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Abstract

We propose a new epidemic model (SuEIR) for forecasting the spread of COVID-19, including
numbers of confirmed and fatality cases at national and state levels in the United States.
Specifically, the SuEIR model is a variant of the SEIR model by taking into account the
untested/unreported cases of COVID-19, and trained by machine learning algorithms based on the
reported historical data. Besides providing basic projections for confirmed and fatality cases, the
proposed SuEIR model is also able to predict the peak date of active cases, and estimate the basic
reproduction number (R0). In particular, the forecasts based on our model suggest that the peak
date of the US, New York state, and California state are 06/01/2020, 05/10/2020, and 07/01/2020
respectively. In addition, the estimatedR0 of the US, New York state, and California state are 2.5,
3.6 and 2.2 respectively. The prediction results for all states in the US can be found on our project
website: https://covid19.uclaml.org, which are updated on a weekly basis, and have been
adopted by the Centers for Disease Control and Prevention (CDC) for COVID-19 death forecasts
(https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html).

1 Introduction

The novel coronavirus disease (COVID-19), an infectious disease caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) (Chan et al., 2020; WHO, 2020b), has emerged into a global

pandemic and lead to 233, 839 death toll in the world as of April 30, 2020 (WHO, 2020a). The

treatments for COVID-19 are still under investigation and in early stages. There are no specific

vaccines or medicines that showed significant effectiveness on COVID-19 so far. As a consequence,
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one of the best ways to prevent the spread of COVID-19 in the short term is to follow the mitigation

strategies such as social distancing, quarantine, and isolation. For example, the state of California

in the US has issued mandatory stay-at-home order on March 19, shutting down all non-essential

businesses. Only essential services, such as grocery stores, pharmacies, delivery restaurants, have

remained open, and residents who need to leave home to take part in essential activities are advised

to practice social distancing.

With the increasing availability of public data on COVID-19, more and more researches (Flaxman

et al., 2020; Bendavid et al., 2020; Sutton et al., 2020; Altieri et al., 2020; Bertozzi et al., 2020;

Murray et al., 2020) have been carried out to understand and prevent the spread of COVID-19

from different aspects. Among them, one important research direction is to model and forecast

the spread of COVID-19, such as predicting the peak of the active cases on the virus and the size

of the coronavirus outbreak. Such results can help government agencies better understand the

overall impact of the disease and also facilitate policy makers in terms of pandemic preparedness

and response such as allocating the medical resources.

One widely used method for modeling the spread of infectious disease is to use epidemic models

such as Susceptible-Infected-Resistant (SIR) (Kermack and McKendrick, 1927) and Susceptible-

Exposed-Infected-Removed (SEIR) (Hethcote, 2000). Such epidemic models are quite useful in

describing the dynamics of transmission and are well-suited for predicting the peak of active cases

on the virus. From the decision-making perspective, the peak prediction is able to forewarn the

health system when to expect a surge in cases. Furthermore, the reproduction number (Fraser et al.,

2009) estimated by the epidemic model can be directly used to measure the effectiveness of the

intervention strategies such as social distancing and quarantine.

Several recent work used epidemic models such as the SIR and SEIR models (Imai et al., 2020;

Li et al., 2020a; Wu et al., 2020; Kucharski et al., 2020; Read et al., 2020; Tang et al., 2020; Ferguson

et al., 2020) to simulate the spread of COVID-19 in different regions and were able to forecast

the size and severity of such epidemic outbreak. Some other work (Chinazzi et al., 2020; Kraemer

et al., 2020; Dandekar and Barbastathis, 2020) also applied these epidemic models to study the

role of quarantine controls such as travel restrictions in the spread of COVID-19. Most of the

aforementioned studies consider classical epidemic models, e.g., the SIR and SEIR models, and

base their analyses on the public reported data. However, it is often the case that the number of

publicly reported cases (including confirmed cases and recovered cases) are much less than their real

numbers as many infectious cases have not been tested due to test capability and asymptomatic

patients, or even possibly under-reporting (Li et al., 2020b). As a result, classical epidemic models

such as SIR and SEIR cannot accurately characterize the epidemic evolution of COVID-19 without

taking such unreported cases into consideration. In addition, most existing work is focused on the

nation-wide prediction. Nevertheless, it is also very important and beneficial to provide state and

county level forecasts to assist local public health departments and governments to prevent the

spread of COVID-19.

The goal of this paper is to make good use of the current public data on COVID-19 to better

understand the spread of the coronavirus and to facilitate informed decisions by policy makers. In

order to achieve this goal, we develop a new epidemic model, called the SuEIR model, to forecast the

active cases and deaths of COVID-19 by taking the untested/unreported cases into consideration.

In addition, we use machine learning based methods to train our model, which enables us to train

the model efficiently. Based on the proposed model, we are able to make accurate predictions on the
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numbers of confirmed cases and fatality cases for nation, states and and counties. Moreover, our

model can also predict the peak dates of active cases and estimate the basic reproduction number

(R0) of different states in the US.

1.1 The SIR and SEIR Models

In this subsection, we briefly introduce two classical epidemic models, i.e., the SIR (Kermack and

McKendrick, 1927) and SEIR models (Hethcote, 2000), which have been adopted in many previous

work to study the epidemic outbreaks such as SARS (Fang et al., 2006; Saito et al., 2013; Smirnova

et al., 2019) and the ongoing COVID-19 (Read et al., 2020; Tang et al., 2020; Wu et al., 2020).

The SIR model. The SIR model is an epidemic model that shows the change of infection rate over

time. More specifically, it characterizes the dynamic interplay among the susceptible individuals

(S), infectious individuals (I) and removed individuals (R) (including recovered and deceased) in

a certain place. In the SIR model, the susceptible individuals may become infectious individuals

over time, which depends on the spread rate of the virus, often called the contact rate. Recovered

individuals are assumed to be immune to the virus and thus cannot become susceptible again. To

characterize this dynamics, we use St, It, Rt to represent the number of susceptible, infectious, and

removed individuals at time t, respectively. Suppose that the total population in a certain area is

fixed as N , then the evolving equations of the above variables over time are defined as follows:

dSt
dt

= −βItSt
N

,
dIt
dt

=
βItSt
N
− γIt,

dRt
dt

= γIt,

where β is the contact rate between the susceptible and infectious groups, and γ is the transition

rate between the infectious and removed groups. The above ordinary differential equations indicate

that at every time unit the total number of susceptible individuals will decrease by a quantity

−βItSt/N , which will transit into the infectious group. Apart from the increase from the transition

of susceptible individuals, the size of the infectious group will also decrease by a factor of γ.

The SEIR model. For many diseases, there is often an incubation period during which individuals

who have been exposed to the virus may not be as contagious as the infectious individuals. Therefore,

it is necessary to separately model these cases as the “Exposed” group, and this gives rise to the

SEIR model. The dynamics of the SEIR model introduces a new compartment Et, which models the

number of individuals that are exposed to the disease but have not developed obvious symptoms.

Among all the exposed cases, there are only a σ fraction of people who will develop observable

symptoms in a time unit. Therefore, the dynamic of this model can be defined by the following

ordinary differential equations:

dSt
dt

= −βItSt
N

,
dEt
dt

=
βItSt
N
− σEt,

dIt
dt

= σEt − γIt,
dRt
dt

= γIt.

Compared with the SIR model, the SEIR model has more elaborated model parameters. The

parameters σ, β and γ can be learned from the reported data.

Reproduction number. An important quantity to characterize the dynamic of a pandemic is the

basic reproduction number R0, which is the expected number of cases directly generated by one

case in a population where all individuals are susceptible to infection (Fraser et al., 2009). The
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basic reproduction number in the SIR and SEIR models can be computed as R0 = β/γ.

2 Methods

In this section, we propose a new epidemic model and a machine learning method to train this

model.

2.1 The SuEIR Model

It is observed that COVID-19 has an incubation period ranging from 2 to 14 days (Lauer et al.,

2020). It has also been observed that individuals who have been exposed to the coronavirus can also

infect the susceptible group during this period. In addition, it is often the case that the number of

reported cases (including confirmed cases and recovered cases) are less than their real numbers as

many exposed cases have not been tested, which will not pass to the next compartment. However,

such important factors cannot be characterized by the classical epidemic models such as the SIR

and SEIR models. We also observe that directly applying SIR or SEIR model to fit the reported

data will lead to unreasonable predictions. Therefore, we proposed a new epidemic model that

takes the untested/unreported cases as well as the “silent spreaders” into consideration. We call our

model the SuEIR model and it is illustrated in Figure 1.

Susceptible Exposed Infectious Removed

Unreported
Recovered

S E I R
� �

(1 � µ)�

µ�

Figure 1: Illustration of the SuEIR model. Solid lines represent the transitions of individuals and
dashed lines represent the routes of infection.

In particular, the compartment Exposed in our model is considered as the individuals that have

already been infected and have not been tested. Therefore, they also have the capability to infect the

susceptible individuals. Moreover, some of such individuals can receive a test and be further passed

to the Infectious compartment (as well as reported to the public), while the others will recover but

not appear in the publicly reported cases. Therefore, we introduce a new parameter 0 < µ < 1

in the evolution dynamics of It to characterize the ratio of the exposed cases that are confirmed

and reported to the public, which we call it the discovery rate. This discovery rate reflects the

unreported/undiscovered cases, which is an important latent factor in the dynamics of the epidemic

model. As a result, we propose to use the following ordinary differential equations to describe our
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proposed SuEIR model:

dSt
dt

= −β(It + Et)St
N

,

dEt
dt

=
β(It + Et)St

N
− σEt,

dIt
dt

= µσEt − γIt,
dRt
dt

= γIt,

(1)

where β denotes the contact rate between the susceptible and “infected” groups (including both

exposed and infectious compartments in Figure 1), σ denotes the ratio of cases in the exposed

compartments that are either confirmed as infectious or dead/recovered without confirmation, µ is

the discovery rate of the infected cases, and γ denotes the transition rate between the compartments

I and R.

2.2 Parameter Learning for the SuEIR Model

In this subsection, we will introduce our proposed machine learning method for training the SuEIR

model. In addition, we will also present the detailed configurations used in our experiments.

Model training. As aforementioned in this paper, our model can be described by the ODE (1),

which is determined by the parameters θ = (β, σ, γ, µ). In particular, given the model parameters θ

and initial quantities S0, E0, I0, and R0, we can compute the number of individuals in each group

(i.e., S, E, I, and R) at time t, denoted by Ŝt, Êt, Ît and R̂t, via applying standard numerical

ODE solvers onto the ODE (1). Then we propose to learn the model parameter θ̂ = (β̂, σ̂, γ̂, µ̂) by

minimizing the following logarithmic-type mean square error (MSE):

L(θ; I,R) =
1

T

T∑
t=1

[(
log(Ît + p)− log(It + p)

)2
+
(

log(R̂t + p)− log(Rt + p)
)2]

, (2)

where I = {It}Tt=1,R = {Rt}Tt=1 with It and Rt denote the reported numbers of infected cases and

removed cases (including both recovered cases and fatality cases) at time t (i.e., date), and p is

the smoothing parameter used to ensure numerical stability. Note that given S0, E0, I0 and R0, Ît
and R̂t can be described as differentiable functions of the parameter θ. Then the model parameter

θ̂ = argminθ L(θ; I,R) can be learnt by applying standard gradient based optimizer (e.g., BFGS)

onto the loss function (2) under the constraint that β, σ, γ, µ ∈ [0, 1].

Estimation of the number of removed cases Rt. Note that It and Rt in our model determine

the number of “current” infectious cases (a.k.a., active cases) and the removed cases, i.e., the sum

of recovered and fatality cases, respectively. However, most of the reported data only include the

number of confirmed cases, i.e., sum of infected cases and removed cases It +Rt. In order to train

the model, we need to get It and Rt separately. In addition, the SuEIR model can only predict

the number of removed cases, while in many cases people are more interested in the number of

fatality cases. Therefore, in order to enable the training of the SuEIR model, as well as provide the
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predictions for the number of fatality cases, we have to: (1) estimate the number of removed cases;

(2) determine the number of active cases in the reported data by subtracting the estimated number

of removed cases. In order to do so, we propose to use the following exponential function to model

the ratio between the daily increased fatality cases and the removed cases,

r(t) = a exp(−bt), (3)

where a, b > 0 are parameters controlling the shape of the exponential function and t denotes the

number of days since the starting date. In order to demonstrate its effectiveness, we evaluate the

approximation error based on the reported data in four countries: US, China, France, and Italy,

which have separately reported fatality and recovered cases. More specifically, given parameters a, b

and the number of fatality cases, we are able to estimate the corresponding number of removed cases.

Then the optimal parameters a and b are obtained by minimizing the MSE between the reported

number of removed cases and the estimated one on different dates. The results are displayed in

Figure 2, which clearly shows that the exponential functions can well describe the ratio between the

daily increased numbers of fatality and removed cases. For each state and county in the US, we try

several different choices of a and b around the optimal ones we obtained for the US, and pick the

one with the smallest validation error.
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Figure 2: Estimated number of removed cases for different countries.

Initialization. In terms of the initialization, we directly set Î0 = I0 and R̂0 = R0
1. Additionally,

one can typically set Ŝ0 + Ê0 + Î0 + R̂0 = N , where N is the total population of the region (which

can be either a country or a state/county). However, since most of the states/counties in the US

have already issued the stay-at-home offer, the actual total number of cases in the SuEIR model

will be strictly less than N . Thus we set Ŝ0 + Ê0 + Î0 + R̂0 = N0 for some N0 < N . Moreover,

it is worth noting that the initialization of E, i.e., Ê0, is a bit tricky since we do not know the

number of infected cases before testing them. It is not reasonable to set Ê0 = 0 since generally

there has already existed a large number of infected cases when the local governments began to

test. Therefore, we propose to use a validation set to choose the optimal initial estimates N0 and

Ê0 when training our model.

Validation set. To determine the initial values of N0 and E0, we first divide our data into the

training data set and the validation data set. In detail, we choose the data in the most recent 7

1Here we omit the numbers of removed cases and recovered cases at the initialization by setting Î0 and R̂0 to be
the reported numbers of confirmed cases and fatality cases.
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days as the validation set, while treating the remaining as the training set. For example, suppose

we have the data up to May 10, 2020, the data after May 3, 2020 will be used as the validation

set, and the data up to May 3, 2020 will be used as the training set. We then do a grid search

on different combinations of N0 and E0 and train different models on the training set accordingly.

Finally, we choose the combination of N0 and E0 with the smallest validation loss (evaluated using

the loss function (2)) along with the best model parameters (i.e., β, γ, σ, µ) to build the SuEIR

model for prediction.

2.3 Confidence Interval

Given the initial quantities S0, E0, I0, R0, we can solve the optimization problem in (2) to obtain

the model parameter θ̂ = (β̂, σ̂, γ̂, µ̂). To assess the confidence of our estimator, we construct

the confidence interval of θ following the previous work (Ma, 2020). More specifically, for a valid

model parameter θ, we can compute the loss L
(
θ
)

in (2), and construct the test statistic as

T
(
θ
)

= 2T
(
L
(
θ
)
− L(θ̂)

)
, which represents the loglikelihood ratio between the point estimator θ̂

and θ. Note that θ contains four free parameters (i.e., β, σ, γ and µ) while θ̂ is fixed. By Wilks’s

Theorem (Wilks, 1938), we know that T
(
θ
)

follows χ2
4 distribution asymptotically. As a result, we

can compare T
(
θ
)

with the (1− α) quantile of the χ2
4 distribution and determine whether θ is in

the confidence interval or not. In our experiment, we apply grid search on both sides of the point

estimator θ̂ to find the boundary of the confidence interval.

2.4 Computation of the Basic Reproduction Number R0

We can also compute the basic reproduction number based on our proposed SuEIR model. Note that

our model has a different dynamics from that of SIR and SEIR models. Thus we cannot directly

apply the standard computation method of R0 for the SIR or SEIR model to compute such number.

Instead, we use the method proposed in Heffernan et al. (2005) to calculate R0 based on the next-

generation matrix. In specific, let x = (x1, . . . , x4)> with xi being the number of infected individuals

in the compartment i. Then we denote by function Fi(x) the rate of new infections in compartment

i, and denote by V −i (x) and V +
i (x) the rate of individuals transferred out of the compartment i

and the rate of individuals transferred into the compartment i by all other means respectively. Let

Vi(x) = V −i (x)− V +
i (x), F (x) = (F1(x), . . . , F4(x))> and V (x) = (V1(x), . . . , V4(x))>. The ODE

(1) can be rewritten as dx/dt = F (x)− V (x) with

F (x) =


0

β(x2+x3)x1
N

0

0

 , V (x) =


β(x2+x3)x1

N

σx2
γx3 − µσx2
−γx3

 .
Note that the disease-free equilibrium of our model is x∗ = (N, 0, 0, 0)>. Let F and V be the partial

Jacobian matrices of functions F (x) and V (x) with respect to the number of individuals in the
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“infective” compartments (both E and I compartments in the SuEIR model), i.e., x2 and x3, i.e.,

F =

[
∂F2(x∗)
∂x2

∂F2(x∗)
∂x3

∂F3(x∗)
∂x2

∂F3(x∗)
∂x3

]
=

[
β β

0 0

]
and V =

[
∂V2(x∗)
∂x2

∂V2(x∗)
∂x3

∂V3(x∗)
∂x2

∂V3(x∗)
∂x3

]
=

[
σ 0

−µσ γ

]
.

Then the next-generation matrix G = FV−1 can be computed as follows:

G = FV−1 =

[
β
σ + βµ

γ
β
γ

0 0

]
.

Note that R0 is given by the largest eigenvalue of next generation matrix G (Heffernan et al., 2005).

Therefore, it is easy to show that the basic reproduction number of our proposed SuEIR model is

R0 =
β

σ
+
βµ

γ
. (4)

In contrast, the basic reproduction number for SIR and SEIR is R0 = β/γ.

3 Results

In this section, we present the forecast results, including confirmed cases and deaths, peak date and

reproduction number, by our method.

Data collection. We use the data from the Johns Hopkins University Center for Systems Science

and Engineering2 (Dong et al., 2020) to train our model for national-level forecasts. To train the

state-level models, we use the data from The New York Times3. In addition, we use the data from

03/22/2020 (most states have already issued the stay-at-home order by this date) to 05/10/2020 to

train our models. More specifically, we use the reported data from 03/22/2020 to 05/03/2020 to

train the SuEIR model while using the data from 05/04/2020 to 05/10/2020 for validation.

Prediction Results. For the interest of space, we present the forecast results of our models for

the US and states with more than 40, 000 total cases, including New York, New Jersey, Illinois,

Massachusetts, California, Pennsylvania, Michigan, Florida and Maryland. For more forecast results,

please refer to our forecast website https://covid19.uclaml.org

Table 1 summarizes the projected death and its corresponding 95% confidence interval in the

aforementioned regions from 05/12/2020 to 05/18/2020. The results show that our predictions are

very close to the reported data, which suggests that our method performs very well in terms of the

death forecasts. We also show the long term death forecasts by our method in Table 2. Our results

suggest that by June 30, the projected death for the US is 123.4×103 (95% CI 109.7×103-140.4×103).

We demonstrate the projected number of confirmed cases by our approach along with its 95%

confidence interval in Table 3. The results suggest that our predictions in terms of the number

2https://github.com/CSSEGISandData/COVID-19
3https://github.com/nytimes/covid-19-data
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Table 1: Short-term (daily ahead) prediction (×103) of total deaths in the US and states with more
than 40,000 total cases. For each region, we present the predicted cumulative fatality cases with a
95% confidence interval. The reported number of deaths (groundtruth) from the JHU CSSE (for
the US) and The New York Times (for different states) is presented right below the predictions.

Date 05/12 05/13 05/14 05/15 05/16 05/17 05/18

US
82.60

[81.75, 83.49]
84.10

[82.82, 85.44]
85.57

[83.86, 87.37]
87.01

[84.88, 89.27]
88.42

[85.87, 91.14]
89.79

[86.83, 92.97]
91.13

[87.76, 94.77]

82.38 84.12 85.90 87.53 88.75 89.56 90.35

NY
27.51

[27.27, 27.75]
27.92

[27.57, 28.29]
28.33

[27.86, 28.82]
28.72

[28.14, 29.33]
29.09

[28.41, 29.83]
29.46

[28.67, 30.31]
29.82

[28.92, 30.78]

27.28 27.44 27.61 27.75 27.95 28.16 28.30

NJ
9.568

[9.482, 9.656]
9.719

[9.590, 9.852]
9.866

[9.696, 10.04]
10.00

[9.798, 10.22]
10.14

[9.897, 10.41]
10.28

[9.994, 10.58]
10.41

[10.08, 10.76]

9.508 9.702 9.946 10.13 10.24 10.35 10.43

IL
3.592

[3.540, 3.648]
3.685

[3.605, 3.770]
3.776

[3.669, 3.893]
3.867

[3.731, 4.015]
3.956

[3.792, 4.137]
4.044

[3.852, 4.258]
4.130

[3.911, 4.378]

3.617 3.815 3.945 4.075 4.149 4.198 4.257

MA
5.151

[5.103, 5.199]
5.234

[5.162, 5.308]
5.315

[5.221, 5.414]
5.395

[5.277, 5.518]
5.472

[5.332, 5.620]
5.548

[5.385, 5.720]
5.621

[5.437, 5.817]

5.141 5.315 5.482 5.592 5.705 5.797 5.862

CA
2.846

[2.807, 2.887]
2.913

[2.853, 2.981]
2.982

[2.899, 3.079]
3.052

[2.945, 3.181]
3.124

[2.990, 3.287]
3.196

[3.036, 3.397]
3.270

[3.081, 3.510]

2.902 3.014 3.039 3.192 3.254 3.290 3.322

PA
3.917

[3.886, 3.948]
3.970

[3.925, 4.017]
4.022

[3.962, 4.084]
4.073

[3.999, 4.149]
4.122

[4.034, 4.212]
4.169

[4.068, 4.273]
4.215

[4.101, 4.333]

3.924 4.104 4.298 4.432 4.490 4.504 4.560

MI
4.705

[4.663, 4.747]
4.776

[4.715, 4.840]
4.846

[4.765, 4.930]
4.914

[4.814, 5.018]
4.980

[4.861, 5.104]
5.044

[4.906, 5.187]
5.105

[4.950, 5.268]

4.674 4.714 4.787 4.825 4.880 4.891 4.915

FL
1.782

[1.765, 1.799]
1.811

[1.786, 1.838]
1.840

[1.807, 1.876]
1.869

[1.827, 1.913]
1.897

[1.847, 1.950]
1.924

[1.866, 1.986]
1.951

[1.884, 2.022]

1.778 1.826 1.874 1.916 1.963 1.972 1.996

MD
1.727

[1.703, 1.751]
1.768

[1.732, 1.805]
1.808

[1.760, 1.860]
1.848

[1.788, 1.914]
1.888

[1.815, 1.968]
1.926

[1.842, 2.021]
1.965

[1.868, 2.073]

1.756 1.809 1.866 1.911 1.957 1.992 2.023

of confirmed cases are also reasonably accurate. For example, the reported number of confirmed

cases in the US on 05/18/2020 is 1508 × 103, and our projected number is 1496 × 103 (95% CI

1443× 103-1572× 103), which underestimates 12× 103 cases. In addition, the projected number

of long term confirmed case is presented in Table 4. It shows that by 06/30/2020, the projected

number of confirmed cases for the US is 1900× 103 (95% CI 1638× 103-2362× 103).

Our method can also forecast the peak date in different regions, i.e., the date with the largest

number of active cases, as shown in Table 5. It can be seen that the projected peak date of the

US is 06/01/2020, New York state is 05/10/2020, New Jersey is 05/19/2020, Illinois is 06/07/2020,
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Table 2: Long-term (weakly ahead) prediction (×103) of total deaths in the US and states with
more than 40, 000 total cases. For each region, we present the predicted cumulative fatality cases
with a 95% confidence interval.

Date 05/19 05/26 06/02 06/09 06/16 06/23 06/30

US
92.44

[88.67, 96.53]
100.6

[94.37, 107.7]
107.4

[98.98, 116.9]
112.8

[102.6, 124.7]
117.2

[105.6, 131.2]
120.6

[107.9, 136.3]
123.4

[109.7, 140.4]

NY
30.16

[29.17, 31.24]
32.26

[30.66, 34.06]
33.90

[31.83, 36.30]
35.18

[32.73, 38.05]
36.18

[33.44, 39.41]
36.94

[33.99, 40.46]
37.54

[34.42, 41.26]

NJ
10.54

[10.17, 10.93]
11.33

[10.73, 11.97]
11.96

[11.18, 12.80]
12.46

[11.54, 13.46]
12.85

[11.82, 13.97]
13.16

[12.04, 14.36]
13.40

[12.21, 14.68]

IL
4.215

[3.968, 4.496]
4.761

[4.330, 5.268]
5.220

[4.630, 5.926]
5.597

[4.875, 6.465]
5.901

[5.073, 6.896]
6.144

[5.232, 7.234]
6.335

[5.359, 7.497]

MA
5.693

[5.487, 5.912]
6.138

[5.800, 6.502]
6.493

[6.050, 6.972]
6.773

[6.248, 7.339]
6.992

[6.405, 7.624]
7.162

[6.528, 7.844]
7.295

[6.625, 8.018]

CA
3.344

[3.126, 3.626]
3.877

[3.431, 4.504]
4.408

[3.714, 5.434]
4.915

[3.972, 6.347]
5.378

[4.201, 7.195]
5.792

[4.402, 7.951]
6.151

[4.556, 8.659]

PA
4.260

[4.133, 4.390]
4.534

[4.331, 4.744]
4.750

[4.487, 5.020]
4.918

[4.611, 5.233]
5.049

[4.708, 5.396]
5.150

[4.784, 5.520]
5.229

[4.844, 5.616]

MI
5.165

[4.993, 5.346]
5.530

[5.254, 5.825]
5.814

[5.457, 6.196]
6.033

[5.616, 6.479]
6.200

[5.739, 6.709]
6.328

[5.833, 6.886]
6.424

[5.904, 7.020]

FL
1.977

[1.903, 2.057]
2.142

[2.017, 2.281]
2.279

[2.110, 2.468]
2.391

[2.186, 2.623]
2.482

[2.248, 2.755]
2.556

[2.297, 2.863]
2.615

[2.336, 2.950]

MD
2.002

[1.893, 2.124]
2.240

[2.053, 2.457]
2.437

[2.184, 2.734]
2.597

[2.290, 2.958]
2.725

[2.375, 3.135]
2.826

[2.443, 3.273]
2.905

[2.497, 3.380]

Massachusetts is 05/23/2020, California is 07/01/2020, Pennsylvania is 05/20/2020, Michigan is

05/11/2020, Florida is 06/14/2020, Maryland is 05/27/2020.

Table 6 summarizes the basic reproduction number R0 estimated by (4) in different regions,

which characterizes the spread of the virus at the beginning of the epidemic. The results vary for

different states, which are consistent with the severity of the coronavirus outbreak in these regions

since mid March. For example the R0 values of the states in the Northeastern US (e.g., NY: 3.6,

NJ: 4.5, MA:4.2) are significantly higher than those of other states (e.g. CA: 2.2, MI: 2.1, FL: 2.4).

4 Discussion

We developed a novel epidemic model called SuEIR to infer the unreported cases of individuals

contacting COVID-19. Based on this new model, we further develop a machine learning approach

to forecast the numbers of confirmed and fatality cases in the US.

Our model can provide accurate short-term (daily ahead) projections for both confirmed cases

and fatality cases at national and state levels, which demonstrates its effectiveness. In the long term,

the prediction results by our model suggest that the numbers of confirmed cases and death will

keep increasing rapidly within one month. In particular, at the end of June, our model forewarns

that there will be approximately 2 millions confirmed infectious cases and 120K reported deaths in
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Table 3: Short-term (daily ahead) prediction (×103) of total confirmed cases in the US and states
with more than 40, 000 total cases. For each region, we present the predicted cumulative confirmed
cases with a 95% confidence interval. The groundtruth number from the JHU CSSE (for the US)
and The New York Times (for different states) is presented under the row of predictions.

Date 05/12 05/13 05/14 05/15 05/16 05/17 05/18

US
1372

[1367, 1379]
1396

[1383, 1411]
1418

[1398, 1443]
1439

[1411, 1475]
1459

[1423, 1508]
1478

[1433, 1540]
1496

[1443, 1572]

1369 1390 1418 1443 1468 1487 1508

NY
346.6

[344.5, 349.1]
349.2

[346.2, 352.8]
351.8

[347.9, 356.3]
354.1

[349.5, 359.6]
356.4

[351.0, 362.6]
358.5

[352.5, 365.5]
360.5

[353.9, 368.2]

343.7 345.8 348.1 350.9 353.1 355.0 356.2

NJ
141.7

[140.9, 142.6]
143.2

[141.9, 144.6]
144.5

[142.8, 146.6]
145.8

[143.6, 148.5]
147.0

[144.3, 150.4]
148.1

[145.0, 152.3]
149.2

[145.6, 154.1]

140.7 141.5 142.7 143.9 145.0 146.3 148.0

IL
83.00

[81.56, 84.70]
85.55

[83.19, 88.51]
88.01

[84.65, 92.48]
90.40

[85.96, 96.59]
92.71

[87.15, 100.8]
94.95

[88.24, 105.1]
97.11

[89.25, 109.4]

83.16 84.87 88.08 90.52 92.66 94.36 96.77

MA
80.51

[79.83, 81.26]
81.74

[80.68, 82.98]
82.89

[81.43, 84.67]
83.98

[82.10, 86.34]
85.00

[82.70, 87.99]
85.96

[83.23, 89.60]
86.87

[83.72, 91.19]

79.33 80.49 82.18 83.42 84.93 86.01 87.05

CA
71.73

[70.71, 72.95]
73.50

[71.82, 75.66]
75.23

[72.81, 78.50]
76.92

[73.71, 81.47]
78.56

[74.54, 84.54]
80.16

[75.30, 87.70]
81.72

[76.02, 90.92]

71.15 73.21 74.94 77.01 78.93 80.36 81.94

PA
62.20

[61.67, 62.78]
63.17

[62.35, 64.12]
64.08

[62.95, 65.43]
64.93

[63.48, 66.72]
65.72

[63.95, 67.97]
66.46

[64.37, 69.19]
67.15

[64.75, 70.38]

61.40 62.19 63.15 64.17 65.22 65.74 66.67

MI
48.59

[48.21, 49.03]
49.25

[48.64, 49.98]
49.86

[49.02, 50.91]
50.42

[49.35, 51.82]
50.95

[49.64, 52.72]
51.45

[49.91, 53.61]
51.92

[50.15, 54.47]

47.94 48.30 49.48 49.98 50.41 51.05 51.85

FL
42.21

[41.78, 42.71]
42.97

[42.28, 43.83]
43.70

[42.72, 44.97]
44.40

[43.11, 46.14]
45.07

[43.47, 47.32]
45.71

[43.79, 48.52]
46.33

[44.09, 49.73]

41.91 42.39 43.20 44.13 44.80 45.58 46.43

MD
34.38

[33.95, 34.86]
35.16

[34.48, 35.96]
35.90

[34.94, 37.08]
36.60

[35.36, 38.19]
37.26

[35.74, 39.30]
37.89

[36.08, 40.41]
38.49

[36.38, 41.50]

34.17 34.92 36.02 37.10 38.08 38.92 39.88

the United States.

Our model uses training data since 03/22/2020 at which most states have already issued stay-at-

home order, and assumes that the contact rate maintains the same level during the training and

prediction period. However, starting in May, many states have already lifted the restrictions of

businesses and public spaces and considered reopening that allows people to go back to restaurants

and offices and places of worship. It remains unclear how these reopening orders affect the contact

rate as well as the spread of the virus and therefore our current model does not take this into

consideration.
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Table 4: Long-term (weakly ahead) prediction (×103) of total confirmed cases in the US and states
with more than 40, 000 total cases. For each region, we present the predicted cumulative confirmed
cases with a 95% confidence interval.

Date 05/19 05/26 06/02 06/09 06/16 06/23 06/30

US
1513

[1451, 1604]
1616

[1500, 1810]
1696

[1537, 1981]
1762

[1568, 2115]
1816

[1595, 2218]
1862

[1618, 2299]
1900

[1638, 2362]

NY
362.4

[355.2, 370.8]
373.4

[362.8, 385.7]
381.7

[368.6, 397.5]
388.4

[372.3, 408.7]
393.8

[375.3, 417.7]
398.4

[377.9, 424.9]
402.3

[380.1, 430.9]

NJ
150.2

[146.1, 155.8]
155.9

[148.9, 166.8]
160.1

[150.9, 175.5]
163.4

[152.4, 182.4]
166.1

[153.7, 187.8]
168.3

[154.8, 192.0]
170.2

[155.8, 195.5]

IL
99.20

[90.19, 113.8]
112.1

[95.51, 143.7]
122.6

[99.67, 168.8]
131.2

[103.2, 187.9]
138.4

[106.3, 201.8]
144.5

[109.1, 212.1]
149.6

[111.6, 219.8]

MA
87.72

[84.17, 92.73]
92.61

[86.51, 102.3]
96.18

[88.14, 109.9]
98.96

[89.43, 115.7]
101.2

[90.52, 120.2]
103.0

[91.46, 123.6]
104.6

[92.28, 126.3]

CA
83.25

[76.70, 94.19]
92.98

[80.74, 117.0]
101.2

[84.12, 137.0]
108.4

[87.13, 152.9]
114.5

[89.83, 165.1]
119.9

[92.28, 174.4]
124.5

[94.49, 181.6]

PA
67.80

[65.09, 71.53]
71.43

[66.84, 78.67]
73.99

[67.99, 84.21]
75.96

[68.88, 88.47]
77.56

[69.63, 91.77]
78.90

[70.28, 94.36]
80.05

[70.86, 96.44]

MI
52.36

[50.37, 55.31]
54.93

[51.58, 60.57]
56.87

[52.45, 64.73]
58.39

[53.14, 67.94]
59.61

[53.70, 70.41]
60.60

[54.16, 72.32]
61.41

[54.54, 73.81]

FL
46.92

[44.37, 50.94]
50.59

[45.94, 59.21]
53.61

[47.18, 66.52]
56.19

[48.27, 72.57]
58.43

[49.25, 77.44]
60.41

[50.14, 81.36]
62.16

[50.96, 84.54]

MD
39.06

[36.66, 42.58]
42.31

[38.11, 49.50]
44.68

[39.07, 54.95]
46.50

[39.83, 59.08]
47.96

[40.47, 62.16]
49.17

[41.03, 64.47]
50.20

[41.51, 66.26]

Table 5: Projected peak date by our model in different regions .

Region US NY NJ IL MA CA PA MI FL MD

Peak date 06/01 05/10 05/19 06/07 05/23 07/01 05/20 05/11 06/14 05/27

Table 6: Estimated basic reproduction number R0 by our model in different regions.

Region US NY NJ IL MA CA PA MI FL MD

R0 2.5 3.6 4.5 3.6 4.2 2.2 3.3 2.1 2.4 2.9

Moreover, we found that for most states, the learned discover rate (i.e., µ) is less than 0.1, which

implies that a large fraction of “Exposed” individuals will finally recover/die without being tested

and reported. This further suggests that the actual number of infected cases in the US may be

more than 10 millions, while most of them are not counted. This result is consistent with the recent

findings by the researchers from the University of Southern California (Sood et al., 2020), which

show that 4.65% (CI: [2.8%, 5.6%]) of Los Angeles residents have already contracted the COVID-19

virus, which is approximately 23 times more than the official reported numbers.
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