Special Issue on “Biological Networks”
Identifiability and Design of Experiments for Biological Network Models
Dynamic Biological Network Modeling
Network-Based Biological Systems Analysis and Optimization
Network-Based Biological Data Analytics
Funding
Conflicts of Interest
References
- Villaverde, A.; Banga, J. Structural Properties of Dynamic Systems Biology Models: Identifiability, Reachability, and Initial Conditions. Processes 2017, 5, 29. [Google Scholar] [CrossRef]
- Sinkoe, A.; Hahn, J. Optimal Experimental Design for Parameter Estimation of an IL-6 Signaling Model. Processes 2017, 5, 49. [Google Scholar] [CrossRef]
- Manesso, E.; Sridharan, S.; Gunawan, R. Multi-Objective Optimization of Experiments Using Curvature and Fisher Information Matrix. Processes 2017, 5, 63. [Google Scholar] [CrossRef]
- Ruggiero, S.; Pilvankar, M.; Ford Versypt, A. Mathematical Modeling of Tuberculosis Granuloma Activation. Processes 2017, 5, 79. [Google Scholar] [CrossRef]
- Lee, D.; Ding, Y.; Jayaraman, A.; Kwon, J. Mathematical Modeling and Parameter Estimation of Intracellular Signaling Pathway: Application to LPS-induced NFκB Activation and TNFα Production in Macrophages. Processes 2018, 6, 21. [Google Scholar] [CrossRef]
- Perumal, T.; Gunawan, R. Elucidating Cellular Population Dynamics by Molecular Density Function Perturbations. Processes 2018, 6, 9. [Google Scholar] [CrossRef]
- Widiastuti, H.; Lee, N.; Karimi, I.; Lee, D. Genome-Scale In Silico Analysis for Enhanced Production of Succinic Acid in Zymomonas mobilis. Processes 2018, 6, 30. [Google Scholar] [CrossRef]
- Faraji, M.; Voit, E. Improving Bioenergy Crops through Dynamic Metabolic Modeling. Processes 2017, 5, 61. [Google Scholar] [CrossRef]
- Vargason, T.; Howsmon, D.; McGuinness, D.; Hahn, J. On the Use of Multivariate Methods for Analysis of Data from Biological Networks. Processes 2017, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, K.; Nudelman, K.; Harenberg, S.; Bello, G.; Sohn, D.; Shpanskaya, K.; Tiwari Dikshit, P.; Yerramsetty, P.; Tanzi, R.; Saykin, A.; et al. Alzheimer’s Disease Neuroimaging Initiative Characterizing Gene and Protein Crosstalks in Subjects at Risk of Developing Alzheimer’s Disease: A New Computational Approach. Processes 2017, 5, 47. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunawan, R.; Bagheri, N. Special Issue on “Biological Networks”. Processes 2018, 6, 242. https://doi.org/10.3390/pr6120242
Gunawan R, Bagheri N. Special Issue on “Biological Networks”. Processes. 2018; 6(12):242. https://doi.org/10.3390/pr6120242
Chicago/Turabian StyleGunawan, Rudiyanto, and Neda Bagheri. 2018. "Special Issue on “Biological Networks”" Processes 6, no. 12: 242. https://doi.org/10.3390/pr6120242
APA StyleGunawan, R., & Bagheri, N. (2018). Special Issue on “Biological Networks”. Processes, 6(12), 242. https://doi.org/10.3390/pr6120242