MRI-Based Effective Ensemble Frameworks for Predicting Human Brain Tumor
Abstract
:1. Introduction
- Ensemble model with convolutional features: The research proposes an ensemble model that combines convolutional features extracted from a specialized convolutional neural network (CNN). The ensemble model incorporates a voting mechanism, employing logistic regression and a stochastic gradient descent classifier to generate a final prediction.
- Comparison of convolutional features: The effectiveness of models utilizing convolutional features is compared to the impact of using the original characteristics of the data. This analysis provides insights into the benefits and performance improvements offered by the convolutional features in the context of brain cancer forecasting.
- Evaluation of multiple ML models: The study evaluates the performances of various machine learning (ML) models, including Random Forest (RF), K-Nearest Neighbor (k-NN), decision tree (DT), and Extreme Gradient Boost (XG-Boost). The results of these models are compared to assess their effectiveness in the classification task.
- Ensemble model experimentation: Among the evaluated ML models, the three best-performing models are selected for further experimentation as an ensemble model. This ensemble approach aims to leverage the strengths of multiple models to improve the classification accuracy of the system.
- Performance comparison with other ML methods: The proposed framework’s performance is assessed in terms of accuracy, precision, memory usage, and the F1-score. The evaluation includes a comparison with other ML methods to determine the superiority of the proposed framework in the context of brain cancer forecasting.
2. Materials and Methods
2.1. Dataset Description
2.2. Convolutional Neural Network for Feature Engineering
2.3. Principal Component Analysis (PCA)
2.4. Methods
2.4.1. Adaptive (Ada-Boost) Boosting
2.4.2. Extreme Gradient (XG-Boost) Boosting
2.4.3. The K-Nearest Neighbor (K-NN)
2.4.4. Decision Tree (DT)
2.4.5. Random Forest (RF)
3. Proposed Novel Ensemble Approach: XG-Boost_Ada-Boost Random-Forest (XG-Ada-RF)
Algorithm 1: Procedure Ensemble Model () |
Input: The training dataset , the test dataset , the input shape Output: The output is classified in two categories: normal and brain tumor, and the model will return the results based on 1: , Class labelling, Data-resampling 2: 3: 4: 5: 6: 7: 8: 9: Return |
Experimental Environment Settings and Performance Evaluation Metrics
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bondy, M.L.; Scheurer, M.E.; Malmer, B.; Barnholtz-Sloan, J.S.; Davis, F.G.; Il’yasova, D.; Kruchko, C.; McCarthy, B.J.; Rajaraman, P.; Schwartzbaum, J.A.; et al. Brain Tumor Epidemiology: Consensus from the Brain Tumor Epidemiology Consortium. Cancer 2008, 113, 1953–1968. [Google Scholar] [CrossRef]
- Mabray, M.C.; Barajas, R.F.; Cha, S. Modern Brain Tumor Imaging. Brain Tumor Res. Treat. 2015, 3, 8–23. [Google Scholar] [CrossRef]
- Ayoub, S.; Behera, N.R.; Raju, M.N.; Singh, P.; Praveena, S.; Ravikiran, K. Hyperparameter Tuned Deep Learning Model for Healthcare Monitoring System in Big Data. In Proceedings of the IDCIoT 2023—International Conference on Intelligent Data Communication Technologies and Internet of Things, Proceedings, Bengaluru, India, 5–7 January 2023. [Google Scholar]
- Ayoub, S.; Khan, M.A.; Jadhav, V.P.; Anandaram, H.; Anil Kumar, T.C.; Reegu, F.A.; Motwani, D.; Shrivastava, A.K.; Berhane, R. Minimized Computations of Deep Learning Technique for Early Diagnosis of Diabetic Retinopathy Using IoT-Based Medical Devices. Comput. Intell. Neurosci. 2022, 2022, 7040141. [Google Scholar] [CrossRef]
- Londhe, V.Y.; Bhasin, B. Artificial Intelligence and Its Potential in Oncology. Drug Discov. Today 2019, 24, 228–232. [Google Scholar] [CrossRef]
- Alam, S.; Raja, P.; Gulzar, Y. Investigation of Machine Learning Methods for Early Prediction of Neurodevelopmental Disorders in Children. Wirel. Commun. Mob. Comput. 2022, 2022, 5766386. [Google Scholar] [CrossRef]
- Borole, V.Y.; Nimbhore, S.S.; Kawthekar, D.S.S. Image Processing Techniques for Brain Tumor Detection: A Review. Int. J. Emerg. Trends Technol. Comput. Sci. 2015, 4, 1–28. [Google Scholar]
- Gulzar, Y. Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Technique. Sustainability 2023, 15, 1906. [Google Scholar] [CrossRef]
- Gulzar, Y.; Hamid, Y.; Soomro, A.B.; Alwan, A.A.; Journaux, L. A Convolution Neural Network-Based Seed Classification System. Symmetry 2020, 12, 2018. [Google Scholar] [CrossRef]
- Albarrak, K.; Gulzar, Y.; Hamid, Y.; Mehmood, A.; Soomro, A.B. A Deep Learning-Based Model for Date Fruit Classification. Sustainability 2022, 14, 6339. [Google Scholar] [CrossRef]
- Mamat, N.; Othman, M.F.; Abdulghafor, R.; Alwan, A.A.; Gulzar, Y. Enhancing Image Annotation Technique of Fruit Classification Using a Deep Learning Approach. Sustainability 2023, 15, 901. [Google Scholar] [CrossRef]
- Dhiman, P.; Kaur, A.; Balasaraswathi, V.R.; Gulzar, Y.; Alwan, A.A.; Hamid, Y. Image Acquisition, Preprocessing and Classification of Citrus Fruit Diseases: A Systematic Literature Review. Sustainability 2023, 15, 9643. [Google Scholar] [CrossRef]
- Sahlan, F.; Hamidi, F.; Misrat, M.Z.; Adli, M.H.; Wani, S.; Gulzar, Y. Prediction of Mental Health Among University Students. Int. J. Perceptive Cogn. Comput. 2021, 7, 85–91. [Google Scholar]
- Gulzar, Y.; Alwan, A.A.; Abdullah, R.M.; Abualkishik, A.Z.; Oumrani, M. OCA: Ordered Clustering-Based Algorithm for E-Commerce Recommendation System. Sustainability 2023, 15, 2947. [Google Scholar] [CrossRef]
- Mehmood, A.; Gulzar, Y.; Ilyas, Q.M.; Jabbari, A.; Ahmad, M.; Iqbal, S. SBXception: A Shallower and Broader Xception Architecture for Efficient Classification of Skin Lesions. Cancers 2023, 15, 3604. [Google Scholar] [CrossRef]
- Siar, M.; Teshnehlab, M. Brain Tumor Detection Using Deep Neural Network and Machine Learning Algorithm. In Proceedings of the 2019 9th International Conference on Computer and Knowledge Engineering, ICCKE 2019, Mashhad, Iran, 24–25 October 2019. [Google Scholar]
- Seetha, J.; Raja, S.S. Brain Tumor Classification Using Convolutional Neural Networks. Biomed. Pharmacol. J. 2018, 11, 1457–1461. [Google Scholar] [CrossRef]
- Gulzar, Y.; Ünal, Z.; Akta¸s, H.A.; Mir, M.S. Harnessing the Power of Transfer Learning in Sunflower Disease Detection: A Comparative Study. Agriculture 2023, 13, 1479. [Google Scholar] [CrossRef]
- Choudhury, C.L.; Mahanty, C.; Kumar, R.; Mishra, B.K. Brain Tumor Detection and Classification Using Convolutional Neural Network and Deep Neural Network. In Proceedings of the 2020 International Conference on Computer Science, Engineering and Applications, ICCSEA 2020, Gunupur, India, 13–14 March 2020. [Google Scholar]
- Gulzar, Y.; Khan, S.A. Skin Lesion Segmentation Based on Vision Transformers and Convolutional Neural Networks— A Comparative Study. Appl. Sci. 2022, 12, 5990. [Google Scholar] [CrossRef]
- Ayoub, S.; Gulzar, Y.; Reegu, F.A.; Turaev, S. Generating Image Captions Using Bahdanau Attention Mechanism and Transfer Learning. Symmetry 2022, 14, 2681. [Google Scholar] [CrossRef]
- Khan, S.A.; Gulzar, Y.; Turaev, S.; Peng, Y.S. A Modified HSIFT Descriptor for Medical Image Classification of Anatomy Objects. Symmetry 2021, 13, 1987. [Google Scholar] [CrossRef]
- Wang, Q.; Liacouras, E.K.; Miranda, E.; Kanamalla, U.S.; Megalooikonomou, V. Classification of Brain Tumors Using MRI and MRS Data. In Proceedings of the Medical Imaging 2007: Computer-Aided Diagnosis, San Diego, CA, USA, 29 March 2007; Volume 6514. [Google Scholar]
- Weber, M.A.; Zoubaa, S.; Schlieter, M.; Jüttler, E.; Huttner, H.B.; Geletneky, K.; Ittrich, C.; Lichy, M.P.; Kroll, A.; Debus, J.; et al. Diagnostic Performance of Spectroscopic and Perfusion MRI for Distinction of Brain Tumors. Neurology 2006, 66, 1899–1906. [Google Scholar] [CrossRef]
- Qin, C.; Li, B.; Han, B. Fast Brain Tumor Detection Using Adaptive Stochastic Gradient Descent on Shared-Memory Parallel Environment. Eng. Appl. Artif. Intell. 2023, 120, 105816. [Google Scholar] [CrossRef]
- Gopal, N.N.; Karnan, M. Diagnose Brain Tumor through MRI Using Image Processing Clustering Algorithms Such as Fuzzy C Means along with Intelligent Optimization Techniques. In Proceedings of the 2010 IEEE International Conference on Computational Intelligence and Computing Research, ICCIC 2010, Coimbatore, India, 28–29 December 2010. [Google Scholar]
- Mathew, A.R.; Anto, P.B. Tumor Detection and Classification of MRI Brain Image Using Wavelet Transform and SVM. In Proceedings of the Proceedings of IEEE International Conference on Signal Processing and Communication, ICSPC 2017, Coimbatore, India, 28–29 July 2017; Volume 2018. [Google Scholar]
- Amin, J.; Sharif, M.; Gul, N.; Yasmin, M.; Shad, S.A. Brain Tumor Classification Based on DWT Fusion of MRI Sequences Using Convolutional Neural Network. Pattern Recognit. Lett. 2020, 129, 115–122. [Google Scholar] [CrossRef]
- Anand, V.; Gupta, S.; Gupta, D.; Gulzar, Y.; Xin, Q.; Juneja, S.; Shah, A.; Shaikh, A. Weighted Average Ensemble Deep Learning Model for Stratification of Brain Tumor in MRI Images. Diagnostics 2023, 13, 1320. [Google Scholar] [CrossRef]
- Devnath, L.; Fan, Z.; Luo, S.; Summons, P.; Wang, D. Detection and Visualisation of Pneumoconiosis Using an Ensemble of Multi-Dimensional Deep Features Learned from Chest X-Rays. Int. J. Environ. Res. Public Health 2022, 19, 11193. [Google Scholar] [CrossRef] [PubMed]
- Devnath, L.; Luo, S.; Summons, P.; Wang, D.; Shaukat, K.; Hameed, I.A.; Alrayes, F.S. Deep Ensemble Learning for the Automatic Detection of Pneumoconiosis in Coal Worker’s Chest X-Ray Radiography. J. Clin. Med. 2022, 11, 5342. [Google Scholar] [CrossRef]
- Saeedi, S.; Rezayi, S.; Keshavarz, H.; Niakan Kalhori, S.R. MRI-Based Brain Tumor Detection Using Convolutional Deep Learning Methods and Chosen Machine Learning Techniques. BMC Med. Inform. Decis. Mak. 2023, 23, 16. [Google Scholar] [CrossRef]
- Sobhaninia, Z.; Karimi, N.; Khadivi, P.; Samavi, S. Brain Tumor Segmentation by Cascaded Multiscale Multitask Learning Framework Based on Feature Aggregation; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Zulfiqar, F.; Ijaz Bajwa, U.; Mehmood, Y. Multi-Class Classification of Brain Tumor Types from MR Images Using EfficientNets. Biomed. Signal Process. Control 2023, 84, 104777. [Google Scholar] [CrossRef]
- Rajput, S.; Kapdi, R.A.; Raval, M.S.; Roy, M. Interpretable Machine Learning Model to Predict Survival Days of Malignant Brain Tumor Patients. Mach. Learn. Sci. Technol. 2023, 4, 025025. [Google Scholar] [CrossRef]
- Brain Tumor Dataset. Available online: https://figshare.com/articles/dataset/brain_tumor_dataset/1512427 (accessed on 7 July 2023).
- Ayoub, S.; Gulzar, Y.; Rustamov, J.; Jabbari, A.; Reegu, F.A.; Turaev, S. Adversarial Approaches to Tackle Imbalanced Data in Machine Learning. Sustainability 2023, 15, 7097. [Google Scholar] [CrossRef]
- Wiatowski, T.; Bolcskei, H. A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction. IEEE Trans. Inf. Theory 2018, 64, 1845–1866. [Google Scholar] [CrossRef]
- Namatēvs, I. Deep Convolutional Neural Networks: Structure, Feature Extraction and Training. Inf. Technol. Manag. Sci. 2018, 20, 40–47. [Google Scholar] [CrossRef]
- Weimer, D.; Scholz-Reiter, B.; Shpitalni, M. Design of Deep Convolutional Neural Network Architectures for Automated Feature Extraction in Industrial Inspection. CIRP Ann. Manuf. Technol. 2016, 65, 417–420. [Google Scholar] [CrossRef]
- Zebari, R.; Abdulazeez, A.; Zeebaree, D.; Zebari, D.; Saeed, J. A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction. J. Appl. Sci. Technol. Trends 2020, 1, 56–70. [Google Scholar] [CrossRef]
- Abolhasanzadeh, B. Nonlinear Dimensionality Reduction for Intrusion Detection Using Auto-Encoder Bottleneck Features. In Proceedings of the 2015 7th Conference on Information and Knowledge Technology, IKT 2015, Urmia, Iran, 26–28 May 2015. [Google Scholar]
- Jadhav, D.A. An Enhanced and Secured Predictive Model of Ada-Boost and Random-Forest Techniques in HCV Detections. Proc. Mater. Today Proc. 2021, 51, 186–195. [Google Scholar] [CrossRef]
- Chen, T.; He, T. R Lecture, Version 1.7.5.1. Xgboost: Extreme Gradient Boosting. 2014.
- Hughes, M.; Cooper, S.-M.; Nevill, A. Analysis Procedures for Non-Parametric Data from Performance Analysis. Int. J. Perform. Anal. Sport 2002, 2, 6–20. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Coenen, F.; Xiao, J.; Lu, W. One-Class Kernel Subspace Ensemble for Medical Image Classification. EURASIP J. Adv. Signal Process. 2014, 2014, 17. [Google Scholar] [CrossRef]
- Dogan, A.; Birant, D. A Weighted Majority Voting Ensemble Approach for Classification. In Proceedings of the UBMK 2019—Proceedings, 4th International Conference on Computer Science and Engineering, Samsun, Turkey, 11–15 September 2019. [Google Scholar]
- Khan, Y.F.; Kaushik, B.; Chowdhary, C.L.; Srivastava, G. Ensemble Model for Diagnostic Classification of Alzheimer’s Disease Based on Brain Anatomical Magnetic Resonance Imaging. Diagnostics 2022, 12, 3193. [Google Scholar] [CrossRef]
- Ismael, M.R.; Abdel-Qader, I. Brain Tumor Classification via Statistical Features and Back-Propagation Neural Network. In Proceedings of the IEEE International Conference on Electro Information Technology, Rochester, MI, USA, 3–5 May 2018; Volume 2018. [Google Scholar]
- Zaw, H.T.; Maneerat, N.; Win, K.Y. Brain Tumor Detection Based on Naïve Bayes Classification. In Proceedings of the Proceeding—5th International Conference on Engineering, Applied Sciences and Technology, ICEAST 2019, Luang Prabang, Laos, 2–5 July 2019. [Google Scholar]
- Kang, J.; Ullah, Z.; Gwak, J. MRI-Based Brain Tumor Classification Using Ensemble of Deep Features and Machine Learning Classifiers. Sensors 2021, 21, 2222. [Google Scholar] [CrossRef]
- Deepak, S.; Ameer, P.M. Automated Categorization of Brain Tumor from MRI Using CNN Features and SVM. J. Ambient Intell. Humaniz. Comput. 2021, 12, 8357–8369. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, A.; Alhaisoni, M.; Alqahtani, A.; Alsubai, S.; Alharbi, M.; Malik, N.A.; Damaševičius, R. Multimodal Brain Tumor Detection and Classification Using Deep Saliency Map and Improved Dragonfly Optimization Algorithm. Int. J. Imaging Syst. Technol. 2023, 33, 572–587. [Google Scholar] [CrossRef]
Dataset | Normal | Brain Tumor |
---|---|---|
Brain Images | 2079 | 1683 |
Model | Class | Accuracy (%) | Precision | Recall | F1-Score | AUC |
---|---|---|---|---|---|---|
Ada-Boost | Healthy | 92.51 | 0.8897 | 0.8897 | 0.8897 | 0.9732 |
Tumor | 93.12 | 0.8723 | 0.8556 | 0.8764 | 0.9723 | |
XG-Boost | Healthy | 92.56 | 0.9360 | 0.9360 | 0.9360 | 0.9821 |
Tumor | 91.40 | 0.8764 | 0.9374 | 0.9293 | 0.9635 | |
K-NN | Healthy | 88.25 | 0.9327 | 0.8621 | 0.9325 | 0.8861 |
Tumor | 89.98 | 0.8734 | 0.9748 | 0.8357 | 0.8767 | |
DT | Healthy | 89.75 | 0.7246 | 0.7119 | 0.7956 | 0.8349 |
Tumor | 89.46 | 0.8345 | 0.7897 | 0.8234 | 0.8645 | |
RF | Healthy | 91.33 | 0.9440 | 0.9406 | 0.9433 | 0.9318 |
Tumor | 89.99 | 0.9234 | 0.8945 | 0.9234 | 0.9344 | |
Proposed Model (XG-Ada-RF) | Healthy | 94.9% | 0.9832 | 0.9423 | 0.9764 | 0.9932 |
Tumor | 95.9% | 0.9888 | 0.9534 | 0.9823 | 0.9878 |
S. No | Study | Material | Technique | Result (%) |
---|---|---|---|---|
1. | Ismael et al. [50] | Brain MRI | Back-propagation neural network | 91.9 |
2. | Zaw et al. [51] | Brain MRI | Naïve Bayes classifier | 94 |
3. | Kang et al. [52] | Brain MRI | ensemble learning | 91.58 |
4. | Deepak et al. [53] | Brain MRI | SVM | 95.82 |
5. | Khan et al. [54] | Brain MRI | saliency map and deep learning feature optimization | 94.89 |
6. | Proposed Model | Brain MRI | Ensemble XG-Ada-RF model | 95.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, F.; Ayoub, S.; Gulzar, Y.; Majid, M.; Reegu, F.A.; Mir, M.S.; Soomro, A.B.; Elwasila, O. MRI-Based Effective Ensemble Frameworks for Predicting Human Brain Tumor. J. Imaging 2023, 9, 163. https://doi.org/10.3390/jimaging9080163
Khan F, Ayoub S, Gulzar Y, Majid M, Reegu FA, Mir MS, Soomro AB, Elwasila O. MRI-Based Effective Ensemble Frameworks for Predicting Human Brain Tumor. Journal of Imaging. 2023; 9(8):163. https://doi.org/10.3390/jimaging9080163
Chicago/Turabian StyleKhan, Farhana, Shahnawaz Ayoub, Yonis Gulzar, Muneer Majid, Faheem Ahmad Reegu, Mohammad Shuaib Mir, Arjumand Bano Soomro, and Osman Elwasila. 2023. "MRI-Based Effective Ensemble Frameworks for Predicting Human Brain Tumor" Journal of Imaging 9, no. 8: 163. https://doi.org/10.3390/jimaging9080163
APA StyleKhan, F., Ayoub, S., Gulzar, Y., Majid, M., Reegu, F. A., Mir, M. S., Soomro, A. B., & Elwasila, O. (2023). MRI-Based Effective Ensemble Frameworks for Predicting Human Brain Tumor. Journal of Imaging, 9(8), 163. https://doi.org/10.3390/jimaging9080163