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Abstract: In this paper, steady two-dimensional laminar incompressible magnetohydrodynamic flow
over an exponentially shrinking sheet with the effects of slip conditions and viscous dissipation is
examined. An extended Darcy Forchheimer model was considered to observe the porous medium
embedded in a non-Newtonian-Casson-type nanofluid. The governing equations were converted
into nonlinear ordinary differential equations using an exponential similarity transformation.
The resultant equations for the boundary values problem (BVPs) were reduced to initial values
problems (IVPs) and then shooting and Fourth Order Runge-Kutta method (RK-4th method) were
applied to obtain numerical solutions. The results reveal that multiple solutions occur only for the
high suction case. The results of the stability analysis showed that the first (second) solution is
physically reliable (unreliable) and stable (unstable).

Keywords: dual solution; stability analysis; Darcy Forchheimer model; nanofluid; exponential sheet

1. Introduction

Many environmental and industrial systems, including geothermal energy system, catalytic
reactors, fibrous insulation, heat exchanger designs, and geophysics, involve the convective flow of
through porous surfaces. The classical Darcian model extended into the non-Darcian porous medium
model includes tortuosity inertial drag, vorticity diffusion effects, as well as combinations of both
effects [1]. The Darcy-Forchheimer (DF) model is the extension or modification of Darcian flow, which
is used similarly to inertia effects. To determine the inertia effect, the velocity square term in the
momentum equation must be added, and the resultant term is known as a Forchheimer’s extension.

Flow over a porous surface is encountered in several applications, such as nuclear and gas waste
storage, hydrocarbon recovery, hydrology, soil physics, transfer in living tissues, transfer in food
products, soil mechanics, drying of the wood, and many others. Flow phenomena in the porous
surfaces are complex given the interaction between the fluid and the packing particles, fluid and the
column wall, and the particles and column wall. Muskat [2] called this interaction a Forchheimer
factor. Some of the studies involving the Darcy-Forchheimer flow have been published [3–7]. Hayat et
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al. [8] considered Darcy-Forchheimer flow over a curve stretching surface and found that the porosity
parameter produced high temperatures. Seth and Mandal [9] studied the Casson fluid in the presence
of Darcy-Forchheimer, and observed the effect of the Casson and rotation parameter on the primary
velocity. The behavior of primary velocity is reverse to the secondary velocity and close to that of the
stretching surface. Ganesh et al. [10] considered a hydro-magnetic nanofluid under Darcy-Forchheimer
flow on stretching and shrinking surfaces.

The investigation of the magnetic field impacts has many applications in the engineering,
chemistry, and physics sectors. Industrial instruments, like bearings and pumps, boundary layer
control, and magnetohydrodynamic generators are mostly affected due to interactions between a
magnetic field and an electrically conducting fluid [10–12]. Viscous dissipation is usually an ignorable
effect, but that contribution can be significant at very high fluid viscosity. The energy source usually
changes temperature distributions, which affects the rates of heat transfer. Hsiao [13] investigated
magnetohydrodynamic (MHD) flow and the effect of thermal radiation and viscous dissipation.
Sheikholeslami et al. [14] examined MHD nanofluid flow as well as heat transfer in the presence of
viscous dissipation.

Various researchers considered viscous dissipation effects in their studies [15–18]. Due to the
importance of viscous dissipation, we also considered its effect in our considered model. At a
microscopic level, in the boundary conditions, no-slip conditions are important when the flowing
fluid layer adjacent to the solid boundary reaches the velocity of the solid boundary. Yet, no-slip
conditions are not based on physical principles [19]. No-slip conditions occur in many macroscopic
flows that have been proven experimentally. Nearly two centuries ago, Navier presented the general
boundary conditions that cover the situation of slippery boundaries, where the velocity of the fluid is
proportional to the shear stress on the surface [20]. In general, velocity slip occurs when the velocity of
the fluid flow and the surface are different, indicating that different slip conditions exist when velocity,
temperature, and concentration in the fluid and surface are different from each other. Hence, slip
boundary conditions are of great importance due to their applications in the various fields of science
and the technology, such as in microchannels or nanochannels as well as in applications where the
surface is coated by a thick monolayer of hydrophobic octadecyl trichlorosilane, or when oil-moving
plates are considered [19]. Wall slip occurs in working fluids with concentrated suspensions [21].
Non-Newtonian fluids, such as polymer melts, usually show wall slip. Many researchers studied
different slip effects on fluid flow [22–27]. Motivated from the above-mentioned investigations, in this
work, we focused on the velocity, thermal, and concentration slip effects on Casson fluid flow with
Extended-Darcy-Forchheimer porous medium and viscous dissipation.

Unlike the flow over a stretching sheet, which received the attention of numerous researchers
since it was first presented by Crane [28], the flow on the shrinking surface was viewed almost 50 years
ago, in 1970, when Miklavčič and Wang [29] considered viscous flow on a shrinking sheet for the first
time. Since flow is probably not going to occur on a shrinking surface, they added sufficient suction at
a boundary to create vorticity in the boundary layer. Many researchers have considered a shrinking
surface, including Naveed et al. [30], Jusoh et al. [31], Othman et al. [32], Khan and Hafeez [33],
Naganthran et al. [34], and Qing et al. [35]. Rahman et al. [36,37] investigated Buongiorno’s model on
exponentially shrinking surfaces and found dual solutions. Some other interesting studies are given
in [38–44]. In this study, we extend the work of Rahman et al. [36,37] to a permeable shrinking surface
embedded in an Extended-Darcy-Forchheimer porous medium in the presence of viscous dissipation
and velocity, and thermal and concentration slip effects over a shrinking surface, where the occurrence
of dual solutions is possible. To produce a stable and physically reliable solution, we performed a
stability analysis. Notably, shrinking sheet flow is basically a backward flow [38] that defines physical
phenomena relatively differently from a stretching sheet.
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2. Mathematical Description of the Problem

We considered the steady incompressible two-dimensional flow of a Casson electrically conductive
nanofluid over an exponentially shrinking surface in Extended Darcy Forchheimer porous medium
along with the effects of viscous dissipations and slip conditions, as shown in Figure 1. According to
Nakamura and Sawada [39], the rheological equation of the state for isotropic and incompressible flow
of a Casson fluid are:

τij =


(

µB +
(

Py√
2π

))
2eij, π > πc(

µB +
(

Py√
2πc

))
2eij, π < πc

(1)

where µB denotes the plastic dynamic viscosity, Py denotes the yield stress of the fluid, π denotes the
product of deformation rate component, where π = eij. eij is the (i, j)th deformation rate component and
πc is a critical value of π, which is based on the non-Newtonian model. A Cartesian coordinate system
is considered, where the x-axis is assumed along with a shrinking sheet and the y-axis is perpendicular
to it. The uniform magnetic field of strength B0 was applied normal to a shrinking sheet. The induced
magnetic field was ignored due to the small value of the magnetic Reynolds number. According to
these conditions, the governing equations for steady Casson nanofluid flow can be written as:

∂u
∂x

+
∂v
∂y

= 0 (2)

u
∂u
∂x

+ v
∂u
∂y

= ϑ

(
1 +

1
β

)
∂2u
∂y2 −

ϑϕ

K
u− b√

K
u2 − σB2u

ρ
(3)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 + τ1

[
DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2
]
+

µ

ρcp

(
1 +

1
β

)(
∂u
∂y

)2
(4)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 (5)
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The associated boundary conditions related to Equations (2)–(5) are:{
v = vw, u = uw + Aϑ

(
1 + 1

β

)
∂u
∂y , T = Tw(x) + D ∂T

∂y , C = Cw(x) + N ∂C
∂y at y = 0

u → 0, T → T∞, C → C∞as y → ∞
(6)

where u and v represent velocity components in the x- and the y-directions, respectively;
ρ, β, ϑ, σ, ϕ, b, K, T, and α are the density of the fluid, Casson fluid parameter, kinematic viscosity,
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the electrical conductivity of fluid, porosity, the local inertia coefficient, porosity, permeability of the
porous medium, fluid temperature, and the thermal diffusivity of the Casson nanofluid, respectively;

and B = B0e
x
2l is the magnetic field by the constant magnetic strength B0. τ1 =

(ρc)p
(ρc) f

is the ratio between

the effective heat capacity of the nanoparticle material and the capacity of the fluid; and DT are the
coefficients of Brownian diffusion and thermophoretic diffusion, respectively; Tw = T∞ + T0e

x
2` and

Cw = C∞ + C0e
x
2` are the temperature and concentration of the wall, respectively; where T∞ and C∞

are the ambient temperature and concentration, respectively. vw = −
√

ϑa
2l e

x
2l S, where S is the suction

and blowing parameter, uw = −a e
x
l is the shrinking velocity of surface, A = A1e

−x
2l is the velocity slip

factor, D = D1 e
−x
2l is the thermal slip factor, and N = N1e

−x
2l is the concentration slip factor.

To obtain the similarity solutions, the following similarity transformations are used:

ψ =
√

2ϑlae
x
2l f (η) , θ(η) =

(T − T∞)

(Tw − T∞)
, ∅(η) =

(C− C∞)

(Cw − C∞)
, η = y

√
a

2ϑl
ex/2l (7)

The stream function ψ is written as a velocity component as:

u =
∂ψ

∂y
, v = − ∂ψ

∂x
(8)

The permeability of porous medium is taken as K = 2K0 e
−x

l . Note, the similarity transformation
is mostly used to reduce the number of variables; the resultant equations are reduced to simple form.
The similarity transformation is used to obtain the similarity solution. From a physical point of view,
the meaning of similarity solutions is that “the velocity, temperature, and concentration profiles of the
flow remain geometrically similar in each transversal section of the surface”. By applying Equations (7)
and (8) into Equations (2)–(6), the continuity equation is satisfied and momentum, energy, and the
concentration equations can be expressed as:

f ′′′ +
β

(1 + β)
f f ′′ − β(2 + FS)

(1 + β)
f ′2 − β(K1 + M)

(1 + β)
f ′ = 0 (9)

1
Pr

θ′′ + f θ′ − f ′θ + Nb∅′θ′ + Nt
(
θ′
)2

+ Ec.
(

1 +
1
β

)
( f ′′ )2 = 0 (10)

∅′′ + Sc
(

f∅′ − f ′∅
)
+

Nt
Nb

θ′′ = 0 (11)

along the boundary conditions

f (0) = S , f ′(0) = −1 + δ
(

1 + 1
β

)
f ′′ (0),

θ(0) = 1 + δTθ′(0), ∅(0) = 1 + δC∅′(0),
f ′(η) → 0, θ(η)→ 0, ∅(η)→ 0 as η → ∞

(12)

where M (range 0 to 0.5), K1 (0–0.2), FS (range 0.05–1.15), Pr, (0.7–2.5), Nb, (0.05–0.5), Nt, (0–0.5),
Ec, (0–0.7) and Sc (0–1) denote the Hartmann number, permeability parameter, Forchheimer
parameter, Prandtl number, Brownian motion parameter, thermophoresis parameter, Eckert number,
and Schmidt number, respectively; δ (range 0–0.5), δT (0–0.5), and δC (0–0.5) are the velocity, thermal,
and concentration slip parameters, respectively. The dimensionless quantities are defined as:

M = 2lσ(B0)
2

ρa , K1 = lϑ
aK0

, FS = 2lb√
K

, Pr = ϑ
α , Sc = ϑ

DB

Nb = τ1DB(Cw−C∞)
ϑ , Nt =

τ1DT(Tw−T∞)
ϑT∞

Ec = a2

CpT0
, , δ = A1

√
ϑa
2l , δT = D1

√
a

2ϑl , δC = N1

√
a

2ϑl

(13)
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Physical quantities of interest include coefficient of skin friction, the local Nusselt number,
and local Sherwood number, which are given by:

C f =

[
µ
(

1+ 1
β

)
∂u
∂y

]
y=0

ρa2 , Nu =
−x
(

∂T
∂y

)
y=0

(Tw− T∞)
, Sh =

−x
(

∂C
∂y

)
y=0

(Cw− C∞)

C f (Rex)
1
2 =

(
1 + 1

β

)
f ′′ (0), Nu(Rex)

− 1
2 = −θ′(0), Sh(Rex)

− 1
2 = −∅′(0)

(14)

3. Linear Stability Analysis

Recently, many authors [39–41] investigated multiple solutions for different types of fluids under
various fluid flow conditions. From an experimental point of view, it is worth investigating if the
solutions are physically reliable. Therefore, linear stability is required to check the reliability of the
solutions. To perform stability analysis, the governing boundary layer in Equations (3)–(5) were
reduced to the following unsteady form, as suggested by Merkin [43] and Yasin et al. [38]:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ϑ

(
1 +

1
β

)
∂2u
∂y2 −

ϑϕ

K
u− b√

K
u2 − σB2u

ρ
(15)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 + τ

[
DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2
]
+

µ

ρcp

(
1 +

1
β

) (
∂u
∂y

)2
(16)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 (17)

where t denotes the time. A new similarity transformation is introduced:

ψ =
√

2ϑlae
x
2l f (η, τ), θ(η, τ) = (T−T∞)

(Tw− T∞)

∅(η, τ) = (C−C∞)
(Cw−C∞)

, η = y
√

a
2ϑl e

x
2l , τ = a

2l e
x
l .t

(18)

Using Equation (18), Equations (15)–(17) can be written as:(
1 + 1

β

)
∂3 f (η, τ)

∂η3 + f (η, τ)
∂2 f (η, τ)

∂η2 − (2 + FS)
(

∂ f (η, τ)
∂η

)2
− (K1 + M)

∂ f (η, τ)
∂η − ∂2 f (η, τ)

∂τ∂η = 0 (19)

∂2θ(η,τ)
∂η2 + Pr

(
f (η, τ)

∂θ(η,τ)
∂η − ∂ f (η, τ)

∂η θ(η, τ) + Nb ∂∅(η,τ)
∂η

∂θ(η,τ)
∂η

+Nt
(

∂θ(η,τ)
∂η

)2
+ Ec.

(
1 + 1

β

)(
∂2 f (η, τ)

∂η2

)2
− ∂θ(η,τ)

∂τ

)
= 0

(20)

∂2∅(η, τ)

∂η2 + Sc
(

f (η, τ)
∂∅(η, τ)

∂η
− ∂ f (η, τ)

∂η
∅(η, τ)

)
+

Nt
Nb

∂2θ(η, τ)

∂η2 − ∂∅(η, τ)

∂τ
= 0 (21)

along with new boundary conditions:

f (0, τ) = S, ∂ f (0, τ)
∂η = −1 + δ

(
1 + 1

β

)
∂2 f (0, τ)

∂η2 , θ(0, τ) = 1 + δT
∂θ(0, τ)

∂η , ∅(0, τ)

= 1 + δC
∂∅(0, τ)

∂η
∂ f (η, τ)

∂η → 0, θ(η, τ) → 0, ∅(η, τ)→ 0 as η → ∞

(22)

To check the stability of the steady flow solutions, where f (η) = f0(η), θ(η) = θ0(η) and satisfy
the boundary value problem in Equations (9)–(12), we write:

f (η, τ) = f0(η) + e−ετ F(η, τ)

θ(η, τ) = θ0(η) + e−ετG(η, τ)

∅(η, τ) = ∅0(η) + e−ετ H(η, τ)

(23)
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where F(η), G(η), and H(η) are small relative values of f0(η), θ0(η), and ∅0(η) respectively; and ε is
the unknown eigenvalues. When we solve the eigenvalue problem in Equations (19)–(22), we have an
infinite set of eigenvalues. From that set, we chose the smallest eigenvalue. If the smallest eigenvalue
(ε) is negative, the flow is unstable and the disturbances grow, which is physically not possible.
If the smallest eigenvalue is positive, it suggests that the solution is stable and physically reliable.
Applying the relations in Equation (23) into Equations (19)–(22), the following equations are obtained:(

1 +
1
β

)
F′′′0 + f0F′′0 + F0 f ′′0 − 2(2 + FS) f ′0F′0 − (K1 + M)F′0 + εF′0 = 0 (24)

1
Pr G′′0 + f0G′0 + F0θ′0 − f ′0G0 − F′0θ0 + Nb∅′0G′0 + NbH′0θ′0 + 2Ntθ′0G′0

+2Ec.
(

1 + 1
β

)
f ′′0 F′′0 + εG0 = 0

(25)

H′′0 + Sc
{(

f0∅′0 + F0H′0
)
−
(

f ′0H0 + F′0∅0
)}

+
Nt
Nb

G′′0 + ScεH0 = 0 (26)

subject to boundary condition:

F0(0) = 0, F′0(0) = δ
(

1 + 1
β

)
F′′0 (0), G0(0) = δTG′0(0), H0(0) = δC H′0(0),

F′0(η)→ 0, G0(η)→ 0, H0(η)→ 0, as η → ∞
(27)

According to Haris et al. [41], to determine the stability of Equations (24)–(27), we need to relax
one boundary condition on F′0(η), G0(η), and H0(η). We relaxed F′0(η)→ 0 as η → ∞ into F′′0 (0) = 1
in this problem. We fixed the all parameters to: β = 1.5, FS = 0.2, K1 = 0.1, Pr = 1, Nt = 0.15, Nb =

0.2, Ec = 0.1, Sc = 1, δ = 0.1, and δC = 0.1, and varied the values of M and δT .

4. Result and Discussion

With the help of the shooting method, the transformed ordinary differential equations (BVPs) in
Equations (9)–(11) along with the boundary conditions in Equation (12) were converted to initial value
problems (IVPs). Equations of IVPs were solved via the Runge Kutta (RK) method. Another method,
the three-stage Lobatto IIIa formula, was developed in bvp4c with the help of finite difference code.
Later, stability analysis was conducted using the bvp4c solver function. According to Rehman et
al. [36], “this collocation formula and the collocation polynomial provides a C1 continuous solution
that is fourth-order accurate uniformly in [a,b]. Mesh selection and error control are based on the
residual of the continuous solution”. The impacts of various physical parameters, such as Forchheimer
parameter, thermal slip parameter, Casson parameter, magnetic parameter, permeability parameter,
Prandtl number, Brownian motion, and thermophoresis parameter, on the flow and heat transfer
characteristics were explored. Figure 1 shows the physical model of the problem.

Figure 2 illustrates the existence of multiple solutions for the variation of suction parameter S for
three different values of the Forchheimmer parameter FS. For all three values of the Forchheimmer
parameter FS = 0.2, 0.7, 1.15, there were critical points Sci, i = 1, 2, 3, where multiple solutions
exist. From a mathematical point of view, we know that the second solution cannot be produced
experimentally, but the second solution is a part of the solution to the system of differential equations
and therefore should be considered. Overall, we focused on the investigation of the occurrence of
multiple solutions for the considered problem. From this profile, we concluded that there are only
dual solutions if suction parameter S satisfies this relation S ≥ Sci, i = 1, 2, 3. For the case of the first
solution, the skin friction coefficient decreases strictly monotonically as the Forchheimer parameter
FS increases. However, the opposite trend was observed for the second solution. Figure 3 depicts
the occurrence of multiple solutions against the values of suction parameter S for two values of
thermal slip parameter δT on heat transfer rate −θ′(0). Multiple solutions exist for the variation in
the thermal slip parameter δT = 0.1, 0.5 only when the suction parameter S ≥ Sc1 = 2.19377 and
S ≥ Sc2 = 2.19358. The heat transfer coefficient declines gradually for the variation in the thermal
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slip parameter δT against the values of suction parameter S. The occurrence of multiple solutions
for the values of mass slip parameter δC against suction parameter can be seen in the concentration
profile in Figure 4. From this profile, the critical point where multiple solutions exist is the same for
the two different values of mass slip parameter δC. The influence of Casson parameter β on velocity
profile f ′(η) for the variation in different physical parameters is shown in Figure 5. From this profile,
the velocity profile and its thickness of boundary layer increase with increasing values of the Casson
parameter for the first solution. However, the momentum boundary layer decreases for 0 ≤ η < 3,
due to the increase in a β plastic dynamic, and the viscosity increased, causing resistance to the fluid
motion. The opposite behavior was observed for the second solution.
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The effect of the magnetic parameter M on velocity profile is shown in Figure 6. The thickness
of the boundary layer and the velocity of the nanofluid flow are enhanced for the first solution
and reduced for the second solution by increasing the strength of the magnetic parameter.
Physically, the thickness of boundary layer decreases by increasing the values of the magnetic
parameter for the second solution because the fluid particle motion diffuses quickly into the
neighboring fluid layers as the values of M increase. Figures 7–9 depict the effect of permeability
parameter K1, velocity slip parameter, and Forchheimmer parameter FS on the velocity profile for
fixed values of various physical parameters. These profiles show that the hydrodynamic boundary
layer increases in the first solution and decreases in the second solution by increasing the strength of
the porosity. However the opposite trend was observed by increasing the Forchheimmer parameter
FS. With increasing the velocity slip parameter δ, the velocity profile for both cases (first and second
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solutions) increases gradually. Figure 10 depicts the effects of the Casson parameter on temperature
profile. The temperature and boundary layer thickness of the nanofluid flow decrease for the first
solution and increase for the second solution. We concluded that, according to the physical point of
view, due to an increase in elasticity, stress parameter thickening of the thermal boundary layer
occurred. The Prandtl number Pr effects on the temperature profile are exhibited in Figure 11.
The temperature of the Casson nanofluid decreases with increasing Pr and the thermal boundary
layer thickness decreases. The Prandtl number can be defined as “the ratio of momentum diffusivity
to thermal diffusivity”, which means a Casson nanofluid with a higher Prandtl number decreases
thermal conductivity, which causes the reduction in the thermal boundary layer thickness.
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Due to the increase in the thermophoresis parameter, the temperature profile and the thermal
boundary layer of the nanofluid for the first and second solutions increase gradually (Figure 12).
With the increase in thermophoresis parameter Nt thermophoresis force increased, which helped
nanoparticles to travel from hot to cold areas. Subsequently, the temperature of the nanofluid
increased. Figure 13 shows the effects of the Brownian motion parameter Nb on the temperature
profile. This profile shows that temperature increased due to the increase in the Brownian motion
parameter; therefore, thermal boundary layer thickness increased. Temperature profile increases
as Eckert number increases; therefore, the thermal boundary layer increases gradually because an
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expansion in dissipation enhances the thermal conductivity of the flow, which upgrades the thermal
boundary layers (Figure 14). The impact of thermophoresis parameter Nt on the nanoparticle volume
fraction ϕ(η) is depicted in Figure 15. The profile of the nanoparticle volume fraction increases
with increasing values of the thermophoresis parameter Nt. Figure 16 presents the effects of the
Brownian motion parameter Nb on the nanoparticle volume fraction. This profile shows that the
nanoparticle volume boundary layer thickness decreases as Nb increases gradually. Figure 17 shows
the effects of Schmidt number on concentration profile. Concentration profiles decrease as Sc increases.
The comparison of the numerical results of our problem drawn from bvp4c and the shooting method
is outlined in Table 1; the results from both methods showed an excellent agreement. The smallest
eigenvalue ε for some values of M and δT are shown in Table 2. These values show that all values of ε

are positive for the first solution and negative for the second solution. Therefore, we concluded that
the first solution is stable while the second solution is unstable.
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Table 1. Comparison between bvp4c method and the shooting method for different values of K1 and M
when β = 1.5, FS = 0.2, Pr = 1, Nt = 0.15, Nb = 0.2, Ec = 0.1, Sc = 1, δ = 0.1, δT = 0.1, and δC = 0.1.

M K1
f”(0)

bvp4c Method Shooting Method

0.5
0.1 1.636957 1.636908
0.2 1.651884 1.651959
0.3 1.666407 1.666527

0
0.1

1.552846 1.552775
1 1.707631 1.707671

1.5 1.769173 1.769238



Symmetry 2019, 11, 412 15 of 17

Table 2. Smallest eigenvalues for different values of M and δT .

M δT
ε1

First Solution Second Solution

0.5
0 0.87456 −1.04592

0.1 0.73948 −1.00248

0.7
0 0.94310 −1.294601

0.1 0.79092 −1.12253

5. Conclusions

Two-dimensional MHD flow of a Casson nanofluid over a shrinking surface in an Extended Darcy
Forchheimer porous medium with the effects of viscous dissipation, velocity, thermal, and concentration
slip were examined numerically in this study. The governing boundary layer equations were converted
into ordinary differential equations before solving them using the shooting method with the Runge Kutta
method. The numerical results showed the existence of dual solutions. To determine which solutions were
stable and unstable, stability analysis was conducted. The values of the smallest eigenvalues indicated that
only first solution was stable. We found ranges of dual solutions, solutions that depended on a suction
parameter, and no solution. Notably, as the Forchheimmer parameter FS increased, strong mass suction
was required to obtain solutions. We found that the velocity profile is indirectly proportional to the velocity
slip parameter in the first solution, and that the hydrodynamic boundary layer increases in the first solution
and decreases in the second solution by increasing the strength of the porosity.
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Nomenclature

u, v velocity components Ec Eckert number
K permeability of the porous medium C w variable concentration at the sheet
b local inertia coefficient Rex local Reynolds number
T Temperature C f skin friction coefficient
T 0 a constant Nu local Nusselt number
T w variable temperature at the sheet S injunction/suction parameter
T∞ ambient temperature Greek letters
C Concentration β Casson parameter
C 0 a constant ε1 smallest eigen value
C∞ ambient concentration τ Stability transformed variable
Py Fluid’s yield stress ε unknown eigen value
B(x) magnetic field ψ stream function
M Hartmann number δ Velocity slip
Pr Prandtl number δT Thermal slip
DB Brownian diffusion δC Concentration slip
DT thermophoretic diffusion µB Plastic dynamic viscosity
vw suction/injection velocity ϕ Porosity
Sh local Sherwood number η transformed variable
Nb Brownian motion parameter α thermal diffusivity
Nt thermophoresis parameter π The product of the component of deformation rate with itself
Sc Schmidt number
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