Green Biorefinery of Giant Miscanthus for Growing Microalgae and Biofuel Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Miscanthus Harvest and Processing
2.2. Biomass Analytical Procedures
2.3. Microalgae Cultivation
2.4. Thermalchemical Conversion Analysis of Microalgae via Py-GC/MS and TGA
2.5. Dilute Sulfuric Acid Pretreatment
2.6. Fermentation of MxG Solid Fraction to Produce Ethanol
3. Results and Discussion
3.1. Characteristics of Raw Miscanthus, Miscanthus Cake and Juice
3.2. Miscanthus Juice as a Nutrition Supplement for Microalgal Growth
3.3. Thermochemical Conversion of Microalgae Grown on MxG Juice
3.4. Effect of Pretreatment on the Cake of Miscanthus X Giganteus
3.5. Fermentation of MxG Cake for Ethanol Production
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Parajuli, R.; Dalgaard, T.; Jørgensen, U.; Adamsen, A.P.S.; Knudsen, M.T.; Birkved, M.; Gylling, M.; Schjørring, J.K. Biorefining in the prevailing energy and materials crisis: A review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renew. Sustain. Energy Rev. 2015, 43, 244–263. [Google Scholar]
- McLaren, J.S. Crop biotechnology provides an opportunity to develop a sustainable future. Trends Biotechnol. 2005, 23, 339–342. [Google Scholar] [PubMed]
- FitzPatrick, M.; Champagne, P.; Cunningham, M.F.; Whitney, R.A. A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresour. Technol. 2010, 101, 8915–8922. [Google Scholar] [CrossRef] [PubMed]
- Kamm, B.; Kamm, M. Biorefineries—Multi product processes. In White Biotechnology; Ulber, R., Sell, D., Eds.; Springer: Berlin, Germany, 2007; pp. 175–204. [Google Scholar]
- Xiu, S.; Shahbazi, A. Development of Green Biorefinery for Biomass Utilization: A Review. Trends Renew. Energy 2015, 1, 4–15. [Google Scholar] [CrossRef]
- Khanna, M.; Dhungana, B.; Clifton-Brown, J. Costs of producing miscanthus and switchgrass for bioenergy in Illinois. Biomass Bioenergy 2008, 32, 482–493. [Google Scholar] [CrossRef]
- Boakye-Boaten, N.A.; Xiu, S.; Shahbazi, A.; Wang, L.; Li, R.; Schimmel, K. Uses of miscanthus press juice within a green biorefinery platform. Bioresour. Technol. 2016, 207, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Wachendorf, M.; Richter, F.; Fricke, T.; Graß, R.; Neff, R. Utilization of semi-natural grassland through integrated generation of solid fuel and biogas from biomass. I. Effects of hydrothermal conditioning and mechanical dehydration on mass flows of organic and mineral plant compounds, and nutrient balances. Grass Forage Sci. 2009, 64, 132–143. [Google Scholar] [CrossRef]
- Balat, M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Convers. Manag. 2011, 52, 858–875. [Google Scholar] [CrossRef]
- Xiu, S.; Boakye-Boaten, N.A.; Shahbazi, A. Separate hydrolysis and fermentation of untreated and pretreated alfalfa cake to produce ethanol. In Proceedings of the 2013 National Conference on Advances in Environmental Science and Technology; Uzochukwu, G.A., Schimmel, K., Kabadi, V., Chang, S.-Y., Pinder, T., Ibrahim, S.A., Eds.; Springer: Cham, Switzerland, 2016; pp. 233–240. [Google Scholar]
- Takara, D.; Khanal, S.K. Green processing of tropical banagrass into biofuel and biobased products: An innovative biorefinery approach. Bioresour. Technol. 2011, 102, 1587–1592. [Google Scholar] [PubMed]
- Rahman, Q.M.; Wang, L.J.; Zhang, B.; Xiu, S.N.; Shahbazi, A. Green biorefinery of fresh cattail for microalgal culture and ethanol production. Bioresour. Technol. 2015, 185, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.; Kiel, P. Integrated utilisation of green biomass in the green biorefinery. Ind. Crops Prod. 2000, 11, 129–137. [Google Scholar] [CrossRef]
- Arlabosse, P.; Blanc, M.; Kerfaï, S.; Fernandez, A. Production of green juice with an intensive thermo-mechanical fractionation process. Part I: Effects of processing conditions on the dewatering kinetics. Chem. Eng. J. 2011, 168, 586–592. [Google Scholar] [CrossRef]
- Xiu, S.; Shahbazi, A.; Boakye-Boaten, N.A. Effects of Fractionation Methods on the Isolation of Fiber-Rich Cake from Alfalfa and Ethanol Production from the Cake. BioResources 2014, 9, 3407–3416. [Google Scholar] [CrossRef]
- Boakye-Boaten, N.A.; Xiu, S.; Shahbazi, A.; Wang, L.; Li, R.; Mims, M.; Schimmel, K. Effects of fertilizer application and dry/wet processing of miscanthus x giganteus on bioethanol production. Bioresour. Technol. 2016, 204, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Hasan, R.; Zhang, B.; Wang, L.; Shahbazi, A. Bioremediation of swine wastewater and biofuel potential by using chlorella vulgaris, chlamydomonas reinhardtii, and chlamydomonas debaryana (corrected version). J. Pet. Environ. Biotechnol. 2014, 5, 175–180. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Hasan, R.; Shahbazi, A. Characterization of a native algae species chlamydomonas debaryana: Strain selection, bioremediation ability, and lipid characterization. BioResources 2014, 9, 6130–6140. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Li, R.; Rahman, Q.M.; Shahbazi, A. Catalytic conversion of chlamydomonas to hydrocarbons via the ethanol-assisted liquefaction and hydrotreating processes. Energy Fuels 2017, 31, 12223–12231. [Google Scholar] [CrossRef]
- Oberoi, H.S.; Vadlani, P.V.; Saida, L.; Bansal, S.; Hughes, J.D. Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process. Waste Manag. 2011, 31, 1576–1584. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, A.; Teller, P.J.; Hilstrøm, T.; Ahring, B.K. Hydrolysis of miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment. Bioresour. Technol. 2008, 99, 6602–6607. [Google Scholar] [CrossRef] [PubMed]
- Scordia, D.; Cosentino, S.L.; Jeffries, T.W. Effectiveness of dilute oxalic acid pretreatment of miscanthus × giganteus biomass for ethanol production. Biomass Bioenergy 2013, 59, 540–548. [Google Scholar] [CrossRef]
- Ballesteros, I.; Ballesteros, M.; Manzanares, P.; Negro, M.J.; Oliva, J.M.; Sáez, F. Dilute sulfuric acid pretreatment of cardoon for ethanol production. Biochem. Eng. J. 2008, 42, 84–91. [Google Scholar] [CrossRef]
- Zhu, L.; O’Dwyer, J.P.; Chang, V.S.; Granda, C.B.; Holtzapple, M.T. Structural features affecting biomass enzymatic digestibility. Bioresour. Technol. 2008, 99, 3817–3828. [Google Scholar] [CrossRef] [PubMed]
- Boonsawang, P.; Subkaree, Y.; Srinorakutara, T. Ethanol production from palm pressed fiber by prehydrolysis prior to simultaneous saccharification and fermentation (SSF). Biomass Bioenergy 2012, 40, 127–132. [Google Scholar] [CrossRef]
- Torr, K.M.; Love, K.T.; Simmons, B.A.; Hill, S.J. Structural features affecting the enzymatic digestibility of pine wood pretreated with ionic liquids. Biotechnol. Bioeng. 2016, 113, 540–549. [Google Scholar] [CrossRef] [PubMed]
Group/Specific | Miscanthus Cake | Miscanthus Juice |
Total Solids, wt % | 17.4 | 0.1 |
Ash, % dry matter | 1.8 | 3.9 |
H2O, wt % | 82.6 | 99.9 |
Biomass Composition of Dry Matter, wt % | ||
Cellulose | 47.5 | 39.2 |
Hemicellulose | 36.6 | 19.7 |
Lignin | 16.5 | 12.3 |
Protein Content | 2.5 | 5 |
Elemental Composition (%) | ||
C | 48.2 | 37.8 |
H | 6.6 | 5.2 |
N | 0.4 | 0.8 |
S | 0.5 | 1.0 |
Mineral Composition(ppm) | ||
Al | 21.3 | 39.3 |
B | 52 | 95.3 |
Ca | 412.3 | 1968.2 |
Cd | 2.7 | 7.4 |
Cu | 25.1 | 20.1 |
Fe | 97.4 | 76.2 |
K | 5506.6 | 93,083.3 |
Mg | 1901.3 | 19,658.3 |
Mn | 30.8 | 251.3 |
Na | 1301.0 | 487.1 |
Ni | 7.5 | 5.1 |
P | 84.2 | 475.7 |
Pb | 7.0 | 10.3 |
S | 11.0 | 23.2 |
Zn | 22.9 | 39.7 |
Si (g/mL) | 2926.4 | 273.6 |
Mo (g/mL) | 11.5 | 6.9 |
Compound Name | Ret Time (min) | m/z |
---|---|---|
3-hydroxypropionic acid | 0.6756 | 89.0 |
7-methylxanthine/3-methylxanthine | 1.4121 | 167.1 |
Adenine | 0.8119 | 136.1 |
aminobutyric acid | 0.6186 | 102.1 |
apigenin/genistein | 3.332 | 271.0 |
Arginine | 0.7322 | 175.1 |
azelaic acid | 2.9221 | 211.1 |
Biotin | 2.2158 | 227.1 |
caffeic acid | 2.2282 | 181.1 |
Citrulline | 0.7176 | 159.1 |
Cytosine | 0.6817 | 112.1 |
fumaric acid | 0.5659 | 115.0 |
Genistin | 2.392 | 433.1 |
gibberellic acid | 2.7087 | 347.2 |
glucaric acid | 0.6975 | 233.0 |
gluconic acid | 0.6487 | 195.0 |
glutamic acid | 0.8481 | 148.1 |
Histidine | 0.686 | 154.1 |
Hypotaurine | 0.5547 | 110.0 |
Hypoxanthine | 1.0334 | 137.0 |
Leucine | 1.2646 | 132.1 |
l-tyrosine | 1.1882 | 182.1 |
m-Couraric acid | 2.6982 | 167.1 |
Methionine | 0.9698 | 133.0 |
nicotinic acid | 0.9439 | 124.0 |
Pantothenate | 1.6058 | 220.1 |
Paraxanthine | 1.9946 | 181.1 |
Phenylalanine | 1.506 | 166.1 |
phosphoenolpyruvic acid | 0.6185 | 167.0 |
Proline | 0.7951 | 116.1 |
Riboflavin | 2.1214 | 377.1 |
succinic acid | 1.1895 | 119.0 |
Thymine | 1.413 | 127.0 |
Tryptamine | 2.0723 | 144.1 |
Tryptophan | 1.794 | 188.1 |
Uracil | 0.8922 | 113.0 |
Composition | C | H | N | S | Protein | Carbohydrates | Lipid | Volatile Solid | Ash |
---|---|---|---|---|---|---|---|---|---|
Chlorella | 44.3 | 6.8 | 10.3 | 1.2 | 64.6 | 8.9 | 12.3 | 88.5 | 11.5 |
Possible Chemical | Retention Time | Area % |
---|---|---|
Hexadecenoic acid | 19.18 | 6.83 |
9-Octadecyne | 18.03 | 6.48 |
9,12,15-Octadecatrienoic acid, (Z,Z,Z)- | 20.77 | 6.14 |
Methyl 8,11,14-heptadecatrienoate | 18.89 | 4.55 |
Toluene | 3.47 | 2.93 |
Acetic acid | 2.16 | 2.40 |
Methanethiol | 1.84 | 2.22 |
Butane | 1.91 | 2.14 |
N,N-Dimethylaminoethanol | 3.00 | 2.10 |
p-Cresol | 8.00 | 1.81 |
1H-Indole, 6-methyl- | 12.37 | 1.67 |
Oleic Acid | 20.81 | 1.45 |
Indole | 11.07 | 1.13 |
Tetradecanoic acid | 17.08 | 0.98 |
Tetradecanamide | 20.97 | 0.96 |
Octadecane | 22.86 | 0.96 |
1H-Pyrazole, 1,3,5-trimethyl- | 5.95 | 0.93 |
Piperidine, 1-(cyanoacetyl)- | 13.25 | 0.92 |
Butanal, 3-methyl- | 2.44 | 0.86 |
Butanal | 2.06 | 0.82 |
Sample | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Ash (%) |
---|---|---|---|---|
Untreated | 49.34 | 32.75 | 15.25 | 1.23 |
Pretreated | 71.8 | 1.27 | 26.83 | 0.52 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiu, S.; Zhang, B.; Boakye-Boaten, N.A.; Shahbazi, A. Green Biorefinery of Giant Miscanthus for Growing Microalgae and Biofuel Production. Fermentation 2017, 3, 66. https://doi.org/10.3390/fermentation3040066
Xiu S, Zhang B, Boakye-Boaten NA, Shahbazi A. Green Biorefinery of Giant Miscanthus for Growing Microalgae and Biofuel Production. Fermentation. 2017; 3(4):66. https://doi.org/10.3390/fermentation3040066
Chicago/Turabian StyleXiu, Shuangning, Bo Zhang, Nana Abayie Boakye-Boaten, and Abolghasem Shahbazi. 2017. "Green Biorefinery of Giant Miscanthus for Growing Microalgae and Biofuel Production" Fermentation 3, no. 4: 66. https://doi.org/10.3390/fermentation3040066
APA StyleXiu, S., Zhang, B., Boakye-Boaten, N. A., & Shahbazi, A. (2017). Green Biorefinery of Giant Miscanthus for Growing Microalgae and Biofuel Production. Fermentation, 3(4), 66. https://doi.org/10.3390/fermentation3040066