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Abstract: Leveraging satellite monitoring and machine learning (ML) techniques for water
clarity assessment addresses the critical need for sustainable water management. This
study aims to assess water clarity by predicting the Secchi disk depth (SDD) using satellite
images and ML techniques. The primary methods involve data preparation and SSD
inference. During data preparation, AquaSat samples, originally from the L1TP collection,
were updated with the Landsat 8 satellite’s latest postprocessing, L2SP, which includes
atmospheric corrections, resulting in 33,261 multispectral observations and corresponding
SSD measurements. For inferring the SSD, regressors such as SVR, NN, and XGB, along
with an ensemble of them, were trained. The ensemble demonstrated performance with
an average determination coefficient of R2 of around 0.76 and a standard deviation of
around 0.03. Field data validation achieved an R2 of 0.80. Furthermore, we show that the
regressors trained with L1TP imagery for predicting SSD result in a favorable performance
with respect to their counterparts trained on the L2SP collection. This document contributes
to the transition from semi-analytical to data-driven methods in water clarity research,
using an ML ensemble to assess the clarity of water bodies through satellite imagery.

Keywords: water clarity; Secchi disk depth; machine learning; satellite imagery

1. Introduction
Clean water is indispensable for maintaining public health, ensuring environmental

sustainability, and fostering economic prosperity, underscored by its inclusion in the UN
Sustainable Development Goals [1]. In 2020, an estimated 3.6 billion people, or approxi-
mately 46% of the global population at that time, were reported to lack access to managed
drinking water services [2], a figure projected to rise to 6 billion by 2050 [3].

The contamination of water resources is often attributed to insufficient waste man-
agement in industrial activities [4] and the runoff from agricultural practices [5], posing
significant risks to water quality. Moreover, climate change intensifies these water-related
challenges by altering precipitation patterns [6] and triggering extreme weather events
like droughts and floods [7], compromising water resources’ availability and quality. The
scarcity and degradation of clean water resources have a profound economic impact [8]
and also highlight the urgent need to develop monitoring techniques that are cost-effective,
rapid, and robust to ensure sustainable water management and access.

Water quality monitoring at various points within a water body is costly. It requires
mobilizing material and human resources, ensuring accessibility to each sampling point,
and transporting the samples to a laboratory. Performing this task regularly is economically
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unfeasible for most water bodies. Additionally, scientific studies are still lacking on how ma-
chine learning (ML) algorithms can be effectively utilized and how the latest remote sensing
post-processing algorithms improve existing methods for assessing water clarity in aquatic
environments. A promising solution lies in leveraging satellite monitoring capabilities
for remote sensing combined with machine learning (ML) techniques. These data-driven
approaches offer a pathway to achieving faster, more robust, and economically viable water
clarity assessments. Water clarity indicates the presence or absence of contaminants in the
water, such as suspended solids, dissolved solids, algae, and other pollutants. These factors
influence how light is reflected and transmitted in the water. Consequently, measuring
water turbidity using the Secchi disk depth (SDD) remains a widely used parameter for
assessing water quality.

Using satellites for environmental monitoring encompasses a comprehensive scope
that enables the collection of global observations with detailed local specificity. As reported
by the United Nations Office for Space Affairs [9], by February 2024, the total number of
satellites in orbit reached 12,568, with a significant 61.02% of these launched in the short
span from 2020 to 2023. These satellites have various instruments, including optical cameras,
radar systems, and LiDAR sensors, facilitating remote observations across a broad spectrum
of variables [10]. Such capabilities allow for data collection on Earth’s surface coverage
and detailed ocean metrics like temperature, height, salinity, and color [11]. Beyond
terrestrial and marine environments, satellites offer insights into atmospheric conditions,
including humidity and precipitation [12]. They are instrumental in monitoring natural
disasters and their impacts, such as volcanic eruptions, fires, hurricanes, earthquakes, and
floods [13]. Furthermore, they are important in tracking long-term environmental changes,
including sea-level rise, ice mass fluctuations, and global temperature trends [14]. Among
the most relevant applications is the monitoring of ice sheets, glaciers, and various bodies
of water, such as rivers, wetlands, lakes, and dams, which is vital for assessing changes
in water clarity and overall environmental health [15]. Some available satellites for water
clarity monitoring include the Sentinel and Landsat constellations [16] and geostationary
satellites [17].

This study combines satellite imagery with ML techniques for water clarity assess-
ment by predicting SDD. The methodology leverages the observable changes in water’s
spectral signature caused by pollutant loads, which affect the reflectance across various
electromagnetic spectrum bands. Such alterations facilitate the development of predictive
models linking these spectral changes to SDD, a measure significantly influenced by the
concentration of suspended matter in water [18]. The study employs multifaceted modeling
to operationalize this approach, creating an array of regressors that include decision trees,
kernel-based methods, and neural networks. The optimization of hyperparameters for
these models ensures that the predictive accuracy is maximized. By repeatedly training
these models on various data splits, the study validates their robustness and facilitates the
selection of the most effective model configurations. The culmination of this process is
the formation of an ensemble regressor, combining the strengths of individual models to
provide superior inferences of SDD. This ensemble model is then applied to new satellite
images to generate inferences indicating water clarity, offering a scalable and dynamic
environmental monitoring and management tool.

This document outlines utilizing ML-based regression techniques for estimating water
clarity, specifically by estimating SDD. Its contributions include the following:

• A thorough evaluation of machine learning algorithms to estimate the SDD using the
L1TP (Level-1 Terrain Precision) and L2SP (Level-2 Science Product) Landsat image col-
lections, aimed at assessing the atmospheric processing results of the latter collection.
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• Spatiotemporal evaluation of the enriched dataset within the context of the Valle de
Bravo Dam’s waterbody. This dam is an integral part of the Cutzamala system, which
is crucial for supplying water to large areas of Mexico’s population.

• The public release of the dataset and code encourages external validation of the
findings and facilitates future advancements in water clarity research through
remote sensing.

The subsequent sections of the article are dedicated to elaborating on the related
literature, the dataset preparation process, the methodologies adopted, the outcomes
achieved, and their broader implications for the study of water clarity using remote sensing
technologies. We conclude by summarizing the findings and outlining prospective avenues
for further investigation in this area of environmental research.

2. Literature Review
Secchi’s pioneering experiments aboard the Immacolata Concezione in 1864 laid the

groundwork for understanding light and color behavior in marine environments by mea-
suring sea transparency using various disks [19]. This historical method has evolved with
technology, as exemplified by Yu et al. [20], who mapped MODIS aqua satellite observations
to SDD values in the Yellow and East China seas using a polynomial model, achieving
a significant correlation. Similarly, advancements in theoretical approaches and empiri-
cal algorithms have been developed to improve SDD estimation accuracy. Lee et al. [21]
revised the Law of Contrast Reduction, introducing a new theoretical model based on
the diffuse attenuation coefficient. This shift towards more accurate models is echoed in
studies across various regions, including the Korean Peninsula by Kim et al. [22], which
highlighted spatial and temporal variations in MODIS-derived SDD, and the Arabian
Gulf by Kaabi et al. [23], utilizing a regionally calibrated algorithm to assess water clarity
through empirical correlations.

Further research efforts have extended the utility and accuracy of SDD estimations
in diverse aquatic environments. Alikas and Kratzer [24] developed empirical and semi-
analytical algorithms for lakes and coastal waters with high concentrations of organic matter.
At the same time, Rodrigues et al. [25] applied the mechanistic model by Lee et al. [21]
to Brazilian waters, leading to the QAAR17 model’s development for improved SDD
mapping. Jin et al. [26] mapped the spatial extent of surface water resources and evaluated
their water quality over time using remote sensing and models of SDD, chlorophyll-a
(Chl-a), and suspended solids (SS) concentration. These advancements signify a continuous
effort to refine SDD estimation methods, addressing challenges such as high variability
in water qualities and the need for model adaptations based on specific water types, as
highlighted by recent studies like those by Qing et al. [27], Guo et al. [28], and Zhang
et al. [29], which strive for increased accuracy in SDD estimation through semi-analytical
models and enhanced data analysis techniques.

Recent advancements in remote sensing and ML have significantly improved the
estimation and monitoring of water clarity, particularly in measuring SDD across various
water bodies. Studies by Alsahli and Nazeer [30], Zhou et al. [31], and Zhang et al. [32] have
utilized different atmospheric correction methods, classification-based approaches, and
ML techniques such as generalized regression neural network (GRNN), sparse spectrum
Gaussian process regression (SSGPR), extreme gradient boosting (XGBoost), and random
forest (RF) to enhance SDD estimations. These methods, applied to data from satellites like
Sentinel-2 and Landsat, demonstrate a promising potential for remote sensing in water
clarity monitoring.

Efforts to refine the estimation of water clarity from remote observations include
Golubknov and Golubkov [33], who employ Principal Component Analysis to select
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features and variance analysis for clustering. Shamloo and Sima [34] model the SDD and
Landsat multispectral response with Artificial Neural Networks. Wang et al. [35] harmonize
different remote-sensing satellite platforms, such as SPP, MODIS, and MERIS, using the
minimization of a physics-based cost function, which relates previous field observations
with satellite images. Zheng et al. [36] use the correlation coefficient between specific
satellite wavebands and SDD field measurements to develop an inversion model that
accurately estimates water transparency in Poyang Lake, achieving a high correlation for
bands such as blue and red. Feng et al. [37] emphasize the importance of satellite remote
sensing, interdisciplinary research, and data-sharing frameworks to address the problem
of harmful algal blooms (HABs) in inland waters. Youssef et al. [38] employ Landsat and
Grace satellite imagery and Geographic Information System (GIS) tools to study the impact
of climate change and human activities, such as urbanization and agriculture, on land cover
and water resources in the Eastern Nile Delta.

Furthermore, the integration of neural networks (NNs) and Mixture Density Networks
(MDNs) in studies by Sun [39], Gan et al. [40], and Maciel et al. [41], along with the employ-
ment of a convolutional neural network (CNN) regressor by Schatz et al. [42], indicates
a shift towards more sophisticated analytical models. These models have successfully
mapped satellite data to SDD observations with high accuracy, reflected in R2 values up
to 0.93, and addressing challenges such as sensor-specific errors and data harmonization,
particularly for scenarios with open waters.

3. Data Resources
This section describes the datasets and resources used to analyze water clarity, focusing

on multispectral satellite observations and derived indices. We detail the AquaSat database,
including its composition, preprocessing levels, and the selected Landsat 8 records used
in this study. Additionally, we present the multispectral indices employed to enrich the
feature set and the geographical context of the study site within the Cutzamala System.

3.1. Landsat Image Collections

Our analysis begins with AquaSat [43], a database for water clarity measurement.
This database comprises 603,432 records, including intensity values for various multispec-
tral bands from the Landsat 5, 7, and 8 platforms and depths associated with the SDD.
The data in AquaSat were obtained from the L1TP (Level-1 Terrain Precision) collection,
which corrects for radiometric and geometric issues, including sensor irregularities and
distortions due to the Earth’s rotation. In 2017, the United States Geological Survey (USGS)
introduced the L2SP (Level-2 Science Products) processing, which accounts for atmospheric
effects, such as absorption and scattering phenomena. Consequently, we extract the L2SP
collection values for the geographic locations in the AquaSat database through queries
to Google Earth Engine (GEE) collections. We also deemed it interesting to explore the
result of the regressors applied to the 3 × 3 neighborhood centered at the AquaSat sam-
pling geolocation. Thus, we also extracted the multispectral intensity values from the
GEE collections corresponding to L1TP and L2SP. Due to the presence of stripes in some
Landsat 7 images, the aim to maximize the probability of obtaining high-quality pixels, and
the period covered by the AquaSat water body sampling, our focus is exclusively on the
Landsat 8 platform, yielding 33,261 observations. From there, we gather information on
pixel quality and specific bands: coastal aerosol (0.43–0.45 µm), blue (0.450–0.51 µm), green
(0.53–0.59 µm), red (0.64–0.67 µm), near-infrared (NIR) (0.85–0.88 µm), short-wave infrared
1 (SWIR1) (1.65–2.07 µm), and SWIR 2 (SWIR2) (2.11–2.29 µm), all with a resolution of 30 m
per pixel.
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3.2. Multispectral Indices

The characteristics provided by the satellite multispectral bands are enriched with an
additional set of descriptors derived from studies on water quality, turbidity, suspended
particle studies, and SDD. Partially inspired by the work of Avdan et al. [44], we identified
the following descriptors:

Normalized Difference Water Index (NDWI) [45]: The NDWI is designed to enhance
the presence of water bodies by contrasting the reflectance in the green and near-infrared
(NIR) bands. Water strongly absorbs NIR wavelengths while reflecting green light. There-
fore, a high NDWI value corresponds to the presence of water. The NDWI can be obtained
using the following expression:

NDWI =
Green − NIR

Green + NIR + ϵ
, (1)

where ϵ is a very small number used to avoid indetermination. A higher NDWI gener-
ally indicates clearer water with fewer suspended particles, which often corresponds to
greater SDD.

Normalized Difference Suspended Sediment Index (NDSSI) [46]: NDSSI is tailored to
detect suspended sediments. Blue light is reflected more by suspended particles such as
sand, clay, and organic particles, while clear water absorbs it. NIR, on the other hand, is
absorbed by water and reflected by sediments. NDSSI is computed using:

NDSSI =
Blue − NIR

Blue + NIR + ϵ
. (2)

A high NDSSI indicates higher concentrations of suspended sediments, corresponding
to a lower SDD.

Normalized Multi-band Drought Index (NMDI) [47]: The NMDI is used to detect
water content in vegetation and soil. SWIR bands capture the absorption due to water
content, while NIR reflects the overall moisture presence. The NMDI can be obtained using
the expression:

NMDI =
NIR − (SWIR1 − SWIR2)

NIR + (SWIR1 − SWIR2) + ϵ
. (3)

This index helps detect turbidity and suspended matter in water bodies since clearer
water has different reflectance in SWIR bands from turbid water.

Normalized Difference Turbidity Index (NDTI) [48]: The NDTI quantifies water tur-
bidity by contrasting green and red reflectance. Turbid waters with high sediment levels
reflect more red light and absorb green light. The expression to compute NDTI is given by:

NDTI =
Red − Green

Red + Green + ϵ
. (4)

Higher turbidity corresponds to lower SDD values. Therefore, NDTI is directly related
to water clarity estimation.

These indices capture the interactions of light with water, sediment, and other particu-
lates across different wavelengths. While NDWI and NDSSI focus on water presence and
suspended solids, NMDI emphasizes moisture and particulate matter. Meanwhile, NDTI
relates to optical water properties.

In this methodology, the geolocation provided by AquaSat is utilized to identify
observations corresponding to the Landsat 8 satellite. The image identifier is then used
to formulate a query in Google Earth Engine, retrieving the image associated with that
geographic location and extracting the values of its bands. This process results in a database
of 47,405 samples. From this database, we select those samples whose pixel quality indicates
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cloudless locations [49]. Records that do not contain the value of the SDD, which serves as
the response variable, are discarded, leaving us with a final database of 33,621 records.

3.3. Experimental Field of Interest

Given its significance as a water source affecting the livelihood of millions, we choose
the Cutzamala System as the site for applying the inferences made by the ML regressors.
The Cutzamala system, inaugurated in 1978, is crucial for supplying water to Mexico City
(CDMX) and the State of Mexico, contributing 12 m3/s of water in 2023. This system,
along with the Lerma System, which provides an additional 5.724 m3/s and groundwa-
ter extraction, totaling 58.322 m3/s, meets various needs: urban (67.746%), agricultural
(4.068%), and industrial (23.804%) [50]. The Valle de Bravo Dam, a key component within
the Cutzamala System, spans 1700 ha with a maximum depth of 35 m. Initially designed for
hydroelectric generation, it has evolved into a multipurpose facility, contributing 6 m3/s to
the Cutzamala System’s flow, serving as a flood regulation basin, and becoming a prime
tourist destination as the country’s most significant recreational dam [51]. Fed by seven
streams, including the Amanalco and Molino Rivers, the Valle de Bravo Reservoir plays
a crucial role in the region’s hydrology and environmental sustainability [52]. Analyzing
water clarity within the Valle de Bravo Dam is a starting point for identifying pollution
sources, understanding pollutant behavior and distribution, and potentially optimizing the
operations of potabilization plants that supply drinking water to CDMX.

Specifically, the Valle de Bravo Dam is located in the hydrological basin of the Balsas
River, located at geographic coordinates 19◦21′30′′ North and 100◦11′00′′ West [51] (see
Figure 1). It was completed in 1954 and has a maximum height of 35 m. Along with the El
Bosque and Villa Victoria dams, it is an essential component of the Cutzamala System [50],
collectively supplying 8.313 m3/s and 5.362 m3/s of potable water to CDMX and the State
of Mexico, respectively [51].

(a) (b) (c)

Figure 1. Google Earth maps showing the Valle de Bravo Dam location in Mexico (a), in central
Mexico (b), and locally (c) [53].

4. Methods
We aim to infer the SDD over water bodies from Earth observations over time. To

that end, the inference problem contains two stages. The first focuses on inferring the SDD
on static images, which is solved by constructing an ML-based ensemble regressor. The
second stage pursues the assessment of the SDD over time. Sometimes, the pixels are not
usable in satellite images because clouds cover the view. Thus, we take a state estimation
approach. This approach will serve us well later in cases where the water body is wholly
or partially covered with clouds. Figure 2 illustrates a schematic representation of the
proposed methodology.
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Figure 2. A schematic representation of the methodology for assessing water clarity using machine
learning-based regression techniques.

4.1. Setting Up the Regressors

Theoretical and empirical research shows that a good ensemble selection should in-
clude individual, accurate regressors that make mistakes in different regions of the input
data distribution [54]. Among the many regressors, we select representatives of deci-
sion trees, kernel-based methods, and graphical models. Decision trees establish their
discrimination boundaries parallel to the main axis (although some variations lift this
restriction [55]), and kernel-based methods excel in establishing similarity between obser-
vations non-linearly projected into multidimensional space. In contrast, neural networks
project data into non-linear space in stages, generating increasingly abstract semantic repre-
sentations. By broadening the spectrum of approaches, we aim to reveal the interpretability
of different regions of the dataset. We deliberately dismissed techniques requiring large
spatial support, such as convolutional neural networks (CNNs) or Transformers [56]. Given
the 30 m/pixel resolution of Landsat observations, applying these techniques to such
data might not yield meaningful spatial feature extraction, as even small image patches
represent relatively large areas (e.g., 10 ×10 pixels cover 300×300 m). This spatial scale
may be too coarse for the localized nature of SDD measurements, making them less suitable
for SDD assessments.

In the present approach, a set of regressors is evaluated, including support vector
regression (SVR), neural networks (NNs), and extreme gradient boosting (XGB) [57]. Sub-
sequently, an ensemble of regressors is constructed through an NN.

XGB [58]. We optimized the hyperparameters related to the learning rate
(0.01 ≤ η ≤ 0.3), the percentage of columns sampled in each tree (0.01 ≤ cs ≤ 0.3), the max-
imum depth (1 ≤ mp ≤ 11), the percentage of data sampled to build a tree (30 ≤ ss ≤ 100),
and the regularization term (0 ≤ γ ≤ 100). The hyperparameter search is performed
randomly using a uniform distribution with 1000 samples over the specified interval. The
evaluation is carried out by cross-validation. During hyperparameter selection, 50 decision
trees are generated. With the chosen parameters, a model with 100 trees is trained.

SVR [59]. The goal is to regress the objective curve using a kernel on the input data
that projects them into a non-linear space. We aim to approximate them in this space by
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a straight line within a tolerance margin ϵ. For SVR, we optimize the hyperparameters
related to the constant C in the range [1, 1000], allowing some flexibility in crossing the
defined margin; γ in the range [0.01, 1], determining the flexibility of the decision boundary;
and ϵ in the range [0.01, 0.1], defining the margin within which errors are not penalized.

NN [60]. Using gridded hyperparameter search, the selected neural network model is
chosen from architectures that include between 32 and 512 units per layer, with the number
of layers ranging from one to five. A ReLU activation function and an L1 regularizer on the
layer weights are employed, searching for the optimal regularization constant per layer.
The optimizer is Adam, and the loss function is Mean Square Error (MSE). The regressor is
trained during up to 500 epochs with early stopping based on the loss value in the validation
partition, having patience during ten epochs. The model that achieves the best loss value
during training is retained.

Ensemble. An NN was designed as the underlying structure of the ensemble. Using
gridded search to look for the best hyperparameters for the number of layers (between one
and five) and the number of units per layer (between three and one hundred in steps of five).
The Adam optimizer and an MSE-based loss function were used for parameter optimization.
The training process was carried out for up to 500 epochs, using early stopping with the
patience of ten epochs. The model that showed the best performance on the validation set
was retrained. For training, the predictors are scaled according to the inference models
related to NN, XGB, and SVR before being introduced into the ensemble. The predictions
are then normalized using the training partition before parameter optimization.

Following Afendras and Markatou [61], who offer theoretical foundations, the data
were divided into 50% for training, 20% for validation, and 30% for testing. Using the
training partition, the predictors were normalized while retaining the mean value and
standard deviation across all bands. These parameters were later applied to normalize the
validation and testing splits. Performance is measured using the coefficient of determination
R2 [62]. The procedure was repeated 20 times, conducting the learning process for each of
the 20 random data partitions. This process resulted in a mean value of R2 and a standard
deviation of the performance for each regressor.

4.2. Estimating the SDD over Time

The permanence of remote sensing platforms makes it possible to explore the temporal
assessment of SDD over water bodies. For instance, the first Landsat platform was launched
on 23 July 1972, making it the longest-serving satellite platform for Earth observation
analysis. Although it was only on 1 October 2008 that the full images platform was publicly
available, the length of its records made it possible to revisit historical observations for
analysis. NASA, the USGS, and the Landsat program agencies, have tried to maintain
band compatibility over time. In particular, they have added the Quality Assessment Band
(BQA) to check for the presence of clouds, cloud shadows, snow, and ice, all of which
prevent the correct assessment of SDD by distorting observations intended to be made of
the surface reflectance.

Additionally, Landsat images undergo several transformations from when an image is
captured until the data are delivered to users. These transformations include radiometric,
geometric, and atmospheric corrections, notwithstanding the corresponding data compres-
sion. In order to obtain a robust estimate of the SDD over time, we have devised the use
of a Kalman filter. The state estimation of the Kalman filter will marginalize the complex
effects of the different data processing stages. However, it will serve as an imputation
strategy for missing values in the presence of bad BQA values.

Each evaluation of the SDD in the water body estimates its depth for each image
pixel. Added value can be obtained by considering the observations over time zk and the
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corresponding measurement noise covariance Rk. We model the estimation of the state
of the system x̂k = [zk, żk] and the corresponding transition noise covariance Qk using
a Kalman filter. The prediction equations for the state x̂k|k−1 and corresponding state
covariance Pk|k−1 at time k given the measurements up to time k − 1 can be expressed
by [63]:

x̂k|k−1 = Ax̂k−1|k−1,
Pk|k−1 = APk−1|k−1AT + Qk,

(5)

where A =

[
1 ∆t
0 1

]
is the state transition matrix, and Qk is the system noise covariance

matrix. On the other hand, the equations for update are given by:

Kk = Pk|k−1HT
(

HPk|k−1HT + Rk

)−1
,

x̂k|k = x̂k|k−1 + Kk

(
zk − Hx̂k|k−1

)
,

Pk|k = (I − KkH)Pk|k−1,

(6)

where the observation model H is represented as H =
[

1 0
]
, Kk stands for the Kalman

filter gain at time k, and I is the identity matrix. In this formulation, x̂k|k contains the
best estimate for the SDD at time k. In contrast, x̂k|k−1 contains the best prediction for the
measurement at time k, particularly useful when clouds occlude the surface covered by a
specific pixel or the BQA value discards its employment.

5. Results
In this section, we analyze the performance of regressors in the spatiotemporal in-

ference of the SDD. The regressors are programmed in Python. For the neural networks,
we used TensorFlow 2.12.1. For XGBoost, we used XGBoost 2.0.0; for SVR, we used
scikit-learn 1.5.1.

5.1. Predictors

Upon verifying the input data, we found that while the predictors can range between
0 and 216, they predominantly fall within the range of 5000 to 13,000. The response variable
is generally between 0 and 10 m but can reach values higher than 60 m. The normalized
mutual information (NMI) between variables associated with ultra-blue and blue colors
registers a value of 0.350. Similarly, the NMI between SWR1 and SWR2 is 0.484. However,
the NMI concerning the response variable is generally low, oscillating between 0.008
for SWR2 and 0.046 for the red band. Figure 3 illustrates the relationship between the
multispectral bands and the SDD response variable. The linear correlations between the
coastal aerosol, blue, red, green, NIR, SWIR1, and SWIR2 bands and the SDD variable are
−0.06, −0.09, −0.18, −0.18, −0.11, −0.11, and −0.10, respectively. Please note that we
multiplied the integer intensity values in the Landsat images by 0.0000275, as recommended
by the USGS, to compute the band reflectance.

Derived from the multispectral bands, we investigated the incorporation of multi-
spectral indices, including the NDWI, NMDI, NDTI, and NDSSI (see Section 3.2). These
indices allow for the establishment of non-linear relationships between bands to enrich
the feature set. The multispectral indices were constrained to values between −1 and 1 for
subsequent use.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3. Relationship between the multispectral bands and the SDD. The linear correlation between
the coastal aerosol (a), blue (b), green (c), red (d), NIR (e), SWIR1 (f), and SWIR2 (g) with the SDD
variable is −0.06, −0.09, −0.18, −0.18, −0.11, −0.11, and −0.10.

5.2. Regressors Training

For the XGB and SVR regressors, the best hyperparameters for models with the lowest
loss on the validation partition were identified through a random search in the parameter
space. The XGB regressors included values for the learning rate (η), column sample by
tree (cs), maximum depth (md), subsample ratio (ss), regularization term (γ), and number
of estimators. For SVR regressors, the optimal parameters comprised the penalty term
(C), epsilon (ϵ), and kernel coefficient (γ). The best parameters for the NN and ensemble
regressors were obtained through a grid search across the architectural space. For the NN
regressors, the optimal architectures varied in terms of the number of layers and neurons
per layer, with layer counts ranging from two to four and neurons per layer ranging from
32 to 512. The last layer in each architecture contained a single neuron, which is not shown
in the table. For the ensemble regressors, the architectures consisted of two to four layers,
with neuron counts tailored for each method to achieve the best performance. The specific
hyperparameters for all regressors are summarized in Table 1. The table provides details
about each regressor type, including whether the L1TP (T) or L2SP (S) collection was used,
whether only bands (b) or both bands and spectral indices (s) were included, and whether
the central pixel (c) or the 3 × 3 neighborhood (n) was utilized. The results were obtained
using the best regressor for each method and repeating the data partition 20 times.

The results obtained are described and illustrated in Table 2 and Figure 4, showing
that XGB and SVR perform similarly across all options. Interestingly, the L1TP collection
appears to offer marginally better results. Superior performance is achieved with the neural
network, improving the determination coefficient by approximately 0.09 consistently, except
for the L2SP collection when using multispectral indices. However, the ensemble appears
to outperform the different options, offering R2 values around 0.75 for almost all cases,
except when using the central pixel in the L2SP collection, where its performance drops to
around 0.66–0.69.
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Table 1. Regressor hyperparameters. The table shows the best hyperparameters for the constructed
regressors. The regressors include those where the image source corresponds to the L1TP (T) or L2SP
(S) collection, where either the bands (b) or the bands and spectral indices (s) were employed, and
whether the central (c) pixel or its 3 × 3 neighborhood (n) was used. “n.l.” stands for neurons per
layer. The last layer of the NN and the ensemble (Ens) contains one neuron that is not shown.

Method XGB SVR NN Ens
η cs md ss γ n C ϵ γ n. l. n. l.

Tbc 0.022 0.900 10 0.418 0.131 430 50.2 0.984 0.101 480, 448, 32, 32 23, 39, 90
Tbn 0 0.418 9 0.491 0.828 490 13.359 0.301 0.107 64, 288 3, 15
Tsc 0 0.900 8 0.791 0.111 420 6.564 0.579 0.100 96, 256 13, 18
Tsn 0 0.455 8 0.700 0.343 370 11.107 0.050 0.109 128, 416, 32 3, 81, 51
Sbc 0 0.955 7 0.427 0.899 380 26.93 0.988 0.104 256, 192, 96 48, 6, 3
Sbn 0 0.709 9 0.518 0.313 240 10.924 0.252 0.101 416, 416 98, 63
Ssc 0 0.900 7 0.573 0.253 350 5.563 0.681 0.107 512, 160 13, 66
Ssn 0 0.600 9 0.318 0.667 480 10.58 0.028 0.107 32, 416 43, 90, 96

Table 2. Regressor performance evaluation. The table summarizes the regressors’ results for the
problem of determining the SDD (see also Figure 4). As expected, the ensemble proved to be the
best regressor (highlighted in bold). In the column names, T indicates that the data come from the
L1TP collection and S from L2SP, b signifies that the satellite bands were used or s that spectral
indices were computed, and c denotes that only the central pixel was employed or n that a 3 × 3
neighborhood was used.

Method Tbc Tbn Tsc Tsn Sbc Sbn Ssc Ssn

XGB 0.51 ± 0.02 0.54 ± 0.03 0.56 ± 0.02 0.59 ± 0.03 0.51 ± 0.02 0.54 ± 0.02 0.53 ± 0.03 0.58 ± 0.02
SVR 0.52 ± 0.01 0.56 ± 0.01 0.57 ± 0.02 0.59 ± 0.02 0.50 ± 0.02 0.54 ± 0.02 0.55 ± 0.01 0.57 ± 0.02
NN 0.61 ± 0.02 0.65 ± 0.02 0.63 ± 0.02 0.64 ± 0.02 0.59 ± 0.02 0.62 ± 0.02 0.60 ± 0.02 0.60 ± 0.02
Ensemble 0.76 ± 0.03 0.76 ± 0.03 0.74 ± 0.03 0.75 ± 0.03 0.66 ± 0.01 0.75 ± 0.03 0.69 ± 0.02 0.76 ± 0.03

Figure 4. Regressor performance evaluation. The figure illustrates the performance of the regressors
for the problem of determining the SDD (see also Table 2). The ensemble was the best-performing
regressor. In the column names, T indicates that the data comes from the L1TP collection, and S
denotes data from L2SP. b signifies that the satellite bands were used, while s indicates that spectral
indices were computed. Additionally, c denotes that only the central pixel was used, whereas n
indicates that a 3 × 3 neighborhood was employed.

5.3. Verification Through Fieldwork

Landsat images are downloaded through the USGS platform during operation using
their Python API (note that we employed GEE-downloaded images to construct the regres-
sors). The polygon defining the dam area is set to obtain the multispectral values that feed
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the ensemble regressor. Typical examples are shown in Figure 5. Despite the observation
resolution of Landsat being 30 m/pixel, the presence of clustered zones with similar depths
along the dam is noticeable. The pixels in the images were filtered, considering only those
without clouds or cloud shadows.

(a) (b)

Figure 5. Predictions of the SDD in the Valle de Bravo Dam. (a) Even with a resolution of 30 m/pixel,
characteristic of Landsat, clusters with similar depths can be observed. (b) The pixel quality was
examined to determine which portions contained reliable information for processing.

The availability of satellite data from Landsat 8 facilitates temporal analysis based on
the sequence of observations. For this purpose, the mean value of the SDD predictions for
the entire dam area and its standard deviation are used to monitor their evolution over
time. To achieve a robust estimation, the Kalman filter is applied. Experimentally, we
define a process Q variance with a value of 0.2. From 5 December 2013 to 6 July 2023,
satellite observations were collected, obtaining 110 images. Figure 6 illustrates the temporal
variations in the SDD, with notable peaks at the end or beginning of each year, followed by
a decline a few months later. Additionally, there is a slight but perceptible reduction in the
SDD over time, with an average decrease of 3.42 cm per year.

We analyzed the contribution of neighboring pixels by incorporating a 3 × 3 pixel
neighborhood (90 m × 90 m) into the model. As shown in Table 2, this approach led to
improved performance. However, the area covered by 3 × 3 pixels in a Landsat image is
substantial, and special care must be taken during sampling to account for the effects of
shallow waters and the presence of soil. These factors can compromise remote sensing
observations, particularly in inland water bodies, as highlighted by the field sampling. For
our application in the Valle de Bravo Dam, we ultimately employed the 1 × 1 pixel Tbc
regressor, which provided more localized and reliable results.
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Figure 6. Observations and robust estimation of the average SDD. The data indicate peaks at the end
of/beginning of the year, followed by valleys a few months later. A gradual decrease in the SDD is
observed throughout the observation interval.

5.4. Field Data Validation

A field visit to the Valle de Bravo Reservoir was conducted to obtain field-measured
values. Direct sampling is a fundamental tool for constructing models using satellite images,
as it provides ground truth. The reference values, in turn, enable the construction and
refinement of predictions made by these models.

The field visit necessitates careful planning, determination of sampling sites, and accu-
rate collection and processing of quality parameters during sampling and laboratory work.
These steps are important for obtaining and calibrating models with reliable data. Typically,
selecting sites for representative reservoir sampling is based on assumptions regarding its
discharges. Even in water clarity studies utilizing remote sensing, the determination of
these sites can be somewhat arbitrary.

For this study, we followed a stratified sampling approach to maximize the multispec-
tral diversity of the study area. Specifically, the intensity values were first normalized by
evenly dividing the range of each band into 12 levels. This means that each group was
represented as a vector of values between 0 and 11, with as many positions as spectral
bands in the satellite images. Subsequently, all possible groups were identified, and the
percentage of pixels belonging to each was calculated. We retained groups containing
more than 5% of the pixels, while the remaining groups were assigned to the most similar
one using the smallest Euclidean distance. This approach ensures that the samples are
distributed across areas with the highest potential diversity of results.

On 7 October 2022, Valle de Bravo Dam measurements coincided with a Landsat 8
satellite overflight. During our fieldwork, observations were taken from forty points, with
geolocation and measurement of the SDD y at each site. Subsequently, we downloaded the
image set corresponding to this observation and performed inference calculations using
the described procedure. Figure 7a illustrates the portion of the dam that was not obscured
by clouds or over which a cloud was not projected (Figure 7b), highlighting the location
of the points and the difference between the reference value and the prediction colored.
To obtain the prediction ŷ, an interpolation function was created to evaluate the sampling
geo-coordinates. Figure 7c displays the difference between the field measurements and the
predictions. The coefficient of determination was found to be R2 = 0.80.
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(a) (b)

(c)

Figure 7. Comparison and error analysis of SDD predictions. Correlation between observed and
predicted values shows a strong positive relationship. (a) The grayscale intensity of the sample point
reflects the difference from the reference in meters. (b) illustrates some difficulties in extending the
support area as some outbound regions may lie on shallow water or soil. (c) Relationship between
the measurements and inferences. The system tends to underestimate the SDD. The coefficient of
determination has a value of R2 = 0.80.

The present approach consists of regressors for XGB, SVR, NN, and an ensemble,
which require fine-tuning of their hyperparameters. In addition, XGB, SVR, and NN
require preparing the regressors before the ensemble. In this case, we repeated the training
stage 20 times with different data splits for training, validation, and testing. Note that
SVR requires the most time, while XGB is the fastest. Also, the time taken to fine-tune
the hyperparameters for a 3 × 3 neighborhood does not increase linearly with the number
of predictors.

6. Discussion
With the increasing availability of the data corpus [43], research efforts to determine

water clarity have shifted from semi-analytical approaches [21] to data-driven methods.
Likewise, new insights into surface reflectance scattering and absorbing effects [16], due
to temporal, spatial, and spectral variations in the presence of gases, aerosols, and water
vapor, underscore the importance of evaluating available datasets. Unlike past efforts, we
updated the Aquasat dataset predictors, obtained with L1TP processing, with intensity
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values corresponding to the newly developed L2SP image post-processing algorithms [64].
While the L1TP processing includes geophysical corrections related to ground control
point (GCP) and digital elevated map (DEM) corrections, L2SP adds additional corrections
for atmospheric effects related to light absorption and scattering. Since L2SP attempts to
remove atmospheric interference, the observations estimate the best surface reflectance,
aiming to make the inferences more trustworthy [65]. Note that the cloud-corrected L2C2
interpolates over clouds, whereas L2SP flags the presence of clouds. We have preferred the
latter option to reduce misinterpretations of the surface reflectance values.

To assess the capacity of this new dataset to infer manually obtained SSD observations,
we constructed a baseline machine learning scheme with kernel, decision trees, and neural
network-based ML schemes. The resulting ML ensemble, trained with 33,261 measurements
originally part of Aquasat, has been updated and tested in the field on a water body crucial
for millions of people [50]. Note that the aggregated analysis has allowed obtaining a
general trend for water clarity at the Valle de Bravo Dam, as illustrated in Figure 7, which
highlights potential applications of the present approach.

The techniques employed to solve the SDD problem have evolved significantly since
Secchi’s pioneering work [19]. These methods include polynomial models [20], empirical
and semi-analytical algorithms [24], mechanistic models [25,27–29], and ML techniques
such as generalized regression neural networks (GRNNs), sparse spectrum Gaussian-
process regression (SSGPR), XGBoost, and random forest (RF). The present approach
contributes by exploring various ML techniques to benchmark an updated dataset and
apply it to a novel water body.

The selected regressors represent the most commonly used non-probabilistic ap-
proaches discussed in the literature [54], purposely chosen to offer a wide spectrum of
criteria and ensembled to cover different dataset regions. Particularly for this application
with inland water bodies, where the coarse resolution of satellite images and the punctual
nature of SDD sampling pose challenges, the chosen approach proved appropriate. In
our case, employing other techniques, such as CNNs [42], which are more suitable for
open-water scenarios, is less feasible.

Our results show that for the case of calculating SDD, the L1TP collection offers
acceptable results compared to those obtained from the L2SP collection. This result is
consistent with Li et al. [66], who showed that the former provided better performance
when calculating land surface temperature and emissivity from L1TP and L2SP. Other
results, such as those by Sun et al. [67], show that L2SP outperforms L1TP in reflectance
consistency, particularly in applications such as NDVI calculation. However, when atmo-
spheric conditions are minimal, such as where the effects of scattering, absorption, and
refraction are reduced or negligible, L1TP is sufficiently good. Some of the reasons for these
results may be related to overcorrection in the L2SP collection, particularly concerning
water turbidity, interpolation, or smoothing, especially along water–land transitions. In
this sense, the L1TP collection may more faithfully preserve the original radiance values,
particularly useful in complex environments such as water bodies. These ideas will be of
interest to future research.

The results suggest that atmospheric correction in the L2SP does not improve the
results obtained with L1TP. A possible way to gain intuition about this situation is by imple-
menting atmospheric correction mechanisms on the L1TP collection, such as ACOLITE [68],
6S (Second Simulation of a Satellite Signal in the Solar Spectrum) [69], and iCOR [70],
followed by a comparison with the results of the regressors built on top of the L2SP. This
comparison will be the subject of future research.

This manuscript studies the construction of machine learning regression schemes
from satellite images. Nonetheless, the number of available remote sensing platforms
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useful for satellite-based observations has steadily increased over recent years [9], which
could potentially enhance spatiotemporal analysis, particularly in dealing with seasonal
or episodic events. It is important to note that the in situ observations and the satellite
overflight dates must align for the construction of the regressors. In our case, AquaSat [43]
was constructed using Landsat satellite passes. Nonetheless, several strategies have been
proposed to harmonize remote sensing observations across different platforms [71,72],
including Sentinel, PlanetScope, MODIS, and others. These approaches offer an exciting
opportunity to enhance the spatiotemporal analysis of water bodies. However, this requires
obtaining reference values from the newer platform to assess performance properly.

7. Conclusions
As pressure on water resources increases, continuous monitoring of water bodies

becomes more important. While this is especially true for water bodies intended for human
consumption and agriculture, it is essential to remember that water bodies are an integral
and essential part of ecosystems on which the life and well-being of plants and animals
depend. This article evaluates the feasibility of using machine learning algorithms and
remote sensing from Landsat satellite images to estimate water clarity by determining
SDD. In particular, we compare decision tree-based schemes, kernel-based approaches,
neural networks, and regressor ensembles. Additionally, we compare the effectiveness of
Collection 2 at its processing levels: Level-1 Terrain Precision (L1TP) and Level-2 Surface
Product (L2SP). Moreover, we examine the performance obtained when using the central
pixel, which indicates the geographical position of the reference sample and the use of pixels
surrounding that position. The results indicate that machine learning-based approaches
can effectively estimate SDD.

To demonstrate the proposed scheme, we reviewed a key water body that supplies
water resources to CDMX. We conducted a historical analysis of water clarity, highlighting
its temporal trends. During field visits, we collected samples, which were subsequently
verified using the developed system, yielding satisfactory results. This study provides
insights into the spatiotemporal distribution of water quality in strategic reservoirs, such
as the Valle de Bravo Dam, which supplies Mexico’s most populated city. The model
was incorporated into a Geographical Information System used by CDMX authorities to
monitor the water clarity of the Valle de Bravo Dam [73]. Consistent monitoring will sup-
port informed decision-making regarding water management and treatment and effective
communication with citizens.

This research may be enriched with data from precipitation measurements, water
runoff flows, demographic density analysis, and research into water currents within the
dam, which would improve the understanding of water movement and augment the
current system’s efficacy. Additionally, it will be interesting to explore why the L1TP
collection continues to provide competitive performance compared to the post-processed
L2SP collection. Perhaps this can be supported by the implementation of alternative
atmospheric correction methods. Another interesting direction for future research may
involve harmonizing across multiple remote-sensing platforms to increase monitoring
resilience in the face of seasonal or episodic events.
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