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Abstract: Coronary artery disease leads to over 360,000 deaths annually in the United States, and off-
the-shelf bypass graft options are currently limited and/or have high failure rates. Tissue-engineered
vascular grafts (TEVGs) present an attractive option, though the promising mesenchymal stem
cell (MSC)-based implants face uncertain regulatory pathways. In this study, “artificial MSCs”
(ArtMSCs) were fabricated by encapsulating MSC-conditioned media (CM) in poly(lactic-co-glycolic
acid) microparticles. ArtMSCs and control microparticles (Blank-MPs) were incubated over 7 days to
assess the release of total protein and the vascular endothelial growth factor (VEGF-A); releasates
were also assessed for cytotoxicity and promotion of smooth muscle cell (SMC) proliferation. Each
MP type was loaded in previously published “lyogel” silk scaffolds and implanted as interposition
grafts in Lewis rats for 1 or 8 weeks. Explanted grafts were assessed for patency and cell content.
ArtMSCs had a burst release of protein and VEGF-A. CM increased proliferation in SMCs, but
not after encapsulation. TEVG explants after 1 week had significantly higher patency rates with
ArtMSCs compared to Blank-MPs, but similar to unseeded lyogel grafts. ArtMSC explants had lower
numbers of infiltrating macrophages compared to Blank-MP explants, suggesting a modulation
of inflammatory response by the ArtMSCs. TEVG explants after 8 weeks showed no significant
difference in patency among the three groups. The ArtMSC explants showed higher numbers of
SMCs and endothelial cells within the neotissue layer of the graft compared to Blank-MP explants. In
sum, while the ArtMSCs had positive effects acutely, efficacy was lost in the longer term; therefore,
further optimization is needed.
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1. Introduction

Cardiovascular disease is the current leading cause of death globally [1,2]. Coro-
nary artery disease is the most common form of cardiovascular disease, leading to over
360,000 mortalities in 2019 in the United States [1,3]. Occlusion in the coronary artery
is typically bypassed by a graft, where the current standards are either the autologous
internal mammary artery or saphenous vein. However, both of these autologous options
are limited [4,5]. The saphenous vein has also been known to have high long-term failure
rates [5]. Thus, tissue-engineered vascular grafts (TEVGs) have been sought as potential
alternatives by our group [6–11] and others [12–24].

In order for TEVGs to be successful, they must have low immunogenicity in regard to
both their scaffold material and their bioactive cargo [25]. Silk has been utilized in various
tissue-engineering applications due to its tunable biodegradation, low immunogenicity,
and overall biocompatibility [7,26]. Some tissue-engineered products containing silk have
gained FDA approval [26,27]. Mesenchymal stem cells (MSCs) have been shown to be
immune evasive and anti-inflammatory and have shown promise for improved tissue-
engineering applications through their regenerative properties [28,29]. MSC-conditioned
media (CM), which contains the MSC secretome, has shown promise as a therapeutic
in cardiovascular applications [30,31]. This secretome includes growth factors such as
vascular endothelial growth factor (VEGF), hepatocyte growth factor, fibroblast growth
factor, and transforming growth factor β [32,33], which are known for their angiogenic
effects. Additionally, MSC secretome has been shown to reduce interferon γ and tissue
necrosis factor α secretion from inflammatory cells [34], thus making the MSC secretome an
attractive therapeutic. In this work, we propose that CM can be used to generate “artificial
MSCs.” It is a valid concern that calling our technology “artificial MSCs” (or ArtMSCs
for short) is a strong assumption, as they do not proliferate or actively respond to their
environment like cells. However, this is the term we used in patenting the technology
(US20230285290A1), so we would prefer to continue using it here.

Our lab has previously reported success with MSC-seeded TEVG constructs [8,9,11]
compared to unseeded controls. However, the inclusion of MSCs in a TEVG presents
various regulatory barriers and, hence, clinical acceptance. Therefore, a cell-free alternative
to mitigate these possible risks is warranted. Our lab and others have shown that secreted
factors from MSCs in conditioned media can have regenerative effects on other cells [35–38].
Utilizing these secreted factors to harness the complex immunoregulatory and regenerative
properties of the MSCs without using the original cells could provide the cargo for a
cell-based, but cell-free, TEVG [39].

We have previously shown that degradable microparticles (MPs) encapsulated with
C-C motif chemokine ligand 2 (CCL2, also known as monocyte chemoattractant protein-1)
improved patency for silk-based TEVGs after initial success at 1 week of implantation [10].
However, longer-term studies at 8 weeks did not see desirable patency rates (54% (7/13)).
As MSCs contain many regenerative and other factors within their conditioned media, the
hypothesis of this study was that this MSC secretome could extend remodeling past what
had been achieved with CCL2 alone and provide long-term patency.

This study comprised in vitro experiments to investigate the secreted factors from
MSCs loaded in PLGA microparticles (and as it happened, their deficiencies) and in vivo
testing of silk+ArtMSC TEVGs. For in vitro characterization of the ArtMSCs, release assays
were used to observe their release kinetics in addition to determining whether two specific
factors hypothesized to be important for TEVG success—vascular endothelial growth factor
A (VEGF-A) and urokinase plasminogen activator (uPA)—were present in the releasates.
Implantations were performed as abdominal aortic interposition grafts for 1 or 8 weeks in
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Lewis rats with patency assessed at explant, as well as further characterization of TEVG
composition. The combined analysis of in vivo and in vitro activity was performed to
obtain a robust understanding of the regenerative potential of this delivery system.

2. Materials and Methods
2.1. Conditioned Media (CM) Generation

The CM was generated from human adipose-derived mesenchymal stem cells (hADM-
SCs) (RoosterVial-hAD-1M MSC Lot #00097, RoosterBio, Frederick, MD, USA). A stock
vial of 1 million cells at passage 2 was thawed into a T175 flask (Nunc, ThermoFisher
Scientific, Pittsburgh, PA, USA) and cultured in 20 mL of RoosterNourish growth media
(GM) (KT-001, RoosterBio) for 3 days. The hADMSCs were then passaged at 1.5 million
cells per T175 flask and cultured in GM to 40% confluency, at which point they were washed
with 1X Hank’s buffered saline solution (HBSS, pH 7.4, Gibco, Gaithersburg, MD, USA) and
25 mL of harvest media was applied. Harvest media consisted of DMEM (21063029, Gibco),
5% FBS (Atlanta Biologics, Flowery Branch, GA, USA), 1% penicillin streptomycin (Gibco),
0.1% Amphotericin B (Gibco), and 10 µL/L of dexamethasone (1126, Tocris, Minneapolis,
MN, USA). After 48 h of culture, the CM was removed and centrifuged (Sorvall Legend RT
Centrifuge, Pittsburgh, PA, USA) at 2040× g at 4 ◦C for 5 min to remove any dead cells or
large debris. Following centrifugation, the supernatant was stored at −80 ◦C until use.

2.2. CM Microparticle (ArtMSC) Fabrication

For fabrication of the ArtMSCs, 20 mL aliquots of CM (MSC secretome) was filtered us-
ing 10 kDa filter tubes (Amicon Ultra, Millipore Sigma, Burlington, MA, USA), lyophilized
overnight, and resuspended in 450 µL of DI water at a 10x concentration as described in [33].
Concentrated CM was encapsulated using a water–oil–water double emulsion procedure
in poly(lactic-co-glycolic acid) (PLGA) MPs, as previously described [10,33,40]. The oil
solution was formed by dissolving PLGA (200 mg, 739952-5G, Millipore Sigma) in 4 mL of
dichloromethane. This solution was sonicated for 10 s at 30% amplitude (EpiShear Probe
Sonicator, Active Motif, Carlsbad, CA, USA) and then homogenized in a 2% polyvinyl
alcohol (PVA) solution (60 mL) for 1 min at 7000 rpm (Silverson L5M-A, East Longmeadow,
MA, USA) to form PLGA droplets in an aqueous phase. After homogenization, the solution
was stirred for 3 h at 600 rpm in a 1% PVA solution to allow for evaporation of organic
solvent, forming solid MPs. MPs were then washed 4 times using centrifugation. The
washed MPs were decanted to minimize residual water, flash frozen in liquid nitrogen,
and then lyophilized for a minimum of 48 h. This same process was also used to fabricate
Blank MPs (Blank-MPs) to analyze the effects of PLGA, replacing the ultrapure water for
the CM. Three batches of ArtMSCs and one batch of Blank-MPs were used for each round
of analysis.

2.3. Characterization of CM and ArtMSC Morphology and Release

Analysis of uPA activity in one batch of CM was performed with a Urokinase Activity
Assay (AS-72159, AnaSpec, Fremont, CA, USA), according to the manufacturer’s protocols,
with non-conditioned media (GM without being exposed to cells, nCM) as a control.
The morphology of the ArtMSCs was qualitatively characterized using SEM (JEOL JSM
6335F, Peabody, MA, USA). The diameter was then quantified with volume impedance
measurements (n = 10,000 MPs per sample) (Multisizer, Beckman Coulter, Brea, CA, USA),
and microparticle density was measured using the final compressed volume of a known
mass of MPs.

To measure protein release, ArtMSCs or Blank-MPs were added (5 mg) to 500 µL of
phosphate-buffered saline (PBS, pH 7.4, Gibco) in triplicate in 1.5 mL microcentrifuge tubes
(ThermoFisher Scientific) and placed in an end-over-end turner at 37 ◦C. A release assay
was performed over 7 days, collecting releasates every 6 h for the first 24 h and then every
24 h after that. Releasates were centrifuged at 10,000× g at 4 ◦C for 5 min (5415R Centrifuge,
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Eppendorf) to pellet MPs. Supernatant was removed and stored at −80 ◦C until ready
for analysis.

A micro bicinchoninic assay kit (BCA, Thermofisher) was used to measure the total
protein released from MPs. Next, either 150 µL of each releasate or a standard curve (in
triplicate) from 0 to 200 µg of bovine serum albumin diluted in PBS was added to 96-well
plates, and 150 µL of working reagent was added to each well to cause the colorimetric
reaction. The plate was incubated at 37 ◦C for 2 h and read at 562 nm with a microplate
reader to measure absorbance to determine protein concentration (Synergy HT, BioTek
Instruments, Vermont, MA, USA).

A DuoSet enzyme-linked immunosorbent assay (ELISA) Ancillary Reagent Kit (#DY008,
R&D Systems, Minneapolis, MN, USA) and respective Quantikine ELISA Kits were used to
measure VEGF-A (DY293B-05) and uPA (DY1310) release from MPs. For this, 100 µL of each
releasate or a standard curve (in triplicate) of either VEGF-A (0 to 2000 pg/mL) or uPA (0 to
4000 pg/mL) diluted in reagent diluent (from Ancillary kit) was added to 96-well plates.
Samples were analyzed according to the manufacturer’s protocols.

2.4. Vascular Cell Culture

Human aortic vascular smooth muscle cells (SMCs) either from ATCC (for toxicity
assessment, Manassas, VA, PCS-100-012) or Cell Applications (for proliferation assays,
354-05a, San Diego, CA, USA) were cultured in supplemented basal media (SBM) (311K-
500, Cell Applications Inc.). Human coronary artery endothelial cells (ECs) from Cell
Applications (300-05a) were also cultured in supplemented basal media (212K-500, Cell
Applications Inc.). SMCs and ECs were used between passages 6–10.

2.5. MP Toxicity Assessment

A LIVE/DEAD assay (R37601, ThermoFisher Scientific) was used to analyze the
toxicity of the ArtMSC and Blank-MP releasates. A total of 3.0 mg of either ArtMSCs or
Blank-MPs was added into 1 mL of PBS for 24 h of release. SMCs (ATCC) were plated
at 40,000 cells/well into a 24-well plate. SMCs were incubated overnight in SMC SBM
(Cell Applications Inc.). The media were removed and replaced with 500 µL of treatment
(ArtMSC or Blank-MP releasates) for 12 h. SMC SBM (positive viability control) and
diH2O (positive death control) were also applied to cells in triplicate to validate staining
of live and dead cells. All wells were fluorescently imaged (Eclipse 90i and NIS Elements,
Nikon, Tokyo, Japan). The number of live and dead cells were quantified using ImageJ
1.54j (National Institutes of Health, Bethesda, MD, USA). Images were split into red and
green channels and the number of cells were counted in each channel using the ImageJ
thresholding function. An optimal threshold for green and red cell counts was determined
and used for counting the number of cells in all images.

2.6. SMC and EC Proliferation

Proliferation assays were performed based on a modified protocol [6]. Type 1 rat
tail collagen (Advanced Biomatrix, NC1558174) was dissolved in 0.02 M acetic acid to a
concentration of 50 µg/mL. Then 200 µL of collagen solution was added to each well of
a 48-well plate and incubated at room temperature for 1 h. The wells were next washed
3 times with PBS and either SMCs or ECs (Cell Applications Inc.) were plated at 10,000 cells
per well in 1 mL of respective SBM. Cells were cultured overnight prior to baseline reading
of cellular activity. SBM was removed from the wells, and the wells were washed with PBS.
Cellular activity was measured at baseline by adding 300 µL of respective unsupplemented
basal media (BM) and 30 µL of alamar blue (Invitrogen, DAL1100) to each well and cultured
at 37 ◦C and 5% CO2 for 3 h. Following incubation, 100 µL of solution from each well was
added to a 96-well plate and read at 570 and 600 nm with a plate reader. The alamar blue
solution was removed and the wells were washed with PBS. The following treatments
were then added in a 1:1 ratio (150 µL BM to 150 µL treatment). Treatments consisted of
the following: 3 different batches of ArtMSC releasates, Blank-MPs releasates, and the
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respective CM were loaded into the ArtMSCs, SBM (positive control), and BM (negative
control). Each batch of CM used for fabrication of ArtMSCs and ArtMSC releasates was
analyzed for its effect on SMC and EC proliferation as an individual batch and collectively
as all three batches. ArtMSCs and Blank-MPs (7 mg) were released into respective BM
(700 µL) for 24 h prior to adding to cells and centrifuged at 16,000× g at 4 ◦C for 5 min
to pellet microparticles; supernatant was removed and used as treatment. After 24 h of
culture in treatments, treatments were removed, wells were washed with PBS, and cellular
activity was measured as described above. The difference in cellular activity following
treatment was analyzed by normalizing to baseline cellular activity.

2.7. Fabrication of MP Lyogel Silk Constructs

Scaffolds were fabricated according to previously published protocols as outlined
in [10] and as a schematic in Figure 1A [7]. (This article was published in Acta Biomaterialia,
105, P. Gupta, K.L. Lorentz, D.G. Haskett, E.M. Cunnane, A.K. Ramaswamy, J.S. Weinbaum,
D.A. Vorp, B.B. Mandal, Bioresorbable silk grafts for small diameter vascular tissue engi-
neering applications: In vitro and in vivo functional analysis, 146–158, Copyright Elsevier
(2020)). In short, silk fibroin solution was generated from two sources: Bombyx mori
(BM) cocoons and Antheraea assama (AA) glands. A total of 3 mg of either Blank-MPs
or ArtMSCs was mixed into the lyogel silk solution. These solutions were mixed in a 1:1
ratio (6% BM and 2% AA) and injected into a scaffold mold (length: 3 cm, central rod
diameter: 1.1 mm, and inner diameter of concentric outer cylinder: 2 mm). They were
then incubated at 37 ◦C for initial gelation. Following incubation, the silk solution within
the mold was frozen at −20 ◦C overnight and then lyophilized for 24 h to create a porous
scaffold. This scaffold was referred to as lyogel, and then placed in 80% ethanol for 15 min
after being removed from the mold. The scaffold was then electrospun with a 10% (w/v)
polycaprolactone (Millipore Sigma) and 10% (w/v) BM silk in 11,1,3,3,3-Hexafluoro-2-
propanol (Millipore Sigma) at a 1:1 ratio. Three scaffold groups were fabricated and tested:
unloaded lyogel, Blank-MP-loaded lyogel, and ArtMSC-loaded lyogel. A schematic with
approximate dimensions of an unloaded lyogel scaffold is shown in Figure 1B.

2.8. In Vivo Implantation of ArtMSC Lyogel Silk Constructs

All implants were performed according to a University of Pittsburgh Institutional
Animal Care and Use Committee approved protocol, in compliance with the ARRIVE
guidelines. A power analysis was conducted using data from [41] and mechanical testing as
a stringent metric, with effect size of 1.59, alpha of 0.05, and power of 0.8. This resulted in a
required group size of n = 3. Grafts were implanted as abdominal aortic interposition grafts
in 3- to 6-month-old male Lewis rats (Charles River, Wilmington, MA, USA) according to
previous protocols [6,10]. In brief, rats were anesthetized with isoflurane (1%) and ketamine
(50 mg/kg) and then a midline incision was made on the abdomen. Following incision, a
1–1.5 cm portion of the aorta was isolated. Micro clamps (#10011-531 VascuStatt II, Scanlan,
St. Paul, MN, USA) were used to stop blood flow to the isolated area. Following clamping,
the aorta was cut in the middle of the clamped portion, causing a 1 cm gap from elastic
recoil of the vessel. The 1 cm long ArtMSC lyogel silk construct was then inserted with end-
to-end anastomoses using interrupted sutures (10-0 prolene, #2794G, eSutures, Mokena,
IL, USA). Following the securing of the graft, clamps were removed to restore blood flow.
The muscle and skin layers were then closed using running 3-0 polyglactin resorbable
sutures (J215H, Ethicon, Somerville, NJ, USA). Both dipyridamole (250 mg/kg for the first
7 days, 100 mg/kg for the following 3 weeks) and aspirin (200 mg/kg for the first 7 days,
100 mg/kg for the following 2 weeks), two anticoagulants, were administere orally.
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Figure 1. Schematic demonstrating the fabrication of the lyogel scaffolds with and without
microparticles (A) and representative image of unloaded lyogel scaffold (B). Microparticles are
mixed directly with the silk solution used to create the inner porous layer (A). The bi–layered scaffold
consists of an inner porous layer that is fabricated through lyophilization within a metal rod and an
outer nanofibrous layer that is created through an electrospinning procedure. The image is adapted
from [7]. (This article was published in Acta Biomaterialia, 105, P. Gupta, K.L. Lorentz, D.G. Haskett,
E.M. Cunnane, A.K. Ramaswamy, J.S. Weinbaum, D.A. Vorp, B.B. Mandal, Bioresorbable silk grafts
for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis,
146–158, Copyright Elsevier (2020)). Five different properties of a representative scaffold are provided
(length (A), outer diameter (B), inner diameter (C), porous layer thickness (D), and electrospun layer
thickness (E)) (B). Scale bar = 500 µm.

Patency was evaluated at both 1 week and 8 weeks in grafts consisting of the following
groups: unloaded lyogel scaffolds (lyogel), Blank-MP-loaded lyogel constructs (Blank-MPs),
and ArtMSC-loaded lyogel constructs (ArtMSCs). At 1 week or 8 weeks, the rats were
anesthetized with isoflurane (2–5%) and then euthanized by a lethal intracardiac injection of
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heparin (40IU, McKesson Medical-Surgical, Livingston, MT, USA) and potassium chloride
(2 mL/rat). Directly after being euthanized, a catheter (22GX1 in, Safelet IV catheter, Excel
Inc., Seattle, WA, USA) was placed into the left ventricle and an angiogram (GE OEC
9800 Plus, G.E., Boston, MA, USA) was taken to assess TEVG patency. A contrast agent
(ISOVUE, Bracco, Monroe Township, NJ, USA) was injected into the catheter to perform
the angiogram. The TEVG was then explanted for histologic imaging.

2.9. Immunofluorescent Staining and Histochemical Analysis

Explants were prepared according to previous protocols [10]. The middle portions
(3–5 mm) of the grafts were fixed in 2% paraformaldehyde for 1.5 h and then washed in
PBS. These sections were then fixed and embedded in paraffin. The samples were then
immunofluorescently (IFC) stained for three different cell types associated with remodel-
ing of an implanted construct toward a TEVG. First, contractile vascular smooth muscle
cells were identified using calponin (1:100 ab46794, Abcam, Cambridge, UK)/Cy5 (1:100
ab150075, Abcam) and α-smooth muscle actin (1:100 ab7817, Abcam)/Cy5 (α-SMC 1:100
ab234082, Jackson ImmunoResearch Laboratories, West Grove, PA). Endothelial cells were
identified using the von Willebrand Factor (vWF) preconjugated with FITC (1:100 ab195028,
Abcam). Macrophages were stained with CD68 (1:100 ab31630, monoclonal, Abcam)/Cy5
(1:100 ab234080, Jackson ImmunoResearch Laboratories). Histochemistry was performed
to observe cellularity (via hematoxylin and eosin (H&E)) and elastic fiber formation (via
Verhoeff–Van Gieson (VVG)).

A custom MATLAB code was used to quantify IFC staining of macrophages as pre-
viously described [10]. Images were manually segmented to define masks for the inner
(porous) and outer (electrospun) layers, saved as files with anonymized names for blinding,
and then manually thresholded for automated counting of cells in each layer in MAT-
LAB R2020a.

2.10. Statistical Analysis

Statistical analyses were performed to determine significance between groups. Stu-
dent’s t-tests were used to compare diameter and density. A two-way repeated measures
ANOVA with a post hoc Tukey’s test was used for release assays. A one-way analysis
of variance (ANOVA) with a post hoc Tukey’s test was used for proliferation assays and
analysis of CD68+ cells between TEVG groups. A paired t-test was used to determine
CD68+ cells differences between the inner and outer explant layers. A Fisher’s exact test
was used to determine differences in patency. Significance was represented as a p-value
less than 0.05. Results are reported as mean ± standard deviation (S.D.) and with n = 4
unless specified differently. All results were analyzed in Graphpad Prism 9 (GraphPad, San
Diego, CA, USA).

3. Results
3.1. Characterization of ArtMSCs

The ArtMSC and Blank-MP morphologies are shown in Figure 2A, demonstrating rela-
tively uniform spherical shapes of microspheres in both groups. However, the diameters of
the ArtMSCs were 5.31 ± 1.81 µm and the Blank-MPs were 7.85 ± 5.37 µm (n = 10,000 MPs
per sample, p < 0.0001). Additionally, the ArtMSCs had a density of 393.3 ± 63.0 mg/mL
while the Blank-MPs had a density of 776.9 ± 21.6 mg/mL (n = 3, p = 0.0006). Thus, the
ArtMSCs were smaller and less dense than the Blank-MPs, as shown in Figure 2B,C.

3.2. Protein Release from ArtMSCs

An initial burst release of protein cargo was observed within the first 6 h of in-
cubation of the ArtMSCs (Batch 1: 2.287 ± 0.146 µg/mg of MPs, p = 0.0027, Batch 2:
1.587 ± 0.127 µg/mg of MPs, p = 0.0053, and Batch 3: 1.735 ± 0.059 µg/mg of MPs,
p < 0.0001) compared to Blank-MPs with no burst protein release (0.000 ± 0.000 µg/mg
of MPs) (Figure 3A). This burst release contributed to anywhere from 64.79 to 89.21% of
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total protein released. VEGF-A was detected within this burst release of protein cargo
(Batch 1: 1.217 ± 0.142 µg/mg of MPs, p = 0.0017, Batch 2: 1.137 ± 0.453 µg/mg of MPs,
p = 0.1209, and Batch 3: 0.897 ± 0.778 µg/mg of MPs, p = 0.4520) (Figure 3B). Only the
Batch 1 release had significant levels of VEGF-A detected, and burst release contribution
was more variable, ranging from 22% to 100% of total VEGF-A released over the 7-day
period. There was no detectable uPA in any ArtMSC releasates and no distinguishable
difference in uPA activity in the CM compared to the nCM (Figure S1).
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Figure 2. Both microparticle types are uniform in size and non-porous (A) and ArtMSCs are smaller
and less dense than Blank-MPs (B,C). ArtMSCs (A, left) and Blank-MPs (A, right) were imaged
using scanning electron microscopy. Each type of MP demonstrated relatively uniform sizes and
non-porous morphology, with no noticeable qualitative difference between groups. Scale bar = 10 µm.
ArtMSCs had a smaller average diameter (B) and were uniform in diameter compared to Blank-
MPs. ArtMSCs also had a smaller average density (C) compared to Blank-MPs. *** = p < 0.001,
**** = p < 0.0001.

3.3. In Vitro Analysis of CM and ArtMSCs

The ArtMSC releasates did not demonstrate cytotoxicity to cultured SMCs while
Blank-MP releasates showed some cytotoxicity after 24 h in culture (Figure 4). At 6 h,
ArtMSC releasates and Blank-MP releasates had comparable numbers of live cells (75 cells
to 74 cells) and dead cells (5 cells to 2 cells). However, while ArtMSC releasates had
relatively unchanged numbers of live and dead cells at 12 h (57 live cells and 1 dead cell)
and 24 h (73 live cells and 1 dead cell) compared to 6 h, Blank-MP releasates had more
dead cells at 12 h (42 live cells and 14 dead cells) and 24 h (99 live cells and 47 dead cells)
compared to that at 6 h. The positive control (SBM) had relatively unchanged numbers of
cells over time (6 h: 55 live cells, 0 dead cells; 12 h: 57 live cells, 1 dead cell; 24 h: 80 live
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cells, 2 dead cells); the negative control appeared to have relatively no change in live cells
and dead cells over time as well (6 h: 1 live cell, 25 dead cells; 12 h: 0 live cells, 59 dead
cells; 24 h: 0 live cells, 49 dead cells). PBS also had similar numbers of live and dead cells
over time (6 h: 61 live cells, 0 dead cells; 12 h: 62 live cells, 0 dead cells; 24 h: 77 live cells,
0 dead cells).
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Figure 3. Burst release of total protein and VEGF-A was observed with ArtMSCs. ArtMSCs showed
a release of protein within the first 6 h of incubation in all three batches, with no protein detected in
the Blank-MPs at this time point (A). After the burst release, little to no protein was released from any
ArtMSC batches. ArtMSCs also demonstrated a release of VEGF-A within the first 6 h of incubation
in all three batches (B). VEGF-A release was minimal from Blank-MPs. Following burst release, there
was little to no additional VEGF-A detected in the releasates.
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Figure 4. ArtMSCs did not induce SMC toxicity. ArtMSCs and Blank-MPs were incubated with
SMCs for 6, 12, and 24 h, after which the SMCs were incubated with a fluorescent LIVE/DEAD assay.
Green cells indicate live cells while red cells indicate dead ones. Blank-MPs caused some cytotoxicity
at 12 h and 24 h, as indicated by the red cells shown by the orange arrows. The cell death control
(Dead NC using diH2O) and live cell control (Live PC using SBM) both indicate that the LIVE/DEAD
stain was functional.

The ArtMSC releasates did not increase SMC proliferation following 24 h of culture
(Figure 5A,B) compared to BM. The CM for all three batches resulted in more SMC pro-
liferation (Batch 1: 0.821 ± 0.124 AU, p < 0.0001, Batch 2: 0.829 ± 0.112 AU, p < 0.0001,
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Batch 3: 0.807 ± 0.042 AU, p < 0.0001) compared to BM (0.352 ± 0.029 AU) (Figure 5A).
Also, combining all three batches of CM (0.819 ± 0.087 AU, p < 0.0001) demonstrated
overall greater SMC proliferation compared to BM (Figure 5B). The CM did not change EC
proliferation (Figure 5C,D); these results are also outlined in Table S1.
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Figure 5. CM, but not ArtMSC releasates, induced SMC proliferation but not EC proliferation.
CM induced significantly more proliferation in SMCs, while ArtMSCs did not increase proliferation
compared to BM. Neither CM nor ArtMSCs increased proliferation of ECs. SMC proliferation of all
three different batches of ArtMSCs, their respective CM, Blank-MPs (negative control), BM (negative
control), and SBM (positive control) (A) are shown, along with combining the SMC proliferation
data for all batches with the aforementioned controls (B). EC proliferation of these same batches
of ArtMSCs, CM, and similar controls for SMCs (C) are also shown, along with combining the EC
proliferation for all batches (D). ** = p < 0.01, **** = p < 0.0001.

3.4. Explant Analysis of ArtMSC Lyogel TEVGs

The patency rate of the ArtMSC lyogel TEVGs was 100% (9/9) at 1 week. In compari-
son, unloaded and Blank-MP lyogel constructs had patency rates of 100% (5/5) and 50%
(7/14), respectively, at 1 week as previously reported [10]. At 8 weeks, the patency rate
of the ArtMSC lyogel TEVGs was 56% (5/9) compared to unloaded and Blank-MP lyogel
constructs with patency rates of 73% (11/15) and 40% (8/20), respectively, as previously
reported [10]. The overall results are shown in Figure 6. There was a trend toward lower
patency in all 8-week explant groups compared to 1 week, while there was a higher patency
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of 1-week ArtMSC grafts compared to 1-week Blank-MP grafts (p = 0.0189). All macroscopic
images are representative of the various explants with green or red borders indicating
patency determined via angiography (Figures S2–S5). The ArtMSC grafts had little to no
signs of stenosis at 1 week (Figure S2). Blank-MP grafts at 1 week had clear stenosis and
occlusion as early as 1 day post implantation (Figure S3). The ArtMSC explants at 8 weeks
demonstrated stenosis in 4 of the 5 patent implants. (Figure S4). The Blank-MP explants at
8 weeks also had stenosis in patent implants and clear occlusion in other grafts (Figure S5).
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Figure 6. ArtMSC-loaded grafts promoted acute patency at 1 week. In 1-week grafts, ArtMSC-
loaded grafts had significantly higher patency (100% (5/5)) compared to Blank-MP grafts (50%
(7/14)). There was a trend toward a decrease in patency at 8 weeks for all groups compared to week
1, but no difference in patency across groups. * = p < 0.05.

In Figure 7, two distinct layers of 1-week explants are shown: the inner porous layer
and the outer electrospun layer. There was a higher concentration of macrophages (indi-
cated by pink coloration in Figure 7) in the outer electrospun layer of the graft compared
to the inner porous layer in all three groups: ArtMSCs (n = 9) (outside: 277.4 ± 132.2 vs.
inside: 13.1 ± 10.5 CD68+ cells/mm2, p = 0.0003), lyogel (n = 4) (outside: 382.8 ± 119.4
vs. inside: 14.5 ± 4.4 CD68+ cells/mm2, p = 0.0228), and Blank-MPs (n = 11) (outside:
704.9 ± 495.1 vs. inside: 33.4 ± 20.3 CD68+ cells/mm2, p = 0.0004) (Figure 7). There was
a significantly lower number of macrophages on both the outside (p = 0.0355) and inside
(p = 0.0222) regions of the ArtMSC grafts compared to the Blank-MP grafts.

As indicated in Figure 8, three distinct layers of 8-week explants can be seen: the
inner neotissue layer, middle porous layer, and outer electrospun layer. When comparing
between representative IFC images of the 8-week explants, the ArtMSC grafts demonstrated
higher fluorescent signal of calponin and α-SMA compared to the lyogel and Blank-MP
grafts, indicating a larger presence of contractile SMCs. Some minor delamination occurred
between the various layers of the graft, but this is most likely an artifact of processing the
grafts. This delamination has been seen previously in both silk grafts and other grafts from
our group [7,8]. Delamination of TEVGs has also been reported by other groups [42–44].
The ArtMSC grafts also demonstrated a higher fluorescent signal of vWF than the controls,
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indicating a larger presence of ECs (Figure 9). At 8 weeks, IFC images demonstrated the
presence of α-SMA and calponin, indicating contractile SMCs and vWF, indicating ECs
within the neotissue layer of the ArtMSC grafts (Figure 10); this representative image
also showed some stenosis. Figure 10 separates out the different colored channels to see
the signal of different stains. The majority of cells were found in the neotissue layer and
electrospun layer. This cellularity was further confirmed by hematoxylin and eosin (H&E)
staining while Verhoff–Van Gieson (VVG) staining demonstrated early ECM formation
within the neotissue layer (Figure 11).
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Figure 7. ArtMSC-loaded grafts reduced the macrophage response at 1 week. ArtMSC-seeded grafts
(n = 9) had significantly lower numbers of CD68+ macrophages in both layers compared to Blank-MP
seeded grafts (n = 11). Whole cross sections (left, scale bar = 500 µm) for each graft type were stitched
together from individual images (one from each is presented on the right, scale bar = 100 µm). All
cell nuclei were stained with bisbenzimide (blue), and macrophages were stained for CD68+ marker
(pink). The number of CD68+ cells in both the outer electrospun layer (outside for each graft type)
and inner porous layer (inside for each graft type) are shown on the graph on the righthand side. The
outer electrospun layer of the grafts also had significantly higher numbers of macrophages compared
to the inner porous layer for all three graft types, indicated by the pink coloration in the stained
images and shown numerically in the graph of number of CD68+ cells. * = p < 0.05, ** = p < 0.01,
*** = p < 0.001.
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Figure 8. ArtMSC grafts recruited contractile smooth muscle cells within the electrospun and
neotissue layers and endothelial cells in the neotissue layer. Full cross section of a representative
ArtMSC graft stained with IFC indicated SMC (two right images, pink) and EC (bottom left, green)
presence in the inner neotissue layer and electrospun layer (outer layer), but not within the porous
layer (middle layer). Cell nuclei (blue) were also stained with bisbenzimide (upper left). Some
delamination between the individual layers is also seen. Scale bar = 500 µm.
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Figure 9. ArtMSC grafts promoted the recruitment of contractile smooth muscle cells and endothe-
lial cells within the inner neotissue layer of TEVGs. Comparison of immunofluorescent staining
between a representative ArtMSC explant and representative unloaded lyogel and Blank-MP-loaded
explants at 8 weeks showed higher signal of contractile SMCs stained with calponin (first column,
pink) and α-SMA (second column, pink) within the inner most tissue layer. An endothelial lining was
also detected using vWF (first column, green), indicating endothelial incorporation into the ArtMSC
grafts but not as strongly in the controls. Scale bar = 100 µm.
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poration into the graft. The first column was used as a primary delete negative control for the Art-
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Figure 10. The majority of cells within the neotissue layer of ArtMSCs were contractile smooth
muscle cells, and a thin inner endothelial layer was also present. Immunofluorescent staining of
a representative ArtMSC explant at 8 weeks demonstrated contractile SMCs stained with calponin
(second column, pink) and α-SMA (third column, pink) within the inner most tissue layer. The
endothelial lining was also stained using vWF (second column, green), indicating endothelial incorpo-
ration into the graft. The first column was used as a primary delete negative control for the ArtMSC
explants, indicating any potential background staining. This image separated the different color
channels to see each antibody stain individually. The inner neotissue layer of the explant contained
the majority of the incorporated cells vs. the porous layer of the graft (bottom right of each image)
which was relatively acellular. Scale bar = 100 µm.
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Figure 11. Histological staining demonstrated cell recruitment to the neotissue layer and electro-
spun layer and matrix deposition in 8-week explants. IHC of a representative ArtMSC graft showed 
cellularity within the different layers of the graft at 8 weeks. Macroscopic neotissue formation is 
grossly shown (A) with a closer image of the region enclosed by the black box as panel (C). VVG 
staining (B) also showed some initial matrix deposition, indicated by the purple stain in the inner 
neotissue layer. H&E staining (D) showed cellular infiltration into the inner neotissue layer and 
outer electrospun layer, shown by the darker purple coloration. Scale bar (black for (B,D)) = 200 µm 
and scale bar (red for (A,C)) = 1000 µm. 
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ArtMSCs were less dense compared to the Blank-MPs, most likely due to the higher salt 
content of the CM compared to the ultrapure water loaded into the Blank-MPs. One po-
tential explanation for the decreased density would be an increased internal porosity of 
the ArtMSCs, but the presence of these internal pores was not validated. The CM from the 
MSCs was successfully encapsulated within PLGA microparticles and exhibited a burst 
release of 1.870 ± 0.335 µg/mg of protein within the first 6 h of incubation. While the ma-
jority of protein was released within the first 6 h, not all of the PLGA particles were com-
pletely degraded, as PLGA particles take longer than one week to completely degrade 
[45]. VEGF-A was detected in the initial burst of the ArtMSC releasate while uPA was not 
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Figure 11. Histological staining demonstrated cell recruitment to the neotissue layer and electrospun
layer and matrix deposition in 8-week explants. IHC of a representative ArtMSC graft showed
cellularity within the different layers of the graft at 8 weeks. Macroscopic neotissue formation is
grossly shown (A) with a closer image of the region enclosed by the black box as panel (C). VVG
staining (B) also showed some initial matrix deposition, indicated by the purple stain in the inner
neotissue layer. H&E staining (D) showed cellular infiltration into the inner neotissue layer and outer
electrospun layer, shown by the darker purple coloration. Scale bar (black for (B,D)) = 200 µm and
scale bar (red for (A,C)) = 1000 µm.

4. Discussion

There were some observed differences between the ArtMSCs and Blank-MPs. The
ArtMSCs were less dense compared to the Blank-MPs, most likely due to the higher salt
content of the CM compared to the ultrapure water loaded into the Blank-MPs. One
potential explanation for the decreased density would be an increased internal porosity
of the ArtMSCs, but the presence of these internal pores was not validated. The CM from
the MSCs was successfully encapsulated within PLGA microparticles and exhibited a
burst release of 1.870 ± 0.335 µg/mg of protein within the first 6 h of incubation. While
the majority of protein was released within the first 6 h, not all of the PLGA particles
were completely degraded, as PLGA particles take longer than one week to completely
degrade [45]. VEGF-A was detected in the initial burst of the ArtMSC releasate while
uPA was not detected in any releasates. uPA activity was also not detected in the CM
compared to the nCM, implying that functional uPA was not produced by the MSCs during
conditioning. These results contrast with our previous findings [9] where MSCs produced
uPA in their CM. This difference in uPA production could be attributed to the cell type and
basal media used. In this current study, commercially sourced RoosterBio MSCs were used
along with the company’s supplemented media to produce the CM while our previous
study [9] utilized primary patient-sourced adipose-derived MSCs and a different media
supplemented with fetal bovine serum. While protein and VEGF-A were detected in the
releasates, sufficient encapsulation of VEGF-A and other cytokines that affect vascular cell
activity may not have been achieved.
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There was no additional proliferative effect of the ArtMSCs compared to unsupple-
mented media (negative control), while the CM had an increased proliferative effect similar
to that of supplemented media (positive control). This could potentially be due to poor CM
loading into the ArtMSCs or ineffective release of the CM from them.

It appears that there is a negative effect of the PLGA microparticles themselves in vivo,
as the effect was initially offset by the inclusion of CM at 1 week. However, this offsetting
effect is not as potent after 8 weeks. This stenotic tissue growth may have resulted from
components of the CM secretome overstimulating the surrounding endothelium, resulting
in excessive tissue growth.

The success of a TEVG relies upon the initial recruitment of immune cells to the
graft to initiate host cell infiltration followed by a proliferative healing phase in which
the scaffold itself is remodeled into vascular tissue [46–48]. These two distinct phases can
be characterized by the type of macrophages present within the graft. Macrophages can
be polarized toward inflammatory M1 phenotypes (typically recruited within the first
3–7 days) or regenerative/anti-inflammatory M2 phenotypes (polarized around 5–10 days
post-implantation) [47,49–52]. In this study, macrophages were recruited more heavily to
the Blank-MP-loaded grafts both inside and outside compared to the ArtMSCs. While the
initial recruitment appeared to occur, the subsequent polarization toward M2 phenotypes
may not have occurred, resulting in prolonged inflammation and excessive tissue growth
leading to stenosis. The higher concentration of macrophages in the outer layers of the grafts
suggested larger recruitment of resident macrophages compared to circulating monocytes
within the blood. The nanofibrous nature of the electrospun layer could also play a role in
this macrophage recruitment, as others have indicated the ability of nanofibrous material
to recruit and polarize macrophages in vivo [53–55].

ECs are necessary for antithrombotic properties while SMCs can deposit new ECM
and other blood vessel constituents important for overall remodeling. At 8 weeks, both
ECs and SMCs were able to form a layer of new vascular tissue along the lumen of the graft
in addition to some small infiltration into the porous layer. This increased migration and
sustained presence within the outer ES coating in all three groups may also be caused by
difference in porosity between two layers.

In our previous work, we seeded a variety of cellular [8,9,11] and acellular [6,10]
cargo into TEVG scaffolds, including CCL2-loaded MPs used to generate seeded lyogel
scaffolds [10]. With CCL2, patency within both the first week and within eight weeks was
similar to those achieved using ArtMSCs within this study. Recruitment of macrophages
both in the inside and outside layer of the grafts was less in the ArtMSC grafts compared to
the CCL2 MP grafts. As CCL2 is a specific chemoattractant for macrophages, it is reasonable
that more macrophages were recruited to the CCL2 graft.

MSCs seeded into polyester urethane urea scaffolds were another previous graft
configuration that yielded promising results. MSCs from healthy donors provided 100%
patency at 8 weeks [11], which was a key rationale for utilizing MSC-based CM for the
development of artificial MSCs. Our lab has utilized EVs isolated from CM to seed into
silk-based grafts [6]. These grafts also had 100% patency at 8 weeks, demonstrating both
the regenerative potential of silk and factors contained in the CM.

Other groups have evaluated cellular-based cargo in TEVGs. Roh et al. embedded
CCL2-containing alginate particles into their grafts to replicate its secretion from bone mar-
row mononuclear cells (BMCs), similar to how we encapsulated CM to replicate secretion
of regenerative cytokines from MSCs [56]. Additionally, all of their CCL2 particle grafts
at 10 weeks were patented and were histologically similar to those seeded with BMCs.
Another group using silk-based TEVGs also saw macrophages heavily recruited to the
outer layer of their grafts, indicating that silk-based grafts may have a larger effect on
resident macrophages rather than circulating monocytes [57].

Mohammadi et al. implemented a controlled release system of CM to reduce the initial
inflammatory response and reduce the overall chance of rejection of implanted materi-
als [58]. Similar to our PLGA ArtMSCs, they loaded umbilical cord MSC-based CM into
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alginate capsules. Both our study and Mohammadi et al. showed a release of CM from our
delivery systems, but they investigated the release for only 48 h rather than 1 week. They
found that their CM-containing capsules reduced inflammatory activity of macrophages
in vitro through the reduction in CD68 activation. In vivo, they subcutaneously implanted
the alginate capsules with non-conditioned media and conditioned media and found re-
duced numbers of CD68+ cells, similar to our ArtMSC-loaded grafts having reduced CD68+
cells compared to Blank-MP controls. Again, this study solely looked at the short-term
effects of the CM-loaded capsules implanted subcutaneously in mice, compared to our
study where we investigated arterial interposition grafts in rats at short- and long-term
time points.

There are some limitations regarding the utilization of ArtMSCs versus cellular de-
livery. Cells within a graft can engage in dynamic reciprocity [59] with their environment
to potentially provide anti-inflammatory and regenerative cytokines whereas ArtMSCs
are unable to adapt to a changing environment. Once the MPs encapsulate desired cargo,
that cargo cannot easily be altered. With these experiments, loading of protein cargo was
observed. However, there was no optimization of CM loading into the PLGA MPs nor
optimization of ArtMSC loading into lyogel scaffolds. There was no analysis of protein
release from the ArtMSC-loaded lyogel scaffolds, though given our previous results with
CCL2-loaded lyogel scaffolds [10], we expect similar results (burst release of cargo within
24 h) with the ArtMSC-loaded scaffolds. Additionally, during the fabrication process,
the loaded scaffolds were soaked in 80% ethanol, which could have potentially caused
premature burst release of active proteins prior to implantation. However, our previous
CCL2-loaded lyogel scaffolds were fabricated in a similar manner and still exhibited burst
release of CCL2 [10]. To see potentially more regenerative effects on cellular activity both
in vitro and in vivo, the fabrication and loading processes need further optimization. For
example, changing the kind of PLGA [33] and ratio of lactic acid to glycolic acid could
change the release profile, which could in theory affect the patency at later time points [60].
The CM itself is not well characterized and contains FBS and various other factors that
can unintentionally affect vascular and immune cell activity. Some other cytokines that
could be contained in the CM include fibroblast growth factor 2, hepatocyte growth factor,
and chemokine ligand 12, but these were not analyzed in this study [33,61]. Additional
analysis of the components of the CM, experiments with these components that show their
effects on cellular activity, and investigation into serum-free media alternatives should be
considered in future studies.

Some limitations were present for our in vitro assays. Our proliferation assays did
not investigate non-conditioned media control. If there were stimulating factors within the
MSC growth media itself, that could have also played a role in the proliferation of the SMCs.
Insufficient loading of the CM into the ArtMSCs was most likely the cause for no additional
SMC proliferation, but this was not investigated fully. Furthermore, there was little to no
release following the initial 6 h of release. As the other regenerative processes may need
to be activated later for improved regeneration, sustained release of the CM needs to be
improved. In our cytotoxicity assays, cell viability could be highly compromised since
the cells were incubated for 12 h in PBS, though we did not see this issue in our images.
Additionally, in analysis of the cell counts for these cytotoxicity assays, counts were only
performed on one well and thus statistical analysis could not be performed. The manner
in which the CM was cultured was not changed from standard culturing protocols. Other
groups [62–64] have found that changing culture conditions such as hypoxia can alter
components in CM, which is another direction for optimization of this work.

Another limitation of this study was only looking at general macrophage recruitment
in TEVG explants rather than polarization of macrophages toward M1 or M2 phenotypes,
as both types play a role in the remodeling of TEVGs [47,49–52]. Additional staining for M1
and M2 markers should be performed to have a better assessment of macrophage-driven
TEVG remodeling. Only two time points were assessed to look at acute and longer-
term patency and remodeling of the ArtMSC TEVGs. As other groups [46,48,65] have
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investigated shorter and longer time points to see the various stages of remodeling of their
TEVGs, we can also look into these other time points to have a better understanding of how
our cargo affects tissue regeneration and remodeling. For example, having a timepoint
between the first 3–7 days to investigate early M1 markers and another timepoint between
5–10 for M2 markers, as indicated earlier, could potentially capture a better picture of the
remodeling of our grafts.

Our rat model also did not investigate any potential foreign body response caused
by the CM or the PLGA microspheres. As PLGA hydrolytically degrades into lactic and
glycolic acid, it could also elicit an immune response [66,67]. While macrophages play a role
in this response, other cells such as neutrophils are also key players [47,68]. Our study only
looked at macrophage recruitment, which addresses the innate immune response. However,
the adaptive immune response, including T cells and natural killer cells, also plays a role
in the remodeling of the TEVG [47,68]. Gu et al. [67] saw inflammation from a PLGA-
containing implant; this response was then attenuated by dexamethasone, similar to how
our CM reduced the acute immune response caused by PLGA. Investigating the responses
of other immune cells should be taken into consideration for future studies. Additionally,
as the PLGA degrades and more cells degrade the scaffold, together they could potentially
affect the compliance of the TEVG [69]. We did not measure the mechanical properties of
our explants and thus did not determine if there was a compliance mismatch. However,
we expect that the mechanical properties of the ArtMSC TEVGs would be similar to those
measured in our previous publication [10]. In future studies, we should also look at how
the compliance changes overtime with our TEVGs to ensure compliance mismatch is
not occurring.

Using MSCs in clinical treatments has limitations including short viability and reten-
tion of transplanted MSCs in vivo [70,71], the requirement for high doses of cells (typically
achieved through large-scale culturing), and the potential need for repeated treatments.
Additionally, our lab has shown that autologous MSCs from high risk cardiovascular pop-
ulations are less able to prevent thrombosis [9]. Cryopreservation of MSCs for later use
can lower the therapeutic efficacy and overall viability of the cells [72]. Using cell-free
products containing the same paracrine factors secreted by MSCs can alleviate these issues.
Creating a sustained release of the paracrine factors can provide a more efficacious treat-
ment compared to MSCs that do not remain viable for longer periods of time. While the
controlled release products cannot be altered following encapsulation, they may provide
an advantage over MSCs, as ArtMSCs cannot differentiate to other cell lineages or respond
to their environment by secreting potentially harmful cytokines in response to the harsh en-
vironment. From a regulatory perspective, cell-free products can more easily be translated
to the clinic and eventual commercial use.

5. Conclusions

CM from the MSCs was able to be encapsulated into and released from PLGA-MPs,
creating “artificial MSCs”. In vitro analysis of the ArtMSCs revealed an initial burst release
of protein containing VEGF-A but a reduction in regenerative activity compared to CM.
In vivo, acute 1-week patency was achieved in ArtMSC TEVGs while patency was lower
in 8-week explants. Macrophage recruitment at 1 week and stenosis at 8 weeks was
also observed with the ArtMSC TEVGs. Additional optimization of CM encapsulation
and retention of regenerative capabilities is needed, but this work provides a promising
foundation for creating a cell-free regenerative TEVG.

6. Patents

The technology used in this research is patent pending, titled “Artificial Cells and De-
livery Devices for Use in Tissue Engineering, and Related Methods”, Serial No.: 16/308,889.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering11090947/s1, Table S1. Relative proliferation
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of SMC and ECs following treatment with ArtMSC releasates, Blank-MP releasates, BM, SBM, or
CM (mean ± STD); Figure S1. CM compared to nCM did not show active uPA activity; Figure S2.
Representative gross cross sections of the ArtMSC grafts were patent after 1 week; Figure S3. Rep-
resentative gross cross sections of the Blank-MP grafts demonstrated some occlusion at 1 week;
Figure S4. Representative gross cross sections of the ArtMSC grafts at 8 weeks showed stenosis with
lower patency than seen at 1 week; Figure S5. Representative gross cross sections of the Blank-MP
grafts at 8 weeks also demonstrated stenosis and lower patency than seen at 1 week.
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