checking
in Jiazzi is presented in [18].

Argument parameters require extra internal-stage type check-
ing in atoms to ensure that methods modified by an unbound
argument parameter are only called by other methods modi-
fied by the same argument parameter. This type checking is
performed by a post-compiler provided in Jiazzi’s implemen-
tation. Name and argument parameters require checks when
they are assigned during a unit’s external-stage type checking
to ensure their assignments do not create any ambiguities in
the unit’s signature. For example, if the name parameter[A]
is assigned to the fixed identifierFoo, but a class described in
the unit’s signature has both the methodsset[A] andsetFoo ,
then the assignment must be rejected because it creates an am-
biguity. Because the linker renames methods and classes of a
unit as they are linked into a compound, ambiguities cannot
occur unless they are apparent in the signature of a unit.

77

5.2 Implementation

Jiazzi does not require extensions to the Java language: all of
Jiazzi’s features are implemented in the linking language that is
used to define package signatures, atoms, and compounds. An
atom is implemented with source code written in the conven-
tional Java language. The linker in Jiazzi does not process Java
source code; the interface between Java and Jiazzi occurs at the
level of Java bytecode. Before the Java source code implemen-
tation of an atom can be processed by the linker in Jiazzi, it
must be compiled into Java bytecode by a conventional Java
source compiler (e.g., javac).

Because conventional Java source compilers do not understand
an atom’s imported and open packages, astub generator is
provided that examines an atom and the package signatures
used to describe its packages, and generates Java bytecode that
expose the classes in these packages to Java source compilers
and other Java tools that understand Java bytecode but not Ji-
azzi. To ease the implementation of classes in exported and
open packages, the stub generator will also generate skeleton
Java source files for classes in these packages if they do not ex-
ist already. The generated skeleton file will automatically setup
the required open class inheritance relationships, e.g.,class
Door extends super Door , and provide skeleton implemen-
tations of methods that must be implemented to satisfy the ex-
ported structure of the open class.

After the Java source code implementation of an atom is com-
piled into Java bytecode, it undergoes processing by Jiazzi’s
linker. The linker internally links the atom by performing its
portion of first-stage type checking over the atom and then pack-
aging its implementation into its linked form, which is a Java
archive (JAR) file of Java bytecode and meta information. A
compound is only processed by the linker. The linker performs
type checking over all the units linked by the compound. Fi-
nally, the linker duplicates the Java bytecode in the linked form
of each unit that is linked in the compound, rewrites the byte-
code, and coalesces the rewritten Java bytecode into the com-
pound’s linked form, which has the same format as an atom’s
linked form.

How the duplicated Java bytecode of linked units are rewritten
in a compound depends on how packages are connected and
how name and argument parameters are bound within the com-
pound. The binding of a name parameter will cause the names
of classes and methods that embed it to be renamed according
to the binding. The binding of an argument parameter causes
new arguments to be added to methods modified by it, and a
rewriting of modified method implementations to propagate the
new arguments to calls of modified methods. Finally, methods,
classes, and packages not visible outside of the compound are
alpha-renamed so that they are hidden.

Open packages are implemented in Jiazzi using a special inher-
itance and linking pattern referred to as theopen class pattern.
Through this pattern, the new implementation of an open class
is added “into” the class inheritance hierarchy between existing
classes using mixin-like inheritance [1] rather than at the bot-
tom, which is the only option with conventional inheritance.
A detailed explanation of how the open class pattern works is
given in our OOPSLA 2001 paper [17].

6. Related Work

The code modularization enabled by units has long been known
to enable some amount of AOP. A survey of how units and as-
pects are related is presented in [6]. Jiazzi’s support for AOP is
similar to that of Hyper/J [20], which also focuses on the mod-
ularization of code and concerns with crosscutting implementa-
tions. Comparing Jiazzi to Hyper/J, atoms are like hyperslices
and compounds are like hypermodules. Both Hyper/J and Ji-
azzi do not change the Java language. In many ways, Hyper/J
is more powerful than Jiazzi: it provides very fine grained com-
position mechanisms to integrate concern code together. On the
other hand, Jiazzi uses a simple linking metaphor for concern
integration that can be supported with separate compilation and
modular type checking. Hyper/J does not support the descrip-
tion of a concern independent from its code, which can be done
with Jiazzi package signatures. Aspectual components [15] are
also useful for modularizing object crosscutting concerns and,
like Jiazzi, emphasize modularity to enable separate reasoning
about concern implementations.

AspectJ [12] modularizes concerns using a weaving metaphor,
where concern implementations, known as aspects, are wo-
ven into well-defined points of code modules. AspectJ allows
meta-programs to directly access the internals of a code mod-
ule while Jiazzi only supports access to code modules through
well-defined signatures. AspectJ does not support separate com-
pilation; aspects and the code fragment they are woven into
are compiled at the same time. Additionally, while Jiazzi is
only adept at modularizing object crosscutting concerns, As-
pectJ can modularize a more general class of concerns with its
emphasis on aspect weaving.

Open classes in Jiazzi are based on mixins [1], where exten-
sibility is gained with classes whose super classes are initially
unfixed. Role-model components [23] use individual mixins to
modularize the many “roles” an object is involved in. Mixin
layers [22] improve on this by using a layer of mixins to mod-
ularize a collaboration between many objects. Java Layers [4,
3] adds mixin layers to the Java language. There are many
stylistic differences between mixin layers and Jiazzi; e.g., the
use of units in Jiazzi as opposed to parameterized classes in
mixin layers. Unlike Jiazzi, mixin layers do not support sep-
arate compilation. Delegation layers [21] improves on mixin
layers by allowing new collaborations to be added at run time.
Jiazzi does not provide any support for dynamic extensibility.

MultiJava [5] adds direct support for open classes with an ex-
tension to the Java language. Thesibling class pattern[3] en-
abled by Java Layers provides the same functionality as Jiazzi’s
open packages. As in Jiazzi, open classes in MultiJava are
fully supported with principled separate compilation. Multi-
Java open classes are more flexible in that new methods can be
added to a class at run time after program execution has begun,
while Jiazzi only supports addition to an open class during pro-
gram linking. Conversely, Jiazzi supports the addition of new
fields and methods to an open class, while MultiJava only sup-
ports the addition of new methods.

The Jiazzi name parameters enable the manageable renaming
of classes and methods. Programmers commonly use conven-
tions for naming methods and classes, and name parameters

78

allow these conventions to be codified by units. AspectJ also
takes advantage of naming conventions in wild-carded pointcut
definitions that identify where in a code fragment code should
be added. Name parameters provide a simple way to perform
the explicit renaming or name resolution that is useful when-
ever an OO language supports a forms of multiple inheritance,
such as mixins [9]. Method renaming mechanisms have also
been added to some OO languages that support multiple in-
heritance, like Eiffel, to avoid ambiguity. However, Eiffel’s
renaming mechanisms lack the scalability of Jiazzi’s renaming
mechanisms: methods in Eiffel must be explicitly renamed in-
dividually. Hyper/J also supports renaming, but, like Eiffel,
each class or method must be explicitly renamed individually.

The argument parameter construct enables context required by
method definitions to be encapsulated across concern imple-
mentations. An alternative approach is to provide in-language
support for variables whose bindings are specified over a dy-
namic scope. Dynamic scoping is supported in some Lisp-like
languages as well as in many domain specific languages like
TeX and PostScript. Calls to methods affected by argument pa-
rameters are restricted in Jiazzi so the linker can add and pass
new method arguments automatically. Rather than use such
restrictions, an implicit parameters [14] extension to Haskell
uses inference to determine which functions are affected by the
implicit parameters. Dynamically-scoped variables have also
been proposed as an extension to C# [11].

7. Conclusions and Future Work

Jiazzi supports expressive aspect-oriented programming with
units that enable open classes and open signatures. Addition-
ally, by supporting separate compilation, Jiazzi enables stronger
separate reasoning about concern implementations. While Ji-
azzi is adept at modularizing concerns whose implementations
cleanly crosscut object boundaries, Jiazzi cannot modularize
other concerns whose implementations are tangled into the state-
ments and expressions of method definitions. These concerns
are best modularized using code weaving mechanisms, such
as AspectJ [12]. However the weaving mechanisms in AspectJ
severely complicate separate compilation. Our future work will
explore how weaving mechanisms can support separate compi-
lation.

Jiazzi is very pragmatic: it does not modify the syntax of the
core Java language and creates binaries that can execute in a
Java virtual machine. An implementation of Jiazzi is available
for download, and we are currently preparing a new release
and tutorial that focuses on the AOP-centric features presented
in this paper. For more information, see the Jiazzi website:
http://www.cs.utah.edu/plt/jiazzi .

ACKNOWLEDGEMENTS

We thank Eric Eide and the anonymous reviewers for com-
ments on drafts of this paper. Sean McDirmid was supported in
part and Wilson Hsieh in full by NSF CAREER award CCR–
9876117.

8. REFERENCES
[1] G. Bracha and W. Cook. Mixin-based inheritance. InProc. of

OOPSLA, pages 303–311, Oct. 1990.

[2] L. Cardelli. Program fragments, linking and modularization. In
Proc. of POPL, pages 266–277, Jan. 1997.

[3] R. Cardone, A. Brown, S. McDirmid, and C. Lin. Using mixins
to build flexible widgets. InProc. of AOSD, June 2002.

[4] R. Cardone and C. Lin. Comparing frameworks and layered
refinement. InProc. of ICSE, pages 285–294, May 2001.

[5] C. Clifton, G. Leavens, C. Chambers, and T. Millstein.
MultiJava: Modular open classes and symmetric multiple
dispatch for Java. InProc. of OOPSLA, pages 130–146, Oct.
2000.

[6] E. Eide, A. Reid, M. Flatt, and J. Lepreau. Apsect weaving as
component kniting: Separating concerns with knit. InWorkshop
on Advanced Separation of Concerns in Software Engineering,
May 2001.

[7] R. Findler and M. Flatt. Modular object-oriented programming
with units and mixins. InProc. of ICFP, pages 98–104, Sept.
1998.

[8] M. Flatt and M. Felleisen. Units: Cool modules for HOT
languages. InProc. of PLDI, pages 236–248, May 1998.

[9] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and
mixins. InProc. of POPL, pages 171–183, Jan. 1999.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[11] D. R. Hanson and T. A. Proebsting. Dynamic variables. InProc.
of PLDI, May 2000.

[12] G. Kiczales, E. Hilsdale, J. Hungunin, M. Kersten, J. Palm, and
W. Griswold. An overview of AspectJ. InProc. of ECOOP, June
2001.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. Loingtier, and J. Irwin. Aspect-oriented programming. In
Proc. of ECOOP, June 1997.

[14] J. R. Lewis, M. B. Shields, E. Meijer, and J. Launchbury.
Implicit parameters: Dynamic scoping with static types. InProc.
of POPL, pages 108–118, Jan. 2000.

[15] K. Lieberherr, D. Lorenz, and M. Mezini. Programming with
aspectual components. 1999.

[16] S. McDirmid.The Jiazzi Manual, 2002.

[17] S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi: New-age
components for old-fashioned Java. InProc. of OOPSLA, Oct.
2001.

[18] S. McDirmid, M. Flatt, and W. C. Hsieh. Expressive modular
linking for object-oriented languages. Technical Report
UUCS-02-014, 2002.

[19] T. Millstein and C. Chambers. Modular statically typed
multimethods. InProc. of ECOOP, pages 279–303, July 1999.

[20] H. Ossher and P. Tarr. Hyper/J: multi-dimensional separation of
concerns for Java. InProc. of ICSE, pages 734–737, June 2000.

[21] K. Ostermann. Dynamically composable collaborations with
delegation layers. 2002.

[22] Y. Smaragdakis and D. Batory. Implementing layered designs
with mixin layers. InProc. of ECOOP, pages 550–570, June
1998.

[23] M. VanHilst and D. Notkin. Using role components to
implement collarboration-based designs. InProc. of OOPSLA,
pages 359–369, Oct. 1996.

79

