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Abstract: Among the reported photocatalysts, ZnIn2S4 has garnered significant research interest due
to its advantageous layered structure and appropriate band gap. However, achieving rational design
and effective interfacial regulation in heterojunctions remains challenging. In this study, we designed
two novel heterojunctions: SrTiO3@ZnIn2S4 and SrCrO3@ZnIn2S4. The photocatalytic hydrogen
evolution performance of prepared heterojunctions was systematically investigated under different
single-wavelength light sources. Without a cocatalyst, the optimized hydrogen evolution efficiency of
SrTiO3@ZnIn2S4 and SrCrO3@ZnIn2S4 reached 3.27 and 4.6 mmol g−1. The enhanced photocatalytic
performance can be attributed to the formation of a type-II heterojunction, which improves light
absorption capabilities and promotes the separation and transfer of photoinduced carriers. This
study provides valuable insights into the strategic construction of heterojunctions for photocatalytic
water splitting.

Keywords: composite materials; semiconductors; nanocomposites; photocatalysis

1. Introduction

In the context of carbon neutrality, hydrogen is regarded as a sustainable clean energy
to alleviate environmental pollution resulting from fossil fuel consumption [1–3]. Powered
by solar energy, semiconductor photocatalytic water splitting has attracted significant
attention as a promising approach for green hydrogen production [4–7]. However, the
current efficiency of photocatalytic hydrogen evolution remains insufficient to meet the
demands of large-scale applications [8–10]. It is necessary to develop efficient and stable
photocatalysts [11–13]. Recently, ZnIn2S4 (ZIS), a ternary metal chalcogenide with an asym-
metric layered structure, has gained significant attention due to its excellent visible-light
absorption ability and favorable physicochemical characteristics [14–17]. Nevertheless,
the hydrogen evolution efficiency of pure ZIS is always restricted by intrinsic factors,
such as low efficiency in photoinduced charge separation and transport, as well as the
bulk susceptibility to hole oxidation during reactions, which compromises catalyst ac-
tivity. Multiple strategies have been proposed to enhance the photocatalytic efficiency
of ZIS, such as heterojunction construction [18], elemental doping [19–21], morphology
design [22], cocatalyst deposition [23], and defect engineering [24]. Notably, constructing
heterojunctions with staggered band alignments in semiconductors has proven to be an
effective strategy for enhancing the separation efficiency of photoinduced charge carriers
in catalytic systems [25,26]. Several methods for constructing heterojunction photocatalysts
present promising pathways to improve the hydrogen evolution efficiency of ZIS-based
systems [27–29], such as utilizing electrostatic interactions and van der Waals forces [30,31].

A strategically designed heterojunction photocatalyst enhances the light absorption in
ZIS while preserving the reduction potential of photoinduced electrons. The heterojunc-
tion regulates the distribution of interfacial charges, effectively separating photoinduced
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charge carriers and facilitating the consumption of photoinduced holes. This prevents the
self-oxidation of ZIS, thereby enhancing the stability of the catalyst. Consequently, the
construction of heterojunction interfaces plays a critical role in optimizing the develop-
ment of efficient composite photocatalysts [32,33]. Based on the migration pathways of
photoinduced carriers, heterojunction photocatalysts are categorized into type I, type II, Z-
scheme, and S-scheme structures [15]. Previous research has reported significant instances
of heterojunction photocatalytic hydrogen evolution. For example, Li et al. [34] developed
a novel Z-scheme heterojunction photocatalyst by anchoring ZIS nanosheets onto the sur-
face of perovskite-structured CoTiO3. Compared with pristine ZIS, the CoTiO3/ZnIn2S4
photocatalyst exhibits enhanced photocatalytic hydrogen evolution activity, achieving a
hydrogen production rate of 5.21 mmol g−1 h−1. This improvement is mainly attributed
to the Z-scheme heterojunction, which promotes the efficient separation and migration of
photoinduced carriers.

Among semiconductor catalysts, perovskite-structured SrTiO3 (STO) has garnered
considerable attention for its non-toxicity and exceptional chemical stability [35]. The
combination of this oxide with different substrates has made some remarkable achieve-
ments in photocatalytic hydrogen production; examples include the three-dimensional
(3D) superstructure of g-C3N4 and reduced graphene oxide incorporated with Rh-doped
SrTiO3 nanoparticles, forming ternary aerogels [36], as well as the ternary hierarchical
SrTiO3/CdS/carbon nanosphere photocatalytic system [37]. However, the inherent lim-
itations of pure STO, such as its wide bandgap, restrict its efficiency [38]. The formation
of a robust heterojunction interface between ZIS and STO provides more active sites and
facilitates interfacial charge transfer, and several STO-based heterojunction materials have
been employed in diverse photocatalytic applications [39–42]. Considering the proper align-
ment of the energy bands between STO and ZIS, it is promising for hydrogen production
applications. SrCrO3 is a type of strontium oxide with limited literature reports. Tamoor
et al. [43] applied a SrCrO3/rGO nanohybrid as the supercapacitor electrode. Considering
that SrCrO3 exhibits semiconductor behavior similar to STO [44,45], it can be regarded as a
potential heterojunction photocatalyst. According to the best of our knowledge, the SrCrO3
has not been explored for the photocatalysts.

In the present article, we designed two efficient heterojunction photocatalysts for pho-
tocatalytic hydrogen evolution reactions under different single-wavelength light sources
(λ = 400 and 420 nm). STO was synthesized using a hydrothermal method, with layered
ZIS grown on its surface to form an STO@ZIS heterojunction. Meanwhile, SrCrO3 (SCO)
was synthesized through a solid-state sintering method to construct the SCO@ZIS het-
erojunction. Experimental characterizations revealed that the optimized photocatalytic
H2 evolution efficiency of STO@ZIS and SCO@ZIS reached 3.27 and 4.6 mmol g−1, re-
spectively. The key factors contributing to the enhancement mechanism of photocatalysis
were comprehensively evaluated, including the morphology and photoelectrochemical
properties. These results indicate that both photocatalysts hold promise as heterojunctions
for photocatalytic water splitting.

2. Materials and Methods
2.1. Preparation of Pristine ZnIn2S4

The synthesis of pure ZIS was conducted according to the procedure outlined by Tan
et al. [46]. To synthesize 1 mmol of ZIS, 0.136 g of analytical-grade ZnCl2 (Shanghai, China)
and 0.586 g of InCl3·4H2O (Shanghai, China) were dissolved in 30 mL ultrapure water with
continuous stirring for 0.5 h. Then, 0.601 g of thioacetamide (TAA, Shanghai, China) was
added to the solution, followed by another 0.5 h of stirring. The resulting mixture was
transferred to a 100 mL Teflon-lined stainless-steel reaction autoclave and maintained at
160 ◦C for 2 h to facilitate the formation of ZIS. The product was washed three times by
centrifugation, alternating between rinses with ultrapure water and ethanol. The product
was dried at 60 ◦C for 12 h. The product was labeled as ZIS.
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2.2. Preparation of SrTiO3

SrTiO3 was synthesized using the hydrothermal method. Analytical grade SrCl2·6H2O
(Shanghai, China) was dissolved in 30 mL of ultrapure water and stirred for 0.5 h, followed
by the dropwise addition of 3.4 mL of tetrabutyl titanate (Shanghai, China), with continued
stirring for an additional 0.5 h. The suspension was transferred to an autoclave and reacted
at 120 ◦C for 12 h. After cooling to room temperature, the product was washed three times
by alternating centrifugation with ultrapure water and ethanol, subsequently drying at
60 ◦C for 12 h. The prepared sample was labeled as STO.

2.3. Preparation of SrCrO3

1 mmol of Sr(NO3)2 (Shanghai, China) and Cr2O3 (Shanghai, China) powders was
placed in a mortar and ground for 0.5 h to ensure uniform mixing. The mixed powder was
then placed in a tube furnace and calcined at 550 ◦C for 3 h. After removing the sample,
it was ground for another 0.5 h and calcined again at 550 ◦C for an additional 3 h. The
prepared sample was labeled as SCO.

2.4. Construction of the Heterojunction

A total of 21 mg of STO and SCO were each dispersed in 30 mL of deionized water
and sonicated for 0.5 h. Subsequently, 0.136 g of ZnCl2 and 0.586 g of InCl3·4H2O were
sequentially added to the solution, which was stirred for 0.5 h, followed by the addition
of 0.601 g of TAA and further stirring for 0.5 h. The mixed solution was placed in an
autoclave and reacted at 160 ◦C for 2 h. After cooling to room temperature, the product
was washed three times by alternating centrifugation with ultrapure water and ethanol
and subsequently dried at 60 ◦C for 12 h. The prepared samples were labeled as STO@ZIS
and SCO@ZIS.

2.5. Characterization

X-ray diffraction (XRD) patterns were obtained using a Rigaku Ultima IV (Cu Kα

target, operating at 40 kV and 40 mA). The morphologies and microstructure of the samples
were observed using a ZEISS Sigma 360 scanning electron microscope (SEM), with an
accelerating voltage ranging from 0.1 to 30 kV. Transmission electron microscopy (TEM),
high-resolution TEM (HRTEM), and energy-dispersive X-ray (EDS) elemental mapping
were performed using JEM-F200 (JEOL, Tokyo, Japan), with an accelerating voltage of
200 kV and magnifications ranging from 50 to 1.2 M. The Brunauer–Emmett–Teller (BET)
specific surface area measurements were performed using ASAP 2460 (Micromeritics,
Norcross, GA, USA). Pore size analysis was conducted using the Barrett–Joyner–Halenda
(BJH) method.

The optical absorption spectra were measured using a UV–vis spectrophotometer
(Hitachi UH4150, Tokyo, Japan). Analysis of the steady-state photoluminescence (PL) and
time-resolved photoluminescence (TRPL) spectra was carried out using an Edinburgh
FLS1000 spectrofluorometer. Electrochemical impedance and properties were characterized
using a CHI760E electrochemical workstation (Shanghai, Chenhua Instrument Co. Ltd.,
Shanghai, China). A photocatalyst (5 mg) was uniformly dispersed in 1 mL of an ethanol
solution containing 10 vol% Nafion, which was then coated onto a 1 cm × 1 cm FTO
substrate as the working electrode. A Pt sheet and an Ag/AgCl electrode served as
the counter and reference electrodes, respectively, with a 0.5 M Na2SO4 solution as the
electrolyte. The electrochemical impedance spectroscopy (EIS) was conducted in a 0.5 M
Na2SO4 solution under a frequency range between 0.1 Hz and 100 kHz. The amplitude of
applied sine wave potential in each case was 10 mV. The linear scan voltammetry (LSV)
curves and chopped linear sweep voltammograms were performed in a three-electrode
system with a scan range from 0 to −1 V at a scan rate of 10 mV/s. The chopped linear
sweep voltammogram switch indicator interval was 10 s. Photocurrent experiments were
carried out under a 300 W Xe lamp, with testing performed at a potential of 0.5 V. Both EIS
and LSV measurements were conducted under light exposure. In the photocurrent test, the
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system was cycled as follows: the light was turned off for the first 0–20 s, followed by 20 s
of light exposure, then 20 s of the light off, repeating this cycle six times for a total duration
of 265 s, with testing conducted at 0.5 V. The Mott–Schottky measurements were performed
over a voltage range of ±1 V, with a frequency of 1200 Hz.

Photocatalytic hydrogen production tests were performed in a sealed vacuum quartz
container (50 mL), with 5 mg of the catalyst ultrasonically dispersed in 20 mL of an aqueous
solution containing 20 vol% triethanolamine (TEOA). A 300 W Xe lamp (λ = 400 and 420 nm)
served as the light source, and the generated gas was analyzed via gas chromatography.
The illumination area is 28.68 cm2. The average optical power density measured by the
five-point method is 93.81 and 85.113 mW/cm2 at the light intensity 400 and 420 nm,
respectively. The reactor was evacuated and filled with N2 before irradiation at room
temperature. The molar hydrogen evolution per unit mass of the photocatalyst over time
was calculated as the performance indicator for photocatalytic activity.

3. Results and Discussion
3.1. Morphology and Structure

STO@ZIS and SCO@ZIS heterojunction photocatalysts were prepared using a hy-
drothermal method, and the crystal structures of the synthesized samples were character-
ized by XRD. As shown in Figure 1a, the diffraction peaks of the as-prepared ZIS could be
indexed to the standard PDF#97-004-4637 (a = b = 3.85 Å, c = 12.34 Å), confirming that the
synthesized ZIS belongs to the hexagonal system. Characteristic peaks at 21.59◦, 27.69◦,
30.45◦, 47.18◦, 52.44◦, and 57.12◦ correspond to the crystal planes of (003), (011), (012), (110),
(113), and (202), respectively [47]. Figure 1b shows that the XRD patterns of the prepared
oxide substrate exhibit sharp diffraction peaks. The diffraction peaks of pure STO and
SCO could be indexed to the tetragonal crystal system (PDF#97-018-2764, a = b = 5.51 Å,
c = 7.81 Å) and the monoclinic crystal system (PDF#97-004-0922, a = 7.07 Å, b = 7.38 Å,
c = 6.74 Å), respectively. Notably, the XRD patterns of the heterojunction catalysts retain
the characteristic peaks of ZIS, along with the principal characteristic peaks of STO and
SCO. To further examine the characteristic functional groups of prepared photocatalysts,
Fourier transform infrared spectroscopy (FTIR) analysis was conducted. As depicted in
Figure 1c dotted boxes, all photocatalysts exhibit similar characteristic absorption peaks at
1600 and 1400 cm−1, which correspond to hydroxyl functional groups and surface-adsorbed
water molecules, respectively [48]. The combined results from the XRD and FTIR analyses
confirmed the synthesis of STO@ZIS and SCO@ZIS heterojunction catalysts. Furthermore,
these findings demonstrate that the incorporation of ZIS did not induce alterations in the
phase structure of the substrate oxides.
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Figure 2 presents the surface morphologies of the prepared samples. As depicted in
Figure 2a, the prepared STO consists of numerous stacked nanocubes. Figure 2b shows that
SCO is composed of aggregated irregular nanospheres. As shown in Figure 2c, pristine ZIS
displays a nanoflower-like microsphere structure formed from stacked nanosheets, with
approximately 4–10 µm diameters. Figure 2d,e shows the morphologies of heterojunction
photocatalysts, where STO@ZIS and SCO@ZIS are characterized by vertically aligned ZIS
nanosheets on the surface of STO and SCO, forming thin nanosheets.
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Figure 2. SEM images of (a) STO, (b) SCO, (c) ZIS, (d) STO@ZIS, (e) SCO@ZIS, and (f) N2 adsorption–
desorption isotherms.

The specific surface area and pore structure of prepared samples were determined
through N2 adsorption–desorption isotherms. As shown in Figure 2f, the specific surface
areas of STO, SCO, and sheet-like ZIS are 10.00, 0.64, and 77.26 m2 g−1, with average pore
diameters of 12.38, 23.56, and 5.16 nm, respectively. All the prepared samples exhibit meso-
porous characteristics. The specific surface areas of the heterojunction catalysts STO@ZIS
and SCO@ZIS are 81.16 and 53.43 m2 g−1, respectively, with average pore diameters of 5.07
and 5.14 nm. A comparison of the results indicates a significant increase in the specific
surface area of the heterojunction catalysts. Concurrently, the average pore size decreases
due to the coverage of voids by the growth of ZIS on the oxide substrates, resulting in the av-
erage pore size similar to that of pure ZIS. The textural characteristics of the heterojunction
catalysts create advantageous conditions for improving photocatalytic activity.

As shown in Figure 3, TEM confirms that the heterojunction catalysts STO@ZIS and
SCO@ZIS are structured with ZIS nanosheets coating the surfaces of the oxide substrates.
Specifically, EDS mapping of STO@ZIS and SCO@ZIS demonstrates a consistent distribution
of Zn, In, and S elements within the samples, indicating a uniform growth of ZIS nanosheets
on the surfaces of the oxide substrates. The presence of Sr, Ti, O, and Cr elements, which
constitute the oxide substrates, is clearly visible, consistent with the composite structure.
Furthermore, the distinct boundary observed between the oxide substrates and ZIS suggests
tight interfacial contact, which facilitates the efficient transport of photoinduced charges
and improves their separation and transfer efficiency.
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3.2. Optical Properties and Band Structure

As shown in Figure 4, the optical features of samples were characterized using the
UV–vis diffuse reflectance spectroscopy (UV–vis DRS). Figure 4a shows that STO@ZIS and
SCO@ZIS display higher light response intensities, with SCO@ZIS exhibiting a redshift.
These characteristics are advantageous for improving the catalytic activity of the hetero-
junction catalysts. Figure 4b,c illustrates the light absorption capacity of the heterojunction
catalyst in comparison to the oxide substrates, demonstrating that the heterojunction cat-
alyst displays higher light response intensities. With the growth of ZIS on the surfaces
of the oxide substrates, the optical absorption properties of the heterojunction catalysts
become comparable to those of ZIS, with enhanced absorption in the visible light range.
The absorption edges of STO, SCO, and pristine ZIS are approximately 380, 530, and 520 nm,
respectively. The band gap values of the oxide substrates and pristine ZIS were obtained
based on (∂hv)1/n = A

(
hv − Eg

)
. As shown in Figure 4d, the calculated bandgap of STO,

SCO, and pristine ZIS is 3.35 eV, 2.24 eV, and 2.47 eV, respectively.
The energy band structure was characterized using Mott–Schottky (M-S) curves at

an AC frequency of 1200 Hz. As shown in Figure 5a, all prepared samples are identified
as n-type semiconductors, determined by the positive slope of the tangent line to the M-S
curves. Furthermore, the flat band potential (Efb) of STO, SCO, and ZIS was determined to
be −0.92 V, −0.72 V, and −1.2 V vs. Ag/AgCl, respectively. As is known, the conduction
band positions (EC) of n-type semiconductors are approximately 0.2 V more negative than
Efb [49,50]. Accordingly, the EC for STO, SCO, and ZIS were estimated to be −1.12 V,
−0.92 V, and −1.4 V, respectively [51,52]. Based on the relative relationship between the
valence band (EV), EC, and Eg (Eg = EC − EV), the valence band positions of STO, SCO,
and ZIS were estimated to be 2.23 V, 1.32 V, and 1.07 V, respectively. These values can be
converted to 2.43 V, 1.52 V, and 1.27 V vs. NHE.
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To evaluate the influence of heterojunction photocatalysts on the separation and trans-
fer of photoinduced charges, PL and TRPL spectra were employed to characterize the
photoinduced charge recombination of prepared photocatalysts under 314 nm excitation.
As shown in Figure 5b, pristine ZIS exhibits a strong emission signal, indicating the signifi-
cant recombination of photoinduced electron-hole pairs, which suppresses photocatalytic
activity. However, after decorating the oxide substrate surfaces with ZIS, the PL peak
intensities of the heterojunction catalysts STO@ZIS and SCO@ZIS decreased significantly,
indicating that the formed heterojunction effectively suppresses photoinduced carrier re-
combination. Meanwhile, the TRPL spectra provide insights into charge carrier migration
dynamics, as shown in Figure 5c. The average fluorescence lifetime of pristine ZIS is
2.28 ns, shorter than that of STO@ZIS (3.56 ns) and SCO@ZIS (4.80 ns), confirming that
the heterojunction interface provides a rapid channel for photoinduced charge transfer.
Additionally, long-lived photoinduced electrons have more opportunities to participate in
photocatalytic hydrogen evolution. Overall, the heterojunction photocatalysts STO@ZIS
and SCO@ZIS exhibit stronger light absorption, faster charge migration rates, and more
effective charge separation capabilities compared to pristine ZIS.

3.3. Photoelectrochemical and Photocatalytic Performance

To further evaluate the positive effects of heterojunction construction on catalytic
performance, transient photocurrent response, EIS, LSV, and chopped linear sweep voltam-
metry were conducted to investigate the interfacial charge transfer behavior of the hetero-
junction catalysts. As shown in Figure 6a, all samples demonstrated rapid response during
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visible light on/off cycles. Regarding comprehensive optical properties, the heterojunction
catalysts display stronger photocurrent response signals than pristine ZIS, indicating that
the enhanced light-harvesting capacity allows the heterojunction catalysts to generate more
photoinduced charge carriers. Specifically, STO@ZIS generates a higher instantaneous
current at the moment of illumination, with electron transport efficiency stabilizing over
continued exposure. SCO@ZIS shows a higher average current density, consistent with
the fluorescence lifetime results. In Figure 6b, the interfacial charge transfer behavior
of prepared samples is presented, as analyzed through EIS. The results showed that the
heterojunction catalysts exhibit smaller radii in the Nyquist plots, indicating reduced
electrochemical impedance. This confirms that the heterojunction construction reduces
interfacial charge migration resistance, thereby enabling the more efficient participation of
charges in catalytic reactions. As shown in Figure 6c, SCO@ZIS requires smaller applied
voltages than STO@ZIS and pristine ZIS at the same current. It shows that a smaller driving
force can stimulate the electrons in the heterojunction catalysts to participate in the pho-
tocatalytic reaction. Figure 6d shows the different photocurrent densities of the prepared
samples under the conditions of interspaced illumination.
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The photocatalytic hydrogen evolution performance of prepared heterojunction cata-
lysts was investigated without the additional cocatalysts. As depicted in Figure 7a, pristine
ZIS exhibited relatively low hydrogen evolution efficiency of 2.99 and 1.76 mmol g−1

under 400 and 420 nm, which can be attributed to the rapid recombination of photoinduced
electron-hole pairs. After ZIS was grown on the surface of the oxide substrate, the hydrogen
evolution efficiency of STO@ZIS and SCO@ZIS increases to 3.27 and 4.6 mmol g−1, under a
400 nm light source. The hydrogen evolution efficiency of STO@ZIS and SCO@ZIS reaches
2.03 and 2.16 mmol g−1, under a 420 nm light source. Among these, SCO@ZIS exhibited the
optimal hydrogen evolution efficiency of 4.6 mmol g−1, which is 1.54 times that of pristine
ZIS (2.99 mmol g−1). As displayed in Figure 7b,c, the hydrogen evolution of STO@ZIS and
SCO@ZIS exhibited no significant decrease after three cycles.
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Figure 7. (a) Hydrogen evolution efficiency of the photocatalyst, and (b,c) the stability test of STO@ZIS
and SCO@ZIS in three cycles.

Considering the band structures of STO, SCO, and ZIS, a potential mechanism for
photocatalytic hydrogen evolution can be inferred. As illustrated in Figure 8a, STO@ZIS
promotes the transfer of photogenerated carriers from the ZIS side to the STO side due to
the ultraviolet absorption of STO. Subsequently, these carriers participate in the surface
hydrogen evolution reaction. The photogenerated holes of ZIS are consumed by the sacrifi-
cial agent, forming a typical type-II heterojunction that promotes the spatial separation of
photogenerated carriers, enhancing the hydrogen evolution efficiency of the photocatalyst.
A similar migration path for photoinduced charge carriers is observed in SCO@ZIS, as
illustrated in Figure 8b.
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4. Conclusions

This study highlights the successful design of novel SrTiO3@ZnIn2S4 and SrCrO3@ZnIn2S4
heterojunctions for enhanced photocatalytic hydrogen evolution. The synergy between
ZnIn2S4 and the oxide substrates not only promotes efficient light harvesting and charge
separation but also reduces interfacial charge transfer resistance. The observed increase in
hydrogen evolution efficiency, with enhancements of 1.09 and 1.54 times compared to pris-
tine ZnIn2S4, underscores the importance of optimizing heterojunctions for photocatalytic
applications. This work paves the way for further exploration of heterojunction designs
with tailored interfacial properties to achieve higher photocatalytic performance. Future
studies could focus on incorporating cocatalysts, exploring different oxide materials, and
optimizing the interfacial contact for even more efficient water splitting systems.
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