Nutritional Quality, Chemical, and Functional Characteristics of Hemp (Cannabis sativa ssp. sativa) Protein Isolate
Abstract
:1. Introduction
2. Results
2.1. Proximate Analysis of Hemp Seeds
2.2. Hemp Seeds Protein Isolate (HPI)
2.3. Characterization of Hemp Protein Isolate (HPI)
2.3.1. Hemp Protein Solubility
2.3.2. Electrophoresis Analysis of Hemp Protein Isolate (HPI)
2.3.3. Secondary Structure of HPI
2.3.4. Amino Acids Composition of Hemp Protein Isolate (HPI)
2.3.5. Water-and-Oil Holding Capacity (WHC and OHC)
2.3.6. Foaming Activity and Stability
2.3.7. Emulsion Activity Index and Emulsion Stability Index
2.3.8. Correlation Coefficient
3. Materials and Methods
3.1. Materials
3.2. General Analysis of Hempseeds
3.3. Preparation of Hemp Protein Isolate
3.3.1. Removing of Fat Content (Defatting)
3.3.2. Protein Extraction
3.3.3. Protein Precipitation
3.4. Physicochemical Properties of Protein Isolate
3.4.1. Protein Solubility
3.4.2. Amino Acid Composition
3.4.3. Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS–PAGE)
3.4.4. Secondary Structure of Protein (FTIR)
3.5. Functional Properties of Protein Isolate
3.5.1. Water-and-Oil Holding Capacity
3.5.2. Foaming Capacity (FC) and Stability (FS)
3.5.3. Emulsifying Activity Index (EAI) and Emulsion Stability Index (ESI)
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Hempseed in food industry: Nutritional value, health benefits, and industrial applications. Compr. Rev. Food Sci. Food Saf. 2020, 19, 282–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Likhodeevsky, A. On the issue of the revival of undeservedly forgotten technologies: Industrial hemp. Theory Pract. World Sci. 2021, 3, 29–38. [Google Scholar] [CrossRef]
- Petit, J.; Gulisano, A.; Dechesne, A.; Trindade, L.M. Phenotypic Variation of Cell Wall Composition and Stem Morphology in Hemp (Cannabis sativa L.): Optimization of Methods. Front. Plant Sci. 2019, 10, 959. [Google Scholar] [CrossRef]
- Citti, C.; Pacchetti, B.; Vandelli, M.A.; Forni, F.; Cannazza, G. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA). J. Pharm. Biomed. Anal. 2018, 149, 532–540. [Google Scholar] [CrossRef]
- Aiello, G.; Fasoli, E.; Boschin, G.; Lammi, C.; Zanoni, C.; Citterio, A.; Arnoldi, A. Proteomic characterization of hempseed (Cannabis sativa L.). J. Proteom. 2016, 147, 187–196. [Google Scholar] [CrossRef]
- Malomo, S.A.; Aluko, R.E. A comparative study of the structural and functional properties of isolated hemp seed (Cannabis sativa L.) albumin and globulin fractions. Food Hydrocoll. 2015, 43, 743–752. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Davis, T.A.; Kim, S.W.; Li, P.; Rhoads, J.M.; Yin, Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2009, 37, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Vonapartis, E.; Aubin, M.; Seguin, P.; Mustafa, A.F.; Charron, J. Seed composition of ten industrial hemp cultivars approved for production in Canada. J. Food Compos. Anal. 2015, 39, 8–12. [Google Scholar] [CrossRef]
- Sokoła-Wysoczańska, E.; Wysoczański, T.; Wagner, J.; Czyż, K.; Bodkowski, R.; Lochyński, S.; Patkowska-Sokoła, B. Polyunsaturated fatty acids and their potential therapeutic role in cardiovascular system disorders—A review. Nutrients 2018, 10, 1561. [Google Scholar] [CrossRef] [Green Version]
- Callaway, J.C. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Abedi, E.; Sahari, M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2014, 2, 443–463. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.; Mäkinen, S.; Eurola, M.; Jalava, T.; Pihlava, J.; Hellström, J.; Pihlanto, A. Nutritional value of commercial protein rich plant products. Plant Foods Hum. Nutr. 2018, 73, 108–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maki, K.C.; Davidson, M.H.; Torri, S.; Ingram, K.A.; O’Mullane, J.; Daggy, B.P.; Albrecht, H.H. High-molecular-weight hydroxypropylmethylcellulose taken with or between meals is hypocholesterolemic in adult men. J. Nutr. 2000, 130, 1705–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fathordoobady, F.; Singh, A.; Kitts, D.D.; Singh, A.P. Hemp (Cannabis sativa L.) extract: Anti-microbial properties, methods of extraction, and potential oral delivery. Food Rev. Int. 2019, 35, 664–684. [Google Scholar] [CrossRef]
- Pojic, M.; Misan, A.; Sakac, M.; Hadnadev, T.D.; Saric, B.; Milovanovic, I.; Hadnadev, M. Characterization of byproducts originating from hemp oil processing. J. Agric. Food Chem. 2014, 62, 12436–12442. [Google Scholar] [CrossRef]
- Shivani, S.; Prabhasankar, P. Effect of whole hempseed flour incorporation on the rheological, microstructural and nutritional characteristics of chapati—Indian flatbread. LWT—Food Sci. Technol. 2021, 137, 110491. [Google Scholar] [CrossRef]
- Korus, J.M.; Witczak, R.; Ziobro, L.J. Hemp (Cannabis sativa subsp. sativa) flour and protein preparation as natural nutrients and structure forming agents in starch-based gluten free bread. LWT—Food Sci. Technol. 2017, 84, 143–150. [Google Scholar] [CrossRef]
- Mikuleca, A.; Kowalskib, S.; Sabatb, R.; Skoczylasc, L.; Tabaszewskac, M.; Wywrocka-Gurgulb, A. Hemp flour as a valuable component for enriching physicochemical and antioxidant properties of wheat bread. LWT—Food Sci. Technol. 2019, 102, 164–172. [Google Scholar] [CrossRef]
- El-Sohaimy, S.A.; Refaay, T.M.; Zaytoun, M.A.M. Physicochemical and functional properties of quinoa protein isolate. Ann. Agric. Sci. 2015, 60, 297–305. [Google Scholar] [CrossRef] [Green Version]
- El-Sohaimy, S.A.; Brennan, M.A.; Darwish, A.M.G.; Brennan, C.S. Chickpea Protein Isolation, Characterization and Application in Muffin Enrichment. Int. J. Food Stud. 2021, 10, SI57–SI71. [Google Scholar] [CrossRef]
- Farinon, B.; Romina, M.; Costantini, L.; Merendino, N. The Seed of Industrial Hemp (Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef] [PubMed]
- Hadnadev, M.; Tamara, D.; Athina, L.; Thomas, M.; Michaelidou, A.M.; Popovic, S.; Biliaderis, C.G. Hempseed meal protein isolates prepared by different isolation techniques. Part, I. physicochemical properties. Food Hydrocoll. 2018, 79, 526–533. [Google Scholar] [CrossRef]
- Potin, F.; Lubbers, S.; Husson, F.; Saurel, R. Hemp (Cannabis sativa L.) Protein Extraction Conditions Affect Extraction Yield and Protein Quality. J. Food Sci. 2019, 84, 3682–3690. [Google Scholar] [CrossRef] [PubMed]
- Banskota, A.H.; Tibbetts, S.M.; Jones, A.; Stefanova, R.; Behnke, J. Biochemical Characterization and In Vitro Digestibility of Protein Isolates from Hemp (Cannabis sativa L.) By-Products for Salmonid Feed Applications. Molecules 2022, 27, 4794. [Google Scholar] [CrossRef]
- Kramer, R.M.; Shedene, V.R.; Motl, M.; Pace, C.N.; Scholtz, J.M. Toward a Molecular Understanding of Protein Solubility: Increased Negative Surface Charge Correlates with Increased Solubility. Biophys. J. 2012, 102, 1907–1915. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Ryu, H.S.; Rhee, K.S. Protein solubility characteristics of commercial soy protein products. J. Am. Oil Chem. Soc. 2003, 80, 85–90. [Google Scholar] [CrossRef]
- Sun, X.; Sun, Y.; Li, Y.; Wu, Q.; Wang, L. Identification and Characterization of the Seed Storage Proteins and Related Genes of Cannabis sativa L. Front. Nutr. 2021, 8, 678421. [Google Scholar] [CrossRef]
- Tang, C.H.; Ten, Z.; Wang, X.S.; Yang, X.Q. Physicochemical and Functional Properties of Hemp (Cannabis sativa L.) Protein Isolate. J. Agric. Food Chem. 2006, 54, 8945–8950. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, R.; Yuan, W. Composition and secondary structure of proteins isolated from six different quinoa varieties from China. J. Cereal Sci. 2020, 95, 103036. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef]
- Luo, Y.; Li, M.; Zhu, K.X.; Guo, X.N.; Peng, W.; Zhou, H.M. Heat-induced interaction between egg white protein and wheat gluten. Food Chem. 2016, 197, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Niu, F.; Li, J.; Su, Y.; Liu, Y.; Yang, Y. Interactions between tea polyphenol and two kinds of typical egg white proteins-ovalbumin and lysozyme: Effect on the gastrointestinal digestion of both proteins in vitro. Food Res. Int. 2014, 59, 100–107. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Feng, X.; Chen, L. Effects of heating or ultrasound treatment on the enzymolysis and the structure characterization of hempseed protein isolates. J. Food Sci. Technol. 2019, 56, 3337–3346. [Google Scholar] [CrossRef] [PubMed]
- House, J.D.; Neufeld, J.; Leson, G. Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibility-corrected amino acid score method. J. Agric. Food Chem. 2010, 58, 11801–11807. [Google Scholar] [CrossRef]
- Yang, L.; Philipus, P.; Vermont, P.D. Physicochemical, functional and bioactive properties of hempseed (Cannabis sativa L.) meal, a co-product of hempseed oil and protein production, as affected by drying process. Food Chem. 2021, 350, 129188. [Google Scholar] [CrossRef]
- Gulsah, K.; Oktay, Y. Modification of hemp seed protein isolate (Cannabis sativa L.) by high-intensity ultrasound treatment. Part 1: Functional properties. Food Chem. 2022, 375, 131843. [Google Scholar] [CrossRef]
- Britten, M.; Lavoie, L. Foaming Properties of Proteins as Affected by Concentration. J. Food Chem. 1992, 57, 1219–1241. [Google Scholar] [CrossRef]
- Ajibola, C.F.; Aluko, R.E. Physicochemical and Functional Properties of 2S, 7S, and 11S Enriched Hemp Seed Protein Fractions. Molecules 2022, 27, 1059. [Google Scholar] [CrossRef]
- Malomo, S.A.; He, R.; Aluko, R.E. Structural and functional properties of hemp seed protein products. J. Food Sci. 2014, 79, C1512–C1521. [Google Scholar] [CrossRef]
- Siano, F.; Moccia, S.; Picariello, G.; Russo, G.L.; Sorrentino, G.; Di Stasio, M.; La Cara, F.; Volpe, M.G. Comparative Study of Chemical, Biochemical Characteristic and ATR-FTIR Analysis of Seeds, Oil and Flour of the Edible Fedora Cultivar Hemp (Cannabis sativa L.). Molecules 2018, 24, 83. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Latorre, R.M.; Saurina, J.; Hernández-Cassou, S. Capillary Electrophoresis Method for the Determination of Amino Acids in Pharmaceutical Samples Based on Precolumn Derivatization Using 1,2-Naphthoquinone-4-Sulfonate. J. Chromatogr. Sci. 1999, 37, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Laemmli, U.K. Cleavage of structural proteins during assembly of head of bacteriophage-t4. Nature 1970, 227, 680. [Google Scholar] [CrossRef] [PubMed]
- Nevara, G.A.; Muhammad, S.K.S.; Zawawi, N.; Mustapha, N.A.; Karim, R. Physicochemical and functional properties of carbohydrate–protein gum extracted from kenaf (Hibiscus cannabinus L.) seed. Int. J. Food Sci. Technol. 2022, 57, 258–267. [Google Scholar] [CrossRef]
- Pearce, K.N.; Kinsella, J.E. Emulsifying properties of proteins-evaluation of a turbidimetric technique. J. Agric. Food Chem. 1978, 26, 716–723. [Google Scholar] [CrossRef]
Parameter of Analysis | Content (%) |
---|---|
Total Protein | 21.00 ± 0.04 |
Total lipid | 28.00 ± 1.35 |
Crude Fiber | 12.00 ± 0.51 |
Ash | 4.00 ± 0.08 |
Moisture | 10.00 ± 0.33 |
Total carbohydrates | 25.00 ± 1.39 |
Essential Amino Acid | Content, g/100 g | AAS * | FAO/WHO Pattern for Adults | Satisfaction of Daily Requirement, % |
---|---|---|---|---|
Isoleucine + Leucine | 5.21 | 47.00 | 3.20 | 141.60 |
Lysine | 2.88 | 52.00 | 1.60 | 156.60 |
Methionine + Cysteine | 5.49 | 157.00 | 1.70 | 280.70 |
Phenylalanine + Tyrosine | 9.63 | 161.00 | 1.90 | 440.30 |
Threonine | 3.79 | 95.00 | 0.90 | 365.80 |
Tryptophan | 0.26 | 26.00 | 0.50 | 44.40 |
Arginine | 15.52 | 0.46 | ||
Valine | 4.53 | 91.00 | 1.80 | 218.70 |
Total of essential amino acids | 31.79 | – | ||
Non-Essential amino acids | ||||
Arginine | 15.52 | 0.46 | ||
Histidine | 3.20 | 1.60 | ||
Proline | 3.44 | 0.61 | ||
Serine | 4.05 | 0.53 | ||
Alanine | 3.85 | 0.26 | ||
Glycine | 3.70 | 0.20 | ||
Glutamic acid + glutamine | 3.91 | 1.75 | ||
Asparagine + aspartic acid | 12.53 | 0.88 |
pH | WOC (mL/g) | OHC (mL/g) | Foaming Capacity (%) | Foaming Stability (%) | EAI (m2/g) | ESI (min) |
---|---|---|---|---|---|---|
2 | 2.10 ± 0.13 a | 1.23 ± 0.17 a | 59.46 ± 2.58 b | 53.43 ± 3.41 a | 38.89 ± 2.47 f | 27.05 ± 2.22 bc |
5 | 4.21 ± 0.24 b | 2.56 ± 0.08 b | 47.93 ± 3.01 c | 39.50 ± 2.82 b | 25.48 ± 0.30 g | 49.00 ± 5.05 a |
7 | 3.52 ± 0.21 b | 2.31 ± 0.16 b | 20.26 ± 0.37 d | 14.90 ± 2.07 c | 26.82 ± 0.57 g | 44.86 ± 6.72 a |
9 | 2.81 ± 0.15 a | 1.36 ± 0.14 a | 44.73 ± 2.49 c | 33.40 ± 3.02 b | 27.43 ± 0.29 g | 24.10 ± 1.92 bcd |
11 | 2.36 ± 0.12 a | 1.23 ± 0.21 a | 67.23 ± 3.20 a | 54.73 ± 3.34 a | 20.47 ± 0.76 g | 21.77 ± 1.36 bcde |
Relationship | Correlation Coefficient (r) | p (2-Tailed) |
---|---|---|
Concentration of protein and Solubility of protein | 0.623 ** | 0.000 |
Foaming capacity and Foaming stability | 0.980 ** | 0.000 |
EAI and ESI | −0.504 ** | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sohaimy, S.A.; Androsova, N.V.; Toshev, A.D.; El Enshasy, H.A. Nutritional Quality, Chemical, and Functional Characteristics of Hemp (Cannabis sativa ssp. sativa) Protein Isolate. Plants 2022, 11, 2825. https://doi.org/10.3390/plants11212825
El-Sohaimy SA, Androsova NV, Toshev AD, El Enshasy HA. Nutritional Quality, Chemical, and Functional Characteristics of Hemp (Cannabis sativa ssp. sativa) Protein Isolate. Plants. 2022; 11(21):2825. https://doi.org/10.3390/plants11212825
Chicago/Turabian StyleEl-Sohaimy, Sobhy Ahmed, Natalia Vladimirovna Androsova, Abduvali Djabarovich Toshev, and Hesham Ali El Enshasy. 2022. "Nutritional Quality, Chemical, and Functional Characteristics of Hemp (Cannabis sativa ssp. sativa) Protein Isolate" Plants 11, no. 21: 2825. https://doi.org/10.3390/plants11212825
APA StyleEl-Sohaimy, S. A., Androsova, N. V., Toshev, A. D., & El Enshasy, H. A. (2022). Nutritional Quality, Chemical, and Functional Characteristics of Hemp (Cannabis sativa ssp. sativa) Protein Isolate. Plants, 11(21), 2825. https://doi.org/10.3390/plants11212825