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Abstract: This paper introduces a novel decomposition method for analyzing production efficiency
based on the Data Envelopment Analysis framework, addressing the limitations of traditional
approaches that often fail to isolate the contributions of individual factors. The proposed method
disaggregates production efficiency into capacity utilization, labor utilization efficiency, energy
utilization efficiency, and technological change, providing a more granular view of how different
factors contribute to overall efficiency. By incorporating both contemporaneous and intertemporal
perspectives, this approach enables a comprehensive understanding of efficiency dynamics and factor
interactions over time. To demonstrate the feasibility and robustness of the proposed method, we
apply it to the thermal power industry using data from 30 Chinese provinces covering the period
from 2011 to 2021. The empirical results validate the effectiveness of the decomposition framework,
revealing distinct regional disparities in efficiency and providing insights for targeted resource
optimization strategies. Based on these findings, we offer recommendations to enhance capacity
utilization, improve energy efficiency, and support sustainable development within the thermal
power sector. This research contributes a powerful analytical tool for disaggregating production
efficiency and offers a theoretical foundation for future studies seeking to understand the nuanced
relationships between comprehensive production efficiency and single-factor efficiencies, thereby
supporting better policy and management decisions in complex production systems.

Keywords: production efficiency; data envelopment analysis; decomposition method; distance
function; efficiency of factor allocation

1. Introduction

In recent years, the global pursuit of sustainable development and resource optimiza-
tion has intensified the need for more efficient production systems. Traditional resource
allocation strategies typically focus on sectors with higher efficiency, using measures such
as total factor productivity (TFP) [1,2] and production efficiency (PE) [3–5]. These metrics,
while valuable, often lack the granularity needed to address the distinct contributions
of individual factors like capacity, labor, and energy. Although previous studies have
made significant progress in measuring overall efficiency and specific single-factor effi-
ciencies [6,7], the complex relationship between comprehensive production efficiency and
individual factor efficiencies remains underexplored, particularly in terms of how these
efficiencies interact and influence one another.

This gap presents a crucial opportunity for further investigation. Understanding how
single-factor efficiencies, such as energy and labor efficiency, contribute to comprehensive
PE can provide deeper insights for policymakers and industry stakeholders. Specifically, a
decomposition of PE into its core components allows for the identification of bottlenecks and
areas for targeted improvement, offering a pathway to more efficient resource utilization
and sustainable economic growth.
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The primary motivation behind this study lies in addressing this gap by developing
a mathematical framework that links PE with the efficiency of resource allocation. This
decomposition method not only disaggregates PE into its constituent elements—capacity
utilization, labor efficiency, and energy efficiency—but also accounts for the impact of
technological change over time. By applying this approach to the thermal power sector in
China, we aim to demonstrate how a detailed understanding of PE can drive improvements
in energy efficiency, support low-carbon development, and contribute to green, sustainable
industrial growth.

The innovation of this research lies in the introduction of a novel decomposition
method based on Data Envelopment Analysis (DEA), which allows for the precise disag-
gregation of production efficiency. Unlike traditional approaches that focus on aggregate
measures, our method offers a more nuanced analysis by isolating the contribution of each
factor to overall efficiency. This approach provides practical insights for policymakers
aiming to optimize resource allocation across different sectors, particularly in industries
facing capacity constraints and energy challenges.

This paper utilizes thermal power industry data from 30 provinces in China, compris-
ing a total of 330 samples covering the period from 2011 to 2021. This paper is organized
as follows: Section 1 presents the introduction; Section 2 reviews the relevant literature;
Section 3 outlines the theoretical model and details the proposed decomposition method;
Section 4 discusses the data sources and case studies; Section 5 presents the empirical
results, focusing on the decomposition outcomes in the thermal power industry; Section 6
provides a discussion, highlighting the differences in our method compared to existing
studies; and Section 7 concludes the research. To enhance clarity, a list of abbreviations
used in this paper is provided in Table 1.

Table 1. Abbreviation table.

Abbreviation Full Name

DEA Data Envelopment Analysis
DMU Decision-making unit
SDA Structural Decomposition Analysis
PDA Production Theoretic Decomposition Analysis

LMDI Logarithmic Mean Divisia Index
SFA Stochastic Frontier Analysis

TFEE Total factor energy efficiency
CCR Charnes, Cooper, and Rhodes
BCC Banker, Charnes, and Cooper
EU Equipment utilization
EC Efficiency change
TC Technical change

SEC Scale efficiency change
PE Production efficiency
CU Capacity utilization

LUE Labor utilization efficiency
EUE Energy utilization efficiency

Through this study, we aim to bridge the gap between economic theory and practical
application, providing both a robust analytical tool and valuable guidance for enhancing
production efficiency. Our findings are expected to have wide-ranging implications, from
macroeconomic management to enterprise-level decision-making, contributing to more
resilient and sustainable production systems.

2. Literature Review
2.1. Methods of Measuring Production Efficiency

Currently, methods for measuring production efficiency both domestically and in-
ternationally can be categorized into parametric and non-parametric approaches. The
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former includes techniques such as Cobb–Douglas production function regression, Solow
residual calculation, and stochastic frontier production function analysis, while the primary
non-parametric method is Data Envelopment Analysis. Originally proposed by Charnes
et al. [8], DEA has evolved into an effective methodology for evaluating the performance
of decision-making units (DMUs) and has been widely applied in various fields such
as efficiency assessment in commercial banks [9], efficiency measurement in high-tech
industries [10], and handling probabilistic linguistic information [11].

DEA is particularly noted for two main features [12]. First, it does not require any
prior assumptions about the specific relationships between inputs and outputs for each
DMU. This characteristic allows for flexibility in evaluating units with different operational
contexts without the constraint of a predefined model structure. Second, DEA accommo-
dates scenarios in which individual DMUs operate with multiple inputs and outputs. This
capability is crucial for accurately assessing the performance of organizations or sectors
where multiple factors contribute to the production process, allowing for a more holistic
and comprehensive evaluation. These attributes have significantly contributed to DEA’s
widespread adoption and its reputation as a robust tool for performance evaluation across
diverse contexts and industries.

In recent years, DEA research has seen several important methodological advance-
ments and application expansions. For example, Zhu (2022) [12] proposed a network DEA
framework that integrates big data analytics to better capture complex interconnections
in transportation and logistics systems. Similarly, Yu et al. (2022) [13] applied a dynamic
network DEA to measure the innovation performance of Chinese high-tech firms, consid-
ering multi-stage processes and time dynamics. Additionally, the application of robust
network DEA by Peykani et al. (2024) [14] introduced robust optimization techniques
to handle uncertainty in mutual fund performance evaluation, enhancing the model’s
discriminatory power. Tayal et al. (2023) [15] developed an integrated DEA-ML model
for sustainable facility layout optimization, while Huang et al. (2024) [16] introduced an
improved slack-based game cross-efficiency model to account for competitive relation-
ships and undesirable outputs, achieving a fairer and more precise efficiency measurement
through a Nash equilibrium solution.

Other studies have focused on integrating DEA with hybrid approaches to address
more specialized problems. Dahooie et al. (2023) [17] combined DEA with dynamic
multi-attribute decision-making to improve credit risk evaluation, while Ben Lahouel
et al. (2023) [18] employed DEA for assessing corporate social performance, linking it to
financial performance through dynamic panel models. Fenger Wu et al. [19] combined
convolutional neural networks to create a new measurement of carbon emission perfor-
mance. Koohathongsumrit and Meethom (2024) [20] applied a fuzzy DEA model for
risk assessment in transportation networks, combining it with multiple-criteria decision-
making methods.

In general, the wide application of DEA makes it an important method to measure
efficiency. Therefore, this paper uses the DEA model to measure production efficiency.

2.2. Methods of Measuring Factor Allocation Efficiency

Efficiency in factor allocation is typically assessed using metrics such as capacity
utilization (CU), labor productivity, and total factor energy efficiency (TFEE).

(1) There are various methods for measuring capacity utilization, including the survey
method [21], production function approach [22], cost function approach [23], peak-
load method [24], cointegration approach [25], stochastic frontier analysis (SFA) [26],
and DEA [27]. Among these, only the DEA model, as proposed by Fare et al., directly
establishes a link between technical efficiency and capacity utilization. The other
methods generally involve estimating the maximum potential output and then calcu-
lating the ratio of actual output to the maximum potential output. Due to its direct
approach and comprehensive framework, the DEA method has been widely adopted
for evaluating capacity utilization.
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Researchers such as Ray [28] and Aripin et al. [18] have applied the DEA method to
measure CU in the U.S. manufacturing industry and the Malaysian barramundi aquaculture
industry, respectively. Furthermore, Subhash C. Ray et al. [29] integrated the cost function
approach with DEA to develop a new model for measuring CU, which effectively accommo-
dates scenarios involving multiple fixed inputs and outputs. This integration offers a more
flexible and precise framework for assessing capacity utilization across various industries.

(2) There are various methods for measuring labor productivity, including but not limited
to the following approaches:

1. Simple Ratio Method: This is the most straightforward method, which involves
analyzing the ratio of output to labor input (e.g., number of workers or total hours
worked) to obtain the average output per unit of labor [30]. Although this method
is easy to implement, it fails to effectively capture the contributions of different
influencing factors.

2. Growth Accounting Method: This method, derived from the Solow model (Solow,
1957), decomposes labor productivity into contributions from technological progress,
human capital, and capital input, allowing for the identification of the impact of
various factors on labor productivity enhancement [31].

3. DEA: DEA is a non-parametric method that effectively measures the relative efficiency
of different production units [32].

4. Logarithmic Mean Divisia Index (LMDI): LMDI is a multi-index decomposition
method that enables perfect decomposition and time reversibility when analyzing
productivity changes [33,34]. LMDI can disaggregate changes in labor productiv-
ity into several factors such as land productivity, labor intensity, and inter-regional
resource allocation.

Among these, we find that DEA can also be applied to measure labor productivity,
presenting a potential approach for analyzing labor utilization efficiency.

(3) Single-factor energy efficiency, defined intuitively and applied easily, is widely used
to calculate and compare energy efficiency differences and influencing factors be-
tween countries [35,36], regions [37], and industries [38,39]. Despite its widespread
application, the accuracy and rationality of single-factor energy efficiency metrics,
such as energy intensity—which are crucial for assessing the stringency of energy
policies—are questioned. Firstly, single-factor energy efficiency metrics do not com-
pare optimal consumption with actual energy consumption, misaligning with the
economic definition of efficiency and failing to account for technological progress.
Secondly, the calculation of single-factor energy efficiency is significantly influenced
by structural factors such as industrial structure, energy structure, and energy prices,
which may mask the true state of technical efficiency [40,41]. Lastly, inconsistencies
in data dimensions can mislead conclusions and production decisions. For example,
comparisons of energy intensity between different countries are affected by GDP
estimation methods, and results differ significantly whether using exchange rates or
purchasing power parity (PPP), complicating effective international comparisons [42].

Hu and Wang developed a framework for assessing TFEE, integrating capital, labor,
and energy as comprehensive input factors and employing the DEA model to gauge the
energy component’s contribution to economic output [43]. TFEE evaluates the energy
efficiency of decision units by comparing actual energy input with the ideal (minimal)
energy input determined by the model, with values ranging from 0 to 1. Low TFEE values
signify significant redundancy and waste in a decision unit’s energy use, whereas values
close to 1 indicate higher energy efficiency.

In summary, we find that DEA is commonly applied in various methods for calculating
factor allocation efficiency. Therefore, we consider employing DEA as the foundation for
the decomposition of production efficiency. Ultimately, we focus on the decomposition
method proposed by Fare et al. [44]. The primary reason for selecting this method is that it
successfully establishes a robust link between production efficiency and capacity utilization,
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thereby providing a solid theoretical foundation for further exploration of the intrinsic
relationship between production efficiency and factor allocation efficiency in this study.

2.3. Index Decomposition Analysis

Index Decomposition Analysis breaks down an index into several components to
evaluate their respective contributions [45,46]. This analysis is widely applied in energy-
related environmental research to identify drivers of sustainable development [47], analyze
greenhouse gas emissions [48], explore connections between ecology and economy [49], and
simulate carbon peak scenarios [50]. Primary decomposition methods include Structural
Decomposition Analysis (SDA) [51,52], Production Theoretic Decomposition Analysis
(PDA) [53,54], and Index Decomposition Analysis (IDA) [55,56]. Additionally, in the field
of DEA, decomposition methods based on distance functions, such as the representative
Malmquist decomposition, are extensively used.

SDA’s decomposition is based on input–output tables with industry data, providing
a detailed breakdown of overall changes in energy consumption and carbon emissions.
Since SDA relies on input–output (IO) analysis, it can only analyze changes between fixed
years [57], such as China’s national I-O tables published every five years. This method was
initially used to analyze the direct and indirect determinants of energy use in the United
States [58,59]. Su and Ang used SDA’s static analysis to decompose carbon emissions [60].

Based on production theory, PDA analyzes technical factors related to energy con-
sumption and carbon emissions from a production efficiency perspective [61]. Compared
to SDA and IDA, PDA can simulate general production processes.

The IDA method, due to its low data requirements and simplicity of operation, has
developed a comprehensive decomposition framework over nearly four decades. This
method can analyze changes for any year [62] and quantify the impact of factor changes
using various indices, such as the Laspeyres index [63], Paasche index [64], arithmetic mean
Divisia index [65], and LMDI [66].

The Malmquist index, based on DEA and introduced by Malmquist [67], is widely used
to calculate TFP and decompose productivity into technological progress and efficiency
improvements. It measures green TFP [68,69], carbon emission productivity [70], and
productivity decomposition [71–73].

In summary, we plan to adopt the Malmquist index decomposition method for in-
tertemporal analysis. This method is closely related to DEA, which enables us to establish
a connection with the approach proposed by Fare et al. [44]. Consequently, we decide to
apply the method by Fare et al. [44] for the contemporaneous decomposition and utilize
the Malmquist index decomposition for intertemporal analysis.

3. Theoretical Model
3.1. Measurement of Production Efficiency

Before decomposing production efficiency, it is essential to first measure it. Here, we
briefly introduce the distance function and the DEA model. The DEA model is employed
to evaluate production efficiency, and it is fundamentally built upon the concept of the
distance function.

In the analysis, involving n DMUs over the periods t = 1, . . ., T, the potential production
frontier set is represented as follows:

St =
{(

Kt, Lt, Et, Yt) :
(
Kt, Lt, Et) can produce Yt} (1)

These variables include the capital stock Kt ∈ R1
+, labor Lt ∈ R1

+, m-dimensional
energy input Et ∈ Rm

+ , and s-dimensional output Yt ∈ Rs
+. Additionally, standard con-

ditions necessary to define the output distance function are imposed on S, including S
being a closed set and the inputs and outputs being freely disposable. The conditions and
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properties of the distance function are specified in the subsequent formula. The output
distance function for period t is defined as follows:

Dt
o
(
Kt, Lt, Et, Yt) = inf{θ :

(
Kt, Lt, Et,

Yt

θ

)
∈ St} (2)

The output distance function, as mentioned above, Dt
o
(
Kt, Lt, Et, Yt), represents the

maximum feasible solution in period t given the inputs, outputs, and technology set S,
where Dt

o
(
Kt, Lt, Et, Yt) ≤ 1 holds true if and only if

(
Kt, Lt, Et, Yt) ∈ St. Furthermore,

Dt
o
(
Kt, Lt, Et, Yt) = 1 is true if and only if

(
Kt, Lt, Et, Yt) is on the boundary or frontier of

the technology set S.
The output distance function can be calculated using various DEA output-oriented

models. Taking an output-oriented CCR-DEA model [8] as an example, the specific formu-
lation is as follows. In practical applications, other DEA models can be used to calculate
the output distance function and then be used in our decomposition model. So the DEA
model below is just a simple example.

PE−1 = Dt
o
(
Kt, Lt, Et, Yt)−1

= maxρ

s.t.Ko ≥
n
∑

j=1
Kjλj;

Lo ≥ ∑n
j=1 Ljλj;

Eio ≥
n
∑

j=1
Eijλj i = 1, 2, . . . , m;

ρYro ≤
n
∑

j=1
Yrjλj r = 1, 2, . . . , s;

λj ≥ 0 j = 1, 2, . . . , n.

(3)

where

- λj and ρ are the parameters to be estimated;
- Kj, Lj, Eij, and Yrj are the vectors representing fixed assets, labor, energy, and output of

the decision-making unit DMUj;
- Ko, Lo, Eio, and Yro are the corresponding vectors for the evaluated decision-making

unit DMUo;
- λj denotes the weight vector of the decision-making units that constitute the produc-

tion frontier;
- ρ represents the reciprocal of the production efficiency of DMUo, where ρ ≥ 1. The ef-

ficiency of a decision-making unit is considered effective if and only if ρ = 1, indicating
that the unit is on the production frontier.

Equation (3) illustrates that, in the output-oriented DEA model, the reciprocal of the
objective value corresponds to the production efficiency and the output distance function.

3.2. Existing Decomposition Methods
3.2.1. Existing Contemporaneous Decomposition Methods

Using the decomposition method based on distance functions, Fare et al. [44] establish
a link between PE and CU by breaking down PE into capacity and equipment utilization
rates. The reciprocal of the optimal solution of the model represents the value of the
output distance function for decision-making unit k. In defining CU, it is expressed as the
ratio of the actual production level to the potential maximum output of the capital stock.
Therefore, in measuring CU using DEA, the potential maximum output of the capital stock
is represented as follows:

Y = ρk*Y = Y/Dt
o(K, Y) (4)

In this context, the actual level of production is denoted by Y, while the potential
maximum output level of the capital stock is also represented by ρk*Y. Here, ρk* refers to
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the solution of the DEA output-oriented model when only the capital stock K is used as
input and Y as output, which can be denoted as 1/Dt

o(K, Y).
According to the decomposition method described by Fare [44], the relationship

between CU and PE is as follows:

CU = Y
Y

= Y
Y

Dt
o(F,Y)

= Dt
o(F, Y)

= Dt
o(F,Y)

Dt
o(F,V,Y)

× Dt
o(F, V, Y)

= EU × PE

(5)

In the formulation, F represents fixed inputs such as capital stock, V represents variable
inputs such as labor and energy, and Y denotes outputs. EU stands for equipment utilization
rate. Fare expresses CU as the product of equipment utilization rate and PE.

3.2.2. Malmquist Intertemporal Decomposition

Considering the utilization of distance functions in the decomposition of the Malmquist
Productivity Index (MPI), this paper will adopt the MPI’s decomposition approach for in-
tertemporal analysis. The MPI is widely used for intertemporal decomposition, segmenting
changes into efficiency change (EC), technological change (TC), and Scale Efficiency Change
(SEC) using distance functions. A key advantage of the MPI’s approach is its ability to break
down the original formula into interpretable factors that are economically meaningful. This
paper will employ a similar method to extend the proposed decomposition approach to
intertemporal analysis.

Mt,t+1(xt, yt, xt+1, yt+1) = [
Mt(xt, yt, xt+1, yt+1)× Mt+1(xt, yt, xt+1, yt+1)] 1

2

=

[
Dt

c(xt+1,yt+1)
Dt

c(xt ,yt)
× Dt+1

c (xt+1,yt+1)
Dt+1

c (xt ,yt)

] 1
2

=
Dt+1

v
(

xt+1, yt+1)
Dt

v(xt, yt)︸ ︷︷ ︸
EC

×
[

Dt
v
(

xt, yt)
Dt+1

v (xt, yt)
×

Dt
v
(
xt+1, yt+1)

Dt+1
v (xt+1, yt+1)

] 1
2

︸ ︷︷ ︸
TC

×


Dt

c(xt+1,yt+1)
Dt

v(xt+1,yt+1)
Dt

c(xt ,yt)
Dt

v(xt ,yt)

×

Dt+1
c (xt+1,yt+1)

Dt+1
v (xt+1,yt+1)
Dt+1

c (xt ,yt)

Dt+1
v (xt ,yt)


1
2

︸ ︷︷ ︸
SEC

= EC × TC × SEC

(6)

The distance function, denoted with subscript v in the formula, is measured using
a DEA model under the assumption of Variable Returns to Scale. This paper does not
provide further details on the components EC, TC, and SEC, as these elements are not
directly pertinent to the extended decomposition method discussed herein.

3.3. Proposed Decomposition Method
3.3.1. Contemporaneous Decomposition Methodology

In this paper, adopting the approach developed by Fare et al. [44], PE is decomposed
into the product of various factor allocation efficiencies. The specific formula is presented
as follows:
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CUt = Yt

Yt

= Yt

Yt/Dt
o(Kt,Yt)

=
Dt

o(Kt,Yt)
Dt

o(Kt,Lt,Yt)
× Dt

o(Kt,Lt,Yt)
Dt

o(Kt,Lt,Et,Yt)
× Dt

o
(
Kt, Lt, Et, Yt)

= 1
Dt

o(Kt,Lt,Yt)
Dt

o(Kt,Yt)

× 1
Dt

o(Kt,Lt,Et,Yt)
Dt

o(Kt,Lt,Yt)

× Dt
o
(
Kt, Lt, Et, Yt)

= 1
LUEt × 1

EUEt × PEt

(7)

This means

PEt = Dt
o
(
Kt, Yt)× Dt

o(Kt,Lt,Yt)
Dt

o(Kt,Yt)
× Dt

o(Kt,Lt,Et,Yt)
Dt

o(Kt,Lt,Yt)

= CUt × LUEt × EUEt
(8)

In this context, LUE stands for labor utilization efficiency, while EUE represents energy
utilization efficiency. Formula (9) decomposes PE into the efficiencies of various inputs,
highlighting how each input factor contributes to and constrains PE. This decomposition
offers clear guidance for optimizing the performance of DMUs.

CU, LUE, and EUE are all derived from the values of the output distance function,
which is the reciprocal of the efficiency value obtained from the DEA output-oriented
model. The range of the output-oriented distance function is (0, 1], indicating that the value
ranges for CU, LUE, and EUE, based on their definitions, are as follows:

CUt = Dt
o
(
Kt, Yt) ∈ (0, 1]

LUEt =
Dt

o(Kt,Lt,Yt)
Dt

o(Kt,Yt)
∈ R+

EUEt =
Dt

o(Kt,Lt,Et,Yt)
Dt

o(Kt,Lt,Yt)
∈ R+

(9)

LUE and EUE are expressed as fractions, where, typically, the differences between
the numerators and denominators are minimal. These differences are due to the distance
functions being measured with only one differing input factor. Generally, the values of
LUE and EUE are close to 1. A higher LUE signifies greater labor utilization efficiency in a
DMU, while a higher EUE indicates more efficient energy utilization.

3.3.2. Rationality of Decomposition Method

In Formula (8), this paper decomposes PE into CU, LUE, and EUE. Employing a
similar approach, this decomposition can be extended to other forms, as illustrated below.

PEt = Dt
o
(
Lt, Yt)× Dt

o(Kt,Lt,Yt)
Dt

o(Lt,Yt)
× Dt

o(Kt,Lt,Et,Yt)
Dt

o(Kt,Lt,Yt)

= LUt × KUEt × EUEt
(10)

Formula (10) structures the decomposition into labor utilization efficiency, capacity
utilization efficiency, and energy utilization efficiency similar to Formula (8). However, this
decomposition does not align with actual production scenarios. In practice, capital stock is
a relatively fixed input, labor complements the capital stock, and energy complements both.
These dynamics suggest a different interplay and sequencing of inputs in real production
environments. The sequence of decomposition in Formula (8) accurately mirrors the actual
process of production adjustments, where fixed inputs like capital are considered first,
followed by the more variable inputs such as labor and energy. This method makes it
preferable by reflecting true production dynamics. Therefore, decomposition should follow
the methodology outlined in Formula (8).
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3.3.3. Economic Implications of Decomposition Results

Formula (8) decomposes PE into three dimensions: CU, LUE, and EUE. While the
definition of CU aligns with the existing literature, the economic implications of LUE and
EUE require further elucidation.

Economically, LUE enhances PE through the current labor input. Uniquely, Formula (9)
does not include labor in the denominator, distinguishing it from other formulations. This
distinction is evident in the measurement process: the numerator incorporates capital stock,
labor, and output in the DEA model, while the denominator considers only capital stock
and output. Taking the DEA model in Formula (3) as an example, the main difference lies
in the omission of labor constraints in the denominator.

However, the denominator implicitly accounts for labor constraints under the assump-
tion that the labor-to-fixed-assets ratio remains constant. For example, if the ratio of fixed
assets to labor for all decision units is consistently 3:1, the labor constraint can be omitted
because satisfying the fixed asset constraint implies that the labor constraint is also met.
Therefore, the solution for the denominator can be seen as a special case of the numerator
(i.e., when the ratio of K to L is constant), thus viewing LUE as a comparison of efficiency
between actual labor input and potential labor input.

This discussion clarifies the economic impact of current labor input on PE as measured
by LUE. A value of LUE equal to 1 suggests optimal coordination between labor and capital,
not significantly influencing PE. A value below 1 indicates excessive labor relative to capital,
reducing efficiency and indicating room for improvement. Conversely, a value above
1 suggests that labor is highly effective relative to capital, enhancing PE and indicating
higher labor productivity.

The economic definition of EUE similarly assesses the impact of current energy input
on PE. An EUE value of 1 indicates that the current energy input is optimally matched
with other production inputs, neither detracting from nor enhancing PE. Conversely, an
EUE value less than 1 suggests that the energy input exceeds what is necessary relative
to other inputs, negatively impacting PE and highlighting areas for potential efficiency
gains. Conversely, an EUE value greater than 1 denotes a well-coordinated energy in-
put relative to other inputs, enhancing overall energy efficiency and indicating superior
energy productivity.

Armed with these definitions, this paper aims to precisely quantify and interpret the
impacts of labor and energy inputs on PE. This approach offers a method for quantifying
labor and energy utilization within the broader framework of PE.

3.3.4. Intertemporal Expansion of Decomposition Methods

This paper will further analyze intertemporal changes in PE by employing the decom-
position method associated with the MPI. This method incorporates distance functions for
various periods, which are subsequently integrated into a comprehensive formula.

First, the interperiod distance function is defined as follows:

Dt+i
o

(
Kt, Lt, Et, Yt) = inf{θ :

(
Kt, Lt, Et,

Yt

θ

)
∈ St+i} (11)

The distance function is represented by the formula on the left, where the superscript
t + i indicates it is constructed based on the production possibility set of period t + i.
Consequently, the superscript t + i is also applied to S on the right side of the formula,
maintaining consistency across the terms. The subscript o on the distance function signifies
its output orientation.

For periods t and t + i, this paper integrates the decomposition method described in
Section 3.2 with the intertemporal decomposition approach of the MPI, culminating in the
following decomposition method:



Systems 2024, 12, 453 10 of 22

∆PE = PEt+i

PEt

=
Dt+i

o (Kt+i,Lt+i,Et+i,Yt+i)
Dt

o(Kt,Lt,Et,Yt)

=
Dt+i

o (Kt+i,Lt+i,Et+i,Yt+i)
Dt+i

o (Kt,Lt,Et,Yt)
× Dt+i

o (Kt,Lt,Et,Yt)
Dt

o(Kt,Lt,Et,Yt)

=

Dt+i
o (Kt+i ,Lt+i ,Et+i ,Yt+i)
Dt+i

o (Kt+i ,Lt+i ,Yt+i)
×

Dt+i
o (Kt+i ,Lt+i ,Yt+i)
Dt+i

o (Kt+i ,Yt+i)
×Dt+i

o (Kt+i,Yt+i)

Dt+i
o (Kt,Lt,Et,Yt)
Dt+i

o (Kt,Lt,Yt)
×Dt+i

o (Kt,Lt,Yt)
Dt+i

o (Kt,Yt)
×Dt+i

o (Kt,Yt)

×Dt+i
o (Kt,Lt,Et,Yt)

Dt
o(Kt,Lt,Et,Yt)

=

[
Dt+i

o (Kt+i,Lt+i,Et+i,Yt+i)
Dt+i

o (Kt+i,Lt+i,Yt+i)
× Dt+i

o (Kt,Lt,Yt)
Dt+i

o (Kt,Lt,Et,Yt)

]
×
[

Dt+i
o (Kt+i,Lt+i,Yt+i)
Dt+i

o (Kt+i,Yt+i)
× Dt+i

o (Kt,Yt)
Dt+i

o (Kt,Lt,Yt)

]
×

[
Dt+i

o (Kt+i,Yt+i)
Dt+i

o (Kt,Yt)

]
×

[
Dt+i

o (Kt,Lt,Et,Yt)
Dt

o(Kt,Lt,Et,Yt)

]
= ∆EUE × ∆LUE × ∆CU × TC

(12)

This analysis evaluates PE using production frontiers from different periods, such as
Dt+i

o
(
Kt, Lt, Et, Yt), Dt+i

o
(
Kt, Lt, Yt), and Dt+i

o
(
Kt, Yt). The distance functions utilize data

from period t while measuring them against the production frontier of period t + i, fol-
lowing the method described in Formula (3) but applied to a different frontier. In the
DEA model outlined in Section 3.1, the constraints on the right side of the equation are
constructed with data from period t + i, whereas the data on the left side use period t.

By employing the decomposition method in Formula (12), this paper breaks down
the changes in intertemporal PE into ∆EUE, ∆LUE, ∆CU, and TC. Specifically, ∆EUE is
calculated as the ratio of EUE at the production frontier of period t + i for DMUs in period
t + i to EUE in period t. ∆LUE is the ratio of LUE at the production frontier of period t + i
for DMUs in period t + i to LUE in period t. ∆CU is calculated as the ratio of CU at the
production frontier of period t + i for DMUs in period t + i to CU in period t. TC represents
the technological change, calculated as the ratio of PE measured using period t data at the
production frontier of period t + i to PE measured at the production frontier of period t.

This structured decomposition approach offers a detailed insight into how technologi-
cal advancements, resource utilization, and operational efficiencies drive changes in PE. It
establishes a comprehensive framework for assessing the dynamic evolution of performance
in the thermal power industry. This analysis helps pinpoint critical areas for improvement
and strategic adjustments essential for enhancing competitiveness and sustainability.

4. Case Data
4.1. Background of Thermal Power Industry Research

This paper employs the SBM (Slack-Based Measure) game cross-efficiency output-
oriented model proposed by Huang et al. [16] to measure production efficiency, followed
by the application of the proposed decomposition method to further disaggregate the
efficiency results. In the thermal power sector, regions with higher electricity output often
produce more carbon emissions; however, their electricity can also be transmitted and
consumed across other regions [74]. Notably, China’s power grid strategy, characterized
by “West-to-East power transmission, North-to-South mutual supply, and nationwide grid
interconnection,” intensifies the competition over environmental responsibilities within
the power generation industry [75]. Traditional DEA models used in this context typically
rely on self-evaluation, thereby neglecting the competitive dynamics among regions. To
date, the game cross-efficiency DEA model has not yet been applied to analyze production
efficiency and resource allocation efficiency in China’s electric power industry, making this
research a novel application in this field.
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4.2. Data Source and Variable Selection

The data for this paper were sourced from various annual reports, including the China
Electric Power Yearbook, the China Energy Statistical Yearbook, the China Labor Statistical
Yearbook, and the China Statistical Yearbook. Due to missing data and accessibility issues,
Tibet, Hong Kong, Macao, and Taiwan were not included in this analysis. This paper
analyzes data from 30 provinces, comprising a total of 330 samples covering the years from
2011 to 2021.

The input data used in this paper include the installed capacity of the thermal power
industry, workforce numbers, and the amount of standard coal used. The output data
comprise electricity generated and CO2 emissions. The energy consumption data are
obtained by converting each energy consumption (such as raw coal, natural gas, etc.) into
standard coal and then summing up. The labor data have missing values in 2012, and we
substitute them with the average values of 2011 and 2013. Table 2 reports the descriptive
statistical results for each variable.

Table 2. Descriptive statistics of data.

Variable Unit N Mean SD Min Max

Thermal power generation (TP) 108 kWh 330 1521.24 1203.69 101.00 5267.00
Installed capacity (K) 104 kW 330 3444.68 2545.09 193.00 11,599.00

Number of labor force (L) Person 330 27,039.57 25,994.58 641.00 125,792.49
Energy consumption (E) 104 tons 330 8564.04 7132.25 404.58 33,350.82

CO2 emissions (CO2) 104 tons 330 13,454.82 10,622.07 1070.64 47,088.57

5. Result

This paper employs the output-oriented SBM game cross-efficiency model to analyze
the PE of thermal power plants across various Chinese provinces from 2011 to 2021, high-
lighting their dynamic changes and regional differences. Due to length constraints, this
paper presents the measurement results for selected years in Table 3.

The main findings are as follows:

1. Volatility in PE: Overall, the PE of thermal power in China exhibits significant fluctua-
tions. Some provinces have achieved efficiency improvements or maintained high
levels through TC, elimination of outdated capacity, and implementation of environ-
mental policies, while others have experienced efficiency fluctuations due to changes
in market demand and optimization of energy structures.

2. Declining Efficiency in Developed Cities: PE has declined in cities such as Beijing,
Tianjin, and Shanghai, primarily due to inherent characteristics of the power industry.
The power sector is demand-driven; when demand is insufficient, thermal power
units operate at low loads, leading to decreased CU and, consequently, reduced PE.
Additionally, in developed cities, environmental requirements have increased, the
proportion of clean energy has risen, and industrial restructuring has occurred. These
regions are responding to policies for green and low-carbon development, advancing
the optimization of energy structures and reducing reliance on thermal power, which
also leads to a decrease in PE.

3. Significant Efficiency Improvements in Less Developed Areas: In Xinjiang, PE has
significantly improved due to optimal utilization of local coal resources, technolog-
ical innovations, management optimizations, and enhanced energy infrastructure
development under the Belt and Road Initiative.

The variation in thermal power PE across Chinese provinces arises from a combination
of factors, including levels of economic development, technological capabilities, environ-
mental policies, and resource endowments. These variations underscore the differing
capabilities of the thermal power industry to adapt to energy structural adjustments and
green, low-carbon development objectives. A detailed analysis of specific provinces offers
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critical insights into the current state of China’s thermal power industry and promotes the
enhancement of energy efficiency.

Table 3. Production efficiency of thermal power plants by province, 2011–2021.

Province 2011 2013 2015 2017 2019 2020 2021 Average Rank

Beijing 0.7535 0.6960 0.7372 0.6685 0.7248 0.6943 0.6660 0.7249 26
Tianjin 0.8261 0.8047 0.7946 0.7506 0.7191 0.7946 0.7726 0.7800 19
Hebei 0.8500 0.8380 0.7982 0.7388 0.6864 0.7747 0.7305 0.7765 20

Shandong 0.7725 0.7820 0.7845 0.7758 0.6632 0.7503 0.7192 0.7532 23
Liaoning 0.8502 0.8898 0.8183 0.8084 0.7463 0.8041 0.7742 0.8147 14
Shanghai 0.8170 0.8329 0.7894 0.7485 0.6749 0.7196 0.6897 0.7611 22
Jiangsu 0.7439 0.7881 0.7507 0.7156 0.6700 0.7606 0.6865 0.7381 25

Zhejiang 0.6640 0.6863 0.6181 0.6243 0.6612 0.7392 0.6469 0.6584 29
Fujian 0.7988 0.8443 0.8020 0.7834 0.7849 0.8533 0.8280 0.8183 13

Guangdong 0.9002 0.8602 0.8763 0.8391 0.8122 0.8718 0.9051 0.8628 2
Hainan 0.8595 0.8832 0.8547 0.8165 0.7031 0.7829 0.7425 0.8112 15
Shanxi 0.8696 0.8539 0.8781 0.8504 0.7500 0.8168 0.7965 0.8345 10

Jilin 0.8389 0.8827 0.8777 0.8329 0.7561 0.8233 0.7983 0.8332 11
Heilongjiang 0.9095 0.8872 0.8515 0.8100 0.7365 0.7991 0.8707 0.8209 12

Anhui 0.8490 0.8719 0.8944 0.8291 0.7797 0.8554 0.8965 0.8511 6
Jiangxi 0.7498 0.7573 0.7115 0.6988 0.6138 0.6897 0.6287 0.6982 27
Henan 0.8318 0.8322 0.8708 0.8459 0.7862 0.8576 0.8637 0.8360 9
Hubei 0.8658 0.8348 0.7748 0.7901 0.7469 0.8097 0.8071 0.7972 17
Hunan 0.7910 0.8383 0.7759 0.7799 0.7342 0.8213 0.8035 0.7827 18

Inner Mongolia 0.6517 0.6215 0.5665 0.5340 0.5572 0.5908 0.6123 0.5783 30
Chongqing 0.9134 0.8719 0.8974 0.8710 0.7662 0.8344 0.8529 0.8595 3

Sichuan 0.8964 0.8584 0.8297 0.7866 0.8453 0.8944 0.9158 0.8553 5
Guangxi 0.8492 0.8766 0.9059 0.8449 0.7810 0.8725 0.8864 0.8559 4
Guizhou 0.8823 0.8964 0.8756 0.8118 0.7896 0.8565 0.8453 0.8494 7
Yunnan 0.8035 0.7764 0.6268 0.5790 0.5531 0.7236 0.6704 0.6609 28
Shaanxi 0.7454 0.7600 0.7386 0.7046 0.6967 0.7872 0.7486 0.7402 24
Gansu 0.8267 0.8155 0.7341 0.7158 0.7247 0.8065 0.7459 0.7654 21

Qinghai 0.8783 0.8536 0.7952 0.7285 0.6654 0.7549 0.8803 0.8021 16
Ningxia 0.8915 0.8605 0.8611 0.8341 0.7799 0.8384 0.8471 0.8387 8
Xinjiang 0.7612 0.8939 0.9035 0.8959 0.9222 0.8168 0.9605 0.8895 1

5.1. Analysis of the Decomposition Results of Production Efficiency in Partial Year

This section analyzes the decomposition of PE for thermal power plants across various
Chinese provinces for the years 2011, 2016, and 2021. The aim is to reveal the driving
factors behind the varying production efficiencies across provinces, providing a detailed
and systematic perspective.

5.1.1. Analysis of Decomposition Results in 2011

In the 2011 PE assessment, CU and LUE were identified as the main factors influencing
the rankings of various provinces. According to the data analysis in Table 4, the provinces
with the highest PE—Chongqing, Heilongjiang, and Guangdong—shared a common trait:
they ranked in the top 30% in terms of CU and LUE, yet were in the bottom 30% in terms
of EUE. Although Ningxia ranked first in CU, its lower LUE (20th) placed it fifth in overall
PE. Similarly, Hainan and Jilin achieved only moderate overall PE despite high capacity
and energy utilization efficiencies, due to their low labor utilization. The case of Anhui
province also shows that despite high rankings in LUE and EUE, a low CU restricted its
overall PE to a mid-level position. Despite its excellent performance in LUE, Fujian’s PE
lagged due to poor capacity and EUE.
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Table 4. Decomposition results for 2011.

Province CU Rank LUE Rank EUE Rank PE Rank

Beijing 0.7963 26 0.9325 16 1.0147 16 0.7535 25
Tianjin 0.8840 16 0.8788 21 1.0633 7 0.8261 18
Hebei 0.9156 12 0.8959 19 1.0362 9 0.8500 12

Shandong 0.8266 23 0.8514 25 1.0976 5 0.7725 23
Liaoning 0.8621 17 0.9718 9 1.0148 15 0.8502 11
Shanghai 0.8467 20 0.9442 12 1.0221 10 0.8170 19
Jiangsu 0.7532 28 0.9243 17 1.0687 6 0.7439 28

Zhejiang 0.6771 30 0.8585 23 1.1422 2 0.6640 29
Fujian 0.7323 29 1.1445 1 0.9531 29 0.7988 21

Guangdong 0.9510 7 0.9821 7 0.9638 27 0.9002 3
Hainan 0.9800 2 0.8589 22 1.0212 11 0.8595 10
Shanxi 0.9357 11 0.9330 15 0.9962 22 0.8696 8

Jilin 0.9709 4 0.8462 26 1.0212 11 0.8389 15
Heilongjiang 0.9483 8 0.9854 6 0.9734 26 0.9095 2

Anhui 0.8338 22 0.9990 3 1.0191 13 0.8490 14
Jiangxi 0.8607 18 0.7646 29 1.1393 3 0.7498 26
Henan 0.8340 21 0.9961 4 1.0012 21 0.8318 16
Hubei 0.8956 14 0.9556 11 1.0116 19 0.8658 9
Hunan 0.9136 13 0.8525 24 1.0157 14 0.7910 22

Inner Mongolia 0.7745 27 0.6505 30 1.2935 1 0.6517 30
Chongqing 0.9483 8 0.9773 8 0.9855 24 0.9134 1

Sichuan 0.9752 3 0.9421 13 0.9757 25 0.8964 4
Guangxi 0.8944 15 0.9381 14 1.0121 18 0.8492 13
Guizhou 0.9548 6 0.9633 10 0.9592 28 0.8823 6
Yunnan 0.8021 25 1.0087 2 0.9931 23 0.8035 20
Shaanxi 0.8047 24 0.8208 27 1.1285 4 0.7454 27
Gansu 0.8532 19 0.9157 18 1.0583 8 0.8267 17

Qinghai 0.9588 5 0.9937 5 0.9218 30 0.8783 7
Ningxia 1.0000 1 0.8881 20 1.0039 20 0.8915 5
Xinjiang 0.9478 10 0.7932 28 1.0126 17 0.7612 24

Furthermore, Inner Mongolia, Zhejiang, and Jiangsu ranked at the bottom in the 2011
PE assessment, sharing the common characteristic of high EUE combined with low CU and
LUE. This observation suggests that although EUE impacts PE, its influence is limited by
similar power unit energy consumption levels across provinces, which are insufficient to
drive significant improvements. Thus, excellent performance in a single factor of efficiency
does not directly translate into overall PE leadership in this context.

In economically developed provinces such as Zhejiang, Jiangsu, Beijing, and Fujian,
low CU often results from excessive construction of power units, failure to eliminate
outdated capacity, and insufficient electricity demand. Although these regions perform
well in terms of EUE, the inefficient use of capacity and labor resources restricts their overall
PE improvement. This highlights an important strategic direction: to optimize overall PE,
it is necessary to focus not only on enhancing EUE but also on improving CU and LUE
through optimizing the power market structure and equipment management.

5.1.2. Analysis of Decomposition Results in 2016

The 2016 analysis of the thermal power sector (Table 5) shows a notable trend where
provinces with high PE demonstrated balanced development across three dimensions: CU,
LUE, and EUE. Xinjiang, Chongqing, and Guangxi exemplified this balanced performance,
thereby ranking among the provinces with the highest PE. This finding underscores the
importance of comprehensive resource management and optimization, where standout
performances in specific areas, such as Xinjiang’s exceptional CU and Chongqing’s excellent
LUE, significantly propel PE.
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Table 5. Decomposition results for 2016.

Province CU Rank LUE Rank EUE Rank PE Rank

Beijing 0.9466 10 0.9461 18 0.9066 24 0.8119 12
Tianjin 0.9432 12 0.8202 24 0.9963 7 0.7708 19
Hebei 0.9961 2 0.8294 23 0.9429 17 0.7790 16

Shandong 0.9971 1 0.8185 25 0.9555 13 0.7798 15
Liaoning 0.8452 21 0.9677 15 0.9489 14 0.7761 18
Shanghai 0.9609 7 0.9035 20 0.8956 25 0.7775 17
Jiangsu 0.9467 9 0.7826 26 1.0024 6 0.7427 21

Zhejiang 0.7825 24 0.7679 27 1.0096 4 0.6067 28
Fujian 0.8783 17 1.0424 7 0.8675 29 0.7942 13

Guangdong 0.8342 22 1.1007 4 0.9137 22 0.8390 8
Hainan 0.9959 3 0.9028 21 0.9127 23 0.8206 10
Shanxi 0.8836 15 1.0224 9 0.9351 20 0.8448 5

Jilin 0.9453 11 0.9530 17 0.9354 19 0.8426 7
Heilongjiang 0.7452 26 1.1993 2 0.8005 30 0.7154 24

Anhui 0.9620 6 0.9550 16 0.9187 21 0.8440 6
Jiangxi 0.8771 18 0.7359 29 1.0616 2 0.6852 27
Henan 0.8839 14 0.9896 12 0.9733 8 0.8514 4
Hubei 0.7494 25 0.9945 11 0.9731 9 0.7252 23
Hunan 0.7067 27 1.0208 10 0.9690 10 0.6990 26

Inner Mongolia 0.5215 29 0.6311 30 1.3463 1 0.4431 30
Chongqing 0.8491 20 1.0803 5 0.9467 15 0.8684 2

Sichuan 0.6183 28 1.2905 1 0.9368 18 0.7476 20
Guangxi 0.9332 13 0.9714 14 0.9465 16 0.8580 3
Guizhou 0.8816 16 1.0553 6 0.8848 27 0.8232 9
Yunnan 0.3856 30 1.1594 3 1.0478 3 0.4684 29
Shaanxi 0.9578 8 0.7587 28 1.0068 5 0.7317 22
Gansu 0.8153 23 0.9014 22 0.9688 12 0.7119 25

Qinghai 0.8629 19 1.0391 8 0.8793 28 0.7884 14
Ningxia 0.9716 5 0.9437 19 0.8926 26 0.8184 11
Xinjiang 0.9739 4 0.9773 13 0.9690 10 0.9223 1

In contrast, Inner Mongolia, Yunnan, and Hubei exhibited lower PE, primarily due to
insufficient CU. Although Inner Mongolia led in EUE, its low capacity and labor utilization
rates exposed issues of overcapacity and resource misallocation. Yunnan’s case underscores
that despite its excellent performance in labor and energy utilization efficiencies, the
extremely low CU rate became a bottleneck limiting its PE enhancement, linked to its
energy structure adjustment between thermal and hydroelectric power. The situation
in Hubei indicates that despite relatively good labor and energy utilization efficiencies,
enhancing CU is crucial for improving its PE.

The 2016 data reveal that the key to enhancing PE lies in the balanced development of
CU, LUE, and EUE. Unlike in 2011, where high capacity and labor utilization efficiencies
could ensure high PE, the 2016 analysis emphasized the importance of balanced devel-
opment among all three aspects. Furthermore, poor EUE significantly reduces PE, as
evidenced by the comparison between Guangxi and Guizhou, where Guizhou’s lower EUE
resulted in a significant efficiency gap.

This analysis emphasizes the importance of considering all factors comprehensively
and making strategic adjustments to enhance the PE of the thermal power industry. It also
highlights that the development of the thermal power sector should not only focus on tech-
nological and managerial improvements but also take into account regional characteristics
and strategies for energy conservation and emission reduction to promote more efficient
and sustainable improvements.

5.1.3. Analysis of Decomposition Results in 2021

The 2021 analysis of the thermal power industry’s PE (Table 6) shows that the leading
performances in Xinjiang, Sichuan, and Guangdong underscore the importance of balanced
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optimization among CU, LUE, and EUE. Xinjiang’s efficient CU and Guangdong’s excellent
labor utilization result from successful strategic implementations in these specific areas. The
exceptional performance of these provinces reflects the potential to maximize PE through
comprehensive strategies and resource optimization.

Table 6. Decomposition results for 2021.

Province CU Rank LUE Rank EUE Rank PE Rank

Beijing 0.7787 28 0.8866 13 0.9647 25 0.6660 27
Tianjin 0.8546 21 0.8207 18 1.1015 6 0.7726 18
Hebei 0.8982 19 0.7502 23 1.0841 8 0.7305 22

Shandong 0.9494 11 0.6775 29 1.1181 3 0.7192 23
Liaoning 0.9007 17 0.8692 15 0.9890 24 0.7742 17
Shanghai 0.9870 1 0.7259 25 0.9626 26 0.6897 24
Jiangsu 0.8234 23 0.7557 22 1.1033 5 0.6865 25

Zhejiang 0.8177 24 0.7275 24 1.0874 7 0.6469 28
Fujian 0.7928 26 1.0894 2 0.9586 27 0.8280 12

Guangdong 0.8476 22 1.0670 3 1.0008 21 0.9051 3
Hainan 0.9570 8 0.7254 26 1.0697 11 0.7425 21
Shanxi 0.9717 5 0.7880 20 1.0403 15 0.7965 16

Jilin 0.9693 6 0.8054 19 1.0225 17 0.7983 15
Heilongjiang 0.9730 4 0.9916 5 0.9025 30 0.8707 7

Anhui 0.9767 3 0.9034 11 1.0160 19 0.8965 4
Jiangxi 0.7193 29 0.7205 28 1.2131 2 0.6287 29
Henan 0.9277 14 0.8902 12 1.0459 13 0.8637 8
Hubei 0.8850 20 0.8461 17 1.0779 9 0.8071 13
Hunan 0.9206 15 0.8570 16 1.0185 18 0.8035 14

Inner Mongolia 0.7816 27 0.6002 30 1.3051 1 0.6123 30
Chongqing 0.9286 13 0.8829 14 1.0404 14 0.8529 9

Sichuan 0.9333 12 0.9727 6 1.0088 20 0.9158 2
Guangxi 0.9055 16 0.9308 9 1.0516 12 0.8864 5
Guizhou 0.8983 18 1.0187 4 0.9238 29 0.8453 11
Yunnan 0.6642 30 0.9054 10 1.1149 4 0.6704 26
Shaanxi 0.9638 7 0.7235 27 1.0736 10 0.7486 19
Gansu 0.9500 9 0.7859 21 0.9991 22 0.7459 20

Qinghai 0.8093 25 1.0950 1 0.9934 23 0.8803 6
Ningxia 0.9500 9 0.9525 7 0.9362 28 0.8471 10
Xinjiang 0.9852 2 0.9406 8 1.0365 16 0.9605 1

Conversely, the relative underperformance in PE of Inner Mongolia, Yunnan, and
Zhejiang was mainly attributed to dual challenges in CU and LUE. Despite its strong
performance in EUE, Inner Mongolia’s low LUE highlights issues in human resource
management. In Yunnan and Zhejiang, problems of overcapacity and insufficient utilization
were evident, as good performances in labor and energy utilization failed to effectively
translate into higher PE.

The analysis for 2021 also indicated that LUE had the most significant impact on
enhancing PE, followed by CU and EUE. For instance, Qinghai, Fujian, and Guangdong
significantly improved their PE rankings through high LUE. This sharply contrasts with
Inner Mongolia and Jiangxi, where, despite high EUE, deficiencies in other areas persisted,
keeping their PE below par.

These insights offer critical strategic directions for decision-makers in the thermal
power industry, aiming at more efficient and sustainable improvements in PE through
integrated resource management and optimization. Additionally, they reveal that strategic
execution in specific areas by different provinces can significantly impact overall PE,
particularly in human resource management and capacity optimization. These insights
provide critical strategic directions for decision-makers in the thermal power industry,
aiming to achieve more efficient and sustainable PE improvements through integrated
resource management and optimization.
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This paper identifies several trends in the development of thermal power across
Chinese provinces through decomposition analysis for the years 2011, 2016, and 2021.
In 2011, provinces with extensive unit construction led in PE due to high capacity and
labor utilization. Conversely, more developed provinces underperformed despite having
numerous units, primarily because of low CU. By 2016, there was a growing emphasis
on energy efficiency, and provinces with high PE took the lead due to their balanced
development. In 2021, with an emphasis on energy efficiency, most provinces showed
energy utilization efficiencies above 1. Yet, insufficient electricity demand and labor surplus
emerged, exacerbated by the COVID-19 pandemic and the ban on cryptocurrency mining,
leading to widespread factory suspensions and, thus, underutilized capacity.

In summary, the focus for improving PE in China’s thermal power industry has
evolved from optimizing capacity and labor utilization to embracing balanced resource
management and enhancing energy efficiency. The industry has also confronted new
challenges driven by macroeconomic shifts and specific policies. These changes underscore
the sector’s adaptability and resilience, emphasizing the ongoing need to optimize resource
allocation, strengthen energy management, and maintain flexibility and innovation amid
macroeconomic instability.

5.2. Interperiod Decomposition Analysis of Production Efficiency

This paper conducts a detailed analysis of thermal power PE in the Xinjiang Uygur
Autonomous Region (hereafter referred to as Xinjiang) and Guangdong Province, the
two regions with the highest average PE, from 2011 to 2021. It also compares these find-
ings with those from the Inner Mongolia Autonomous Region (hereafter referred to as
Inner Mongolia) and Zhejiang Province, which have the lowest average PE. The analysis
identifies key factors and primary pathways for enhancing thermal power PE. Further-
more, it highlights both commonalities and differences in PE improvements across these
provinces, providing vital strategic directions for the future development of the thermal
power industry.

5.2.1. Intertemporal Decomposition Analysis of Provinces with High Average
Production Efficiency

Xinjiang has implemented an efficient development strategy. Through the previous
year-by-year analysis and Figure 1A, we can see that they do not expand production capac-
ity but only focus on improving labor utilization efficiency and energy utilization efficiency.
In the figure, TC in Xinjiang has been continuously and substantially declining, while
changes in CU are small. Based on this phenomenon and combined with the information
that Xinjiang’s CU is very high, it can be seen that Xinjiang has not built a large number
of new power plants. As a result, their skill level is declining relative to other provinces.
Their low EUE ranking also shows this. Therefore, the secret to Xinjiang’s leading ranking
is to improve CU and LUE and make full use of existing units.

In contrast, Guangdong built a large number of thermal power units in the early stage.
This has led to a significant decline in its capacity utilization, which has led to a continuous
decline in TC. Therefore, even with a substantial increase in LUE (12.96%) and EUE (14.71%),
Guangdong’s total production efficiency is still declining. In the later period, Guangdong
gradually eliminated the backward units, the capacity utilization rate rebounded, and the
decline of TC was also reduced. However, due to the decline in labor utilization efficiency
(−7.99%), Guangdong’s production efficiency has not improved significantly.

These cases underline the importance of a multifaceted strategy that balances CU,
LUE, and EUE to improve PE. While initial capacity expansion is necessary to meet de-
mand, overconstruction can reduce PE and hinder sustainable development. Technological
innovation and timely retirement of inefficient units are crucial for maintaining high PE,
reducing energy consumption, and promoting environmental sustainability.
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This analysis offers valuable insights for the thermal power industry: improving
CU is key, labor and energy efficiencies are crucial for sustained PE, and technological
innovation is essential for long-term sustainability. Provinces should adopt a holistic
strategy encompassing capacity planning, labor management, and energy optimization
to achieve balanced and sustainable development. These findings are instructive for the
global energy sector, providing a pathway to a more efficient and sustainable future.

5.2.2. Interperiod Decomposition Analysis of Provinces with Low Average
Production Efficiency

This section analyzes Inner Mongolia and Zhejiang, the provinces with the lowest
thermal power PE, based on the decomposition of CU, LUE, EUE, and TC (Figure 2).
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Inner Mongolia’s low PE is mainly due to persistent underutilization of capacity and
labor, as well as a decline in technological levels (Figure 2A). Overcapacity and insufficient
electricity demand result in low CU, while inefficient labor utilization exacerbates cost
pressures. Despite high EUE reflecting effective energy management, it has not signifi-
cantly improved overall PE. Technological stagnation further impedes competitiveness
and development.

From the previous single-year analysis, it can be seen Zhejiang struggles with low CU
and LUE, despite excelling in EUE. From 2011 to 2016, rapid capacity expansion outpaced
demand, leading to declining CU (Figure 2B). While CU improved between 2016 and
2021, LUE decreased due to operational inefficiencies in newly added units. Technological
investments initially focused on capacity expansion rather than efficiency, but later shifted
to energy-saving technologies, improving EUE but limiting output growth.

These cases highlight that improving PE requires more than capacity expansion or
technological upgrades. Overcapacity should be avoided through careful planning aligned
with actual demand. Strategic adjustments, such as optimizing labor allocation and im-
plementing high-efficiency technologies, are crucial for balancing economic benefits and
sustainability. The experiences of Inner Mongolia and Zhejiang provide valuable guidance
for other regions to enhance PE and achieve sustainable development.

6. Discussion

This paper successfully achieves a comprehensive decomposition of production effi-
ciency. For contemporaneous decomposition, PE is divided into capacity utilization, labor
utilization efficiency, and energy utilization efficiency. For intertemporal decomposition,
changes in PE are further broken down into variations in capacity utilization, labor uti-
lization efficiency, energy utilization efficiency, and technological progress. Using data
from China’s thermal power industry, we demonstrate the feasibility of this decomposition
method. In the following discussion, we compare our proposed approach with existing
decomposition methods and highlight the key differences.

For the decomposition methodology itself, there is currently no literature that simulta-
neously decomposes PE into these specific components. Therefore, our discussion focuses
on the differences in the individual factor allocation efficiencies derived from our approach
compared to those used in other studies.

First, regarding capacity utilization, our measurement formula is consistent with those
used in other studies. In the contemporaneous decomposition, our capacity utilization
metric aligns with the framework established by Fare et al. [44]. In the intertemporal
decomposition, the formula for measuring changes in capacity utilization corresponds to
the global capacity utilization change measurement in the study by Song et al. [76]. This
consistency indicates that our approach to decomposing capacity utilization is theoretically
sound and methodologically robust.

Second, for labor utilization efficiency, our measurement approach differs from the
existing literature. In the study by Mugera et al. [31], labor productivity is decomposed
into several contributing factors, which is not entirely consistent with the objectives of
our research. However, the underlying logic of measuring labor productivity in their
study—using the ratio of distance functions across different time periods—is similar to our
method for evaluating changes in labor utilization efficiency. This parallel supports the
validity of our approach.

Lastly, regarding energy utilization efficiency, our measurement approach diverges
from that of other studies. For instance, Hu et al.’s [43] TFEE yields efficiency scores ranging
from 0 to 1, which may result in multiple decision-making units having a TFEE value of 1,
thus making comparisons difficult. In contrast, our efficiency values lie within the positive
real number range R+, allowing for a higher degree of comparability. Additionally, Hu
et al.’s [43] method calculates the potential maximum reduction in energy use without
accounting for the influences of capital and labor inputs. Our decomposition method,
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on the other hand, isolates the impact of these factors by separately decomposing them,
resulting in a more precise measurement of energy utilization efficiency.

In summary, we believe that our decomposition method offers significant theoretical
contributions to the study of production efficiency. The decomposition results are not only
precise but also provide meaningful insights into the distinct roles of capacity, labor, and
energy utilization. Thus, our approach represents a valuable analytical tool for understand-
ing the drivers of production efficiency and can serve as a practical guide for improving
resource allocation efficiency in various industries.

7. Conclusions
7.1. Main Conclusions

This paper introduces a novel decomposition method for analyzing production effi-
ciency and applies it to the thermal power industry across 30 provinces in China from 2011
to 2021. By disaggregating production efficiency into capacity utilization, labor utilization
efficiency, energy utilization efficiency, and technological change, this method provides a
comprehensive view of the key drivers behind efficiency changes. The approach is particu-
larly effective in handling intertemporal data, allowing for a detailed assessment of both
the immediate impacts and the long-term trends of various factors on production efficiency.
This structured framework enables a clearer understanding of regional disparities and
supports the development of targeted improvement strategies.

The empirical results show that provinces with relatively low production efficiency,
such as Inner Mongolia and Zhejiang, often face a paradoxical situation where capacity
utilization is low despite high energy utilization efficiency. This suggests potential overca-
pacity and bottlenecks in technological innovation. In contrast, high-efficiency provinces
like Xinjiang and Guangdong exhibit strong performance in both capacity and labor uti-
lization, maintaining a high level of overall production efficiency. Particularly, Xinjiang,
despite a decline in technological change, sustained the highest average production effi-
ciency through exceptional capacity and labor utilization performance. These findings
indicate that optimizing capacity and labor utilization is crucial for enhancing efficiency in
the thermal power sector.

7.2. Recommendations

Based on the findings, the following strategies are proposed:

1. For high-efficiency but low-energy-utilization regions, adopting advanced energy
efficiency technologies, optimizing energy management practices, and enhancing
workforce training will support the continuous improvement of energy utilization.

2. For low-efficiency regions with high energy utilization, efforts should focus on elimi-
nating outdated capacity, shutting down inefficient power plants, and reallocating
resources to more efficient units to boost overall production efficiency.

These actions will not only contribute to sustainable development in the thermal
power industry but also have a significant impact on reducing energy consumption and
lowering carbon emissions.

7.3. Limitations

Despite the robustness of the proposed method, it is subject to several limitations. Its
effectiveness is highly dependent on the quality and completeness of the data, and the com-
plexity of data collection could potentially affect the accuracy of the results. Additionally,
while this method captures multiple dimensions of PE, it may not fully reflect the complex
interactions between factors, nor adequately account for non-quantifiable influences such
as policy shifts, market dynamics, and socio-economic factors.

Furthermore, the current decomposition method imposes certain constraints on input
factors. With “data” becoming a core production element, future research should explore
more innovative and inclusive decomposition strategies to address these evolving factors
and better accommodate the complexities of modern production systems. This would
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ensure that the method remains adaptable and relevant for evaluating a broader set of
production contexts.
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