Glacial Lake Inventory and Lake Outburst Flood/Debris Flow Hazard Assessment after the Gorkha Earthquake in the Bhote Koshi Basin
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Glacial Lake and Landslide Inventory Mapping
- (a)
- Name: some glacial lakes were annotated according to the topographical map of 1978.
- (b)
- Longitude and latitude: the central location of a glacial lake was calculated automatically in ArcGIS based on WGS84 coordinates.
- (c)
- Elevation (m a.s.l.): the central elevation of a glacial lake was derived from the DEM.
- (d)
- Dam type: moraine dam, ice dam and bedrock dam, which was specified based on remote sensing images and the topography map (1:100,000; produced in 1978).
- (e)
- Area (km2): the glacial lake surface area was calculated automatically in ArcGIS 10.2, based on UTM projection zone 48 on a WGS84 ellipsoid.
- (f)
- Dam width (m): these values were estimated using Google Earth.
- (g)
- Volume (m3): each glacial lake’s volume was estimated using Equation (1), which was established between lake areas and volumes of lake water based on data from 33 Himalayan glacial lakes measured in the field [34],
- (h)
- Estimated freeboard values (1, or 0): the height of the freeboard is difficult to measure by remote sensing but is a crucial parameter that influences dam failure. Here, we estimated whether the height was larger than only a few meters (the value was 1) or indeed close to zero (the value was 0) [35], so it is a semiquantitative parameter.
- (i)
- Potential triggering impacts: whether the mass movement around a glacial lake can enter into the lake, such as rockfalls (R), landslides (L), ice and glacier avalanches (IGA), debris flows (DF) or flood from a lake situated upstream (ULF). If there is no mass movement, the value was null. This was identified based on Google Earth and the slope maps derived from the DEM, so it is also a semiquantitative parameter.
- (j)
- Distance to mother glacier (m): the distance between the back edge of a glacial lake to the mother glacier. If they are in contact, the value was 0; if there is no glacier around the lake, the value was set to null.
- (k)
- Distance to the nearest settlement (m): the drainage distance from the glacial lake dam to the nearest major settlement was measured using ArcGIS 10.2.
- (l)
- Drainage gradient (°): the average drainage gradient was estimated by a DEM-derived drainage map.
3.2. Glacial Lake Outburst Hazard Assessment
3.2.1. Glacial Lake Outburst Potential Assessment
3.2.2. Flow Magnitude Assessment
4. Results
4.1. Glacial Lake Inventory
4.2. Glacial Lake Outburst Flood Hazard
5. Discussion
5.1. Glacial Lake Inventory
5.2. Glacial Lake Outburst Hazard
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bolch, T.; Stoffel, M. The State and Fate of Himalayan Glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Xu, Y.; You, Q.; Flügel, W.-A.; Pepin, N.; Yao, T. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 015101. [Google Scholar] [CrossRef]
- Song, C.; Sheng, Y.; Wang, J.; Ke, L.; Madson, A.; Nie, Y. Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas. Geomorphology 2016, 280. [Google Scholar] [CrossRef] [Green Version]
- Harrison, S.; Kargel, J.S.; Huggel, C.; Reynolds, J.M.; Vilímek, V. Climate change and the global pattern of moraine-dammed glacial lake outburst floods. Cryosphere 2018, 12, 1195–1209. [Google Scholar] [CrossRef] [Green Version]
- Cenderelli, D.A.; Wohl, E.E. Peak discharge estimates of glacial-lake outburst floods and “normal” climatic floods in the Mount Everest region, Nepal. Geomo 2001, 40, 57–90. [Google Scholar] [CrossRef]
- Worni, R.; Huggel, C.; Stoffel, M. Glacial lakes in the Indian Himalayas—From an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes. Sci. Total Environ. 2013, 468, S71–S84. [Google Scholar] [CrossRef]
- Richardson, S.D.; Reynolds, J.M. An overview of glacial hazards in the Himalayas. Quat. Int. 2000, 65–66, 31–47. [Google Scholar] [CrossRef]
- Nie, Y.; Liu, Q.; Wang, J.; Zhang, Y.; Sheng, Y.; Liu, S. An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis. Geomorphology 2018, 308, 91–106. [Google Scholar] [CrossRef]
- Yamada, T.; Sharma, C. Glacier lakes and outburst floods in the Nepal Himalaya. IAHS Publ. Publ. Int. Assoc. Hydrol. Sci. 1993, 218, 319–330. [Google Scholar]
- Kattelmann, R. Glacial lake outburst floods in the Nepal Himalaya: A manageable hazard? Nat. Hazards 2003, 28, 145–154. [Google Scholar] [CrossRef]
- Falátková, K. Temporal analysis of GLOFs in high-mountain regions of Asia and assessment of their causes. Acta Univ. Carol. Geogr. Univ. Karlov. 2016, 51, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Worni, R.; Huggel, C.; Clague, J.J.; Schaub, Y.; Stoffel, M. Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective. Geomo 2014, 224, 161–176. [Google Scholar] [CrossRef]
- ICIMOD. Glacial Lakes and Glacial Lake Outburst Floods in Nepal; International Centre for Integrated Mountain Development: Kathmandu, Nepal, 2011. [Google Scholar]
- Khanal, N.R.; Mool, P.K.; Shrestha, A.B.; Rasul, G.; Ghimire, P.K.; Shrestha, R.B.; Joshi, S.P. A comprehensive approach and methods for glacial lake outburst flood risk assessment, with examples from Nepal and the transboundary area. Int. J. Water Resour. Dev. 2015, 31, 219–237. [Google Scholar] [CrossRef] [Green Version]
- Cui, P.; Dang, C.; Cheng, Z.L.; Scott, K.M. Debris Flows Resulting From Glacial-Lake Outburst Floods in Tibet, China. Phys. Geogr. 2010, 31, 508–527. [Google Scholar] [CrossRef]
- Komori, J.; Koike, T.; Yamanokuchi, T.; Tshering, P. Glacial Lake Outburst Events in the Bhutan Himalayas. Glob. Environ. Res. 2012, 16, 59–70. [Google Scholar] [CrossRef]
- Veh, G.; Korup, O.; Roessner, S.; Walz, A. Detecting Himalayan glacial lake outburst floods from Landsat time series. Remote Sens. Environ. 2018, 207, 84–97. [Google Scholar] [CrossRef]
- Kershaw, J.A.; Clague, J.J.; Evans, S.G. Geomorphic and sedimentological signature of a two-phase outburst flood from moraine-dammed Queen Bess Lake, British Columbia, Canada. Earth Surf. Processes Landf. 2010, 30, 1–25. [Google Scholar] [CrossRef]
- Worni, R. Challenges of modeling current very large lahars at Nevado del Huila Volcano, Colombia. Bull. Volcanol. 2012, 74, 309–324. [Google Scholar] [CrossRef]
- Manville, V. Palaeohydraulic analysis of the 1953 Tangiwai lahar; New Zealand’s worst volcanic disaster. Acta Vulcanol. 2004, 16, 1000–1015. [Google Scholar] [CrossRef]
- Mergili, M.; Schneider, D.; Worni, R. Glacial Lake Outburst Floods (GLOFs): Challenges in prediction and modelling. In Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Rome, Italy, 14 June 2011; pp. 973–982. [Google Scholar]
- Breien, H.; Blasio, F.V.D.; Elverhøi, A.; Høeg, K. Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway. Landslides 2008, 5, 271–280. [Google Scholar] [CrossRef]
- Iverson, R.M. Elementary theory of bed-sediment entrainment by debris flows and avalanches. J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef]
- Lugon, R.; Stoffel, M. Rock-glacier dynamics and magnitude–frequency relations of debris flows in a high-elevation watershed: Ritigraben, Swiss Alps. Glob. Planet. Chang. 2010, 73, 202–210. [Google Scholar] [CrossRef]
- Pareek, N.; Sharma, M.L.; Arora, M.K. Impact of seismic factors on landslide susceptibility zonation: A case study in part of Indian Himalayas. Landslides 2010, 7, 191–201. [Google Scholar] [CrossRef]
- Huang, R.; Li, W. Post-earthquake landsliding and long-term impacts in the Wenchuan earthquake area, China. Eng. Geol. 2014, 182, 111–120. [Google Scholar] [CrossRef]
- Lin, C.W.; Shieh, C.L.; Yuan, B.D.; Shieh, Y.C.; Liu, S.H.; Lee, S.Y. Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: Example from the Chenyulan River watershed, Nantou, Taiwan. Eng. Geol. 2004, 71, 49–61. [Google Scholar] [CrossRef]
- Osti, R.; Bhattarai, T.N.; Miyake, K. Causes of catastrophic failure of Tam Pokhari moraine dam in the Mt. Everest region. Nat. Hazards 2011, 58, 1209–1223. [Google Scholar] [CrossRef]
- Xu, D. Characteristics of debris flow caused by outburst of glacial lake in Boqu river, Xizang, China, 1981. GeoJournal 1988, 17, 569–580. [Google Scholar] [CrossRef] [Green Version]
- Cook, K.L.; Andermann, C.; Gimbert, F.; Adhikari, B.R.; Hovius, N. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science 2018. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.-w.; Huang, Y.-d.; Yao, L.-k.; Alradi, H. Size and spatial distribution of landslides induced by the 2015 Gorkha earthquake in the Bhote Koshi river watershed. J. Mt. Sci. 2017, 14, 1938–1950. [Google Scholar] [CrossRef]
- Tanoli, J.I.; Ningsheng, C.; Regmi, A.D.; Jun, L. Spatial distribution analysis and susceptibility mapping of landslides triggered before and after Mw7. 8 Gorkha earthquake along Upper Bhote Koshi, Nepal. Arabian J. Geosci. 2017, 10, 277. [Google Scholar] [CrossRef]
- Khanal, N.R.; Hu, J.M.; Mool, P. Glacial Lake Outburst Flood Risk in the Poiqu/Bhote Koshi/Sun Koshi River Basin in the Central Himalayas. Mt. Res. Dev. 2015, 35, 351–364. [Google Scholar] [CrossRef]
- Petrov, M.A.; Sabitov, T.Y.; Tomashevskaya, I.G.; Glazirin, G.E.; Chernomorets, S.S.; Savernyuk, E.A.; Tutubalina, O.V.; Petrakov, D.A.; Sokolov, L.S.; Dokukin, M.D. Glacial lake inventory and lake outburst potential in Uzbekistan. Sci. Total Environ. 2017, 592, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, I.J.; Montgomery, D.R.; Korup, O. Landslide erosion controlled by hillslope material. Nat. Geosci. 2010, 3, 247. [Google Scholar] [CrossRef]
- Lateltin, O.; Haemmig, C.; Raetzo, H.; Bonnard, C. Landslide risk management in Switzerland. Landslides 2005, 2, 313–320. [Google Scholar] [CrossRef]
- Huggel, C.; Haeberli, W.; Kääb, A.; Bieri, D.; Richardson, S. An assessment procedure for glacial hazards in the Swiss Alps. CaGeJ 2004, 41, 1068–1083. [Google Scholar] [CrossRef]
- Mckillop, R.J.; Clague, J.J. Statistical, remote sensing-based approach for estimating the probability of catastrophic drainage from moraine-dammed lakes in southwestern British Columbia. Glob. Planet. Chang. 2007, 56, 153–171. [Google Scholar] [CrossRef]
- Wang, W.; Yao, T.; Gao, Y.; Yang, X.; Kattel, D.B. A first-order method to identify potentially dangerous glacial lakes in a region of the southeastern Tibetan Plateau. Mt. Res. Dev. 2011, 31, 122–130. [Google Scholar] [CrossRef]
- Cook, S.J.; Kougkoulos, I.; Edwards, L.A.; Dortch, J.; Hoffmann, D. Glacier change and glacial lake outburst flood risk in the Bolivian Andes. Cryosphere Discuss. 2016. [Google Scholar] [CrossRef] [Green Version]
- Kougkoulos, I.; Cook, S.J.; Jomelli, V.; Clarke, L.; Symeonakis, E.; Dortch, J.M.; Edwards, L.A.; Merad, M. Use of multi-criteria decision analysis to identify potentially dangerous glacial lakes. Sci. Total Environ. 2018, 621, 1453–1466. [Google Scholar] [CrossRef]
- Emmer, A.; Cochachin, A. The causes and mechanisms of moraine-dammed lake failures in the Cordillera Blanca, North Amerian Cordillera, and Himalayas. AUC Geogr. 2013, 48, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Westoby, M.J.; Glasser, N.F.; Hambrey, M.J.; Brasington, J.; Reynolds, J.M.; Hassan, M.A. Reconstructing historic Glacial Lake Outburst Floods through numerical modelling and geomorphological assessment: Extreme events in the Himalaya. Earth Surf. Processes Landf. 2014, 39, 1675–1692. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.J.; Cheng, Z.L.; Su, P.C. The relationship between air temperature fluctuation and Glacial Lake Outburst Floods in Tibet, China. Quat. Int. 2013, 321, 78–87. [Google Scholar] [CrossRef]
- Rounce, D.R.; Mckinney, D.C.; Lala, J.M.; Byers, A.C.; Watson, C.S. A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya. Hydrol. Earth Syst. Sci. 2016, 20, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, S.; Ding, Y.; Guo, W.; Jiang, Z.; Lin, J.; Han, Y. An approach for estimating the breach probabilities of moraine-dammed lakes in the Chinese Himalayas using remote-sensing data. Nat. Hazards Earth Syst. Sci. 2012, 12, 3109–3122. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.; Suzuki, R.; Nuimura, T.; Sakai, A. Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya. J. Glaciol. 2008, 54, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Clague, J.J.; Evans, S.G. A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quat. Sci. Rev. 2000, 19, 1763–1783. [Google Scholar] [CrossRef]
- Haeberli, W.; Schaub, Y.; Huggel, C. Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology 2016, 293. [Google Scholar] [CrossRef]
- Das, S.; Kar, N.S.; Bandyopadhyay, S. Glacial lake outburst flood at Kedarnath, Indian Himalaya: A study using digital elevation models and satellite images. Nat. Hazards 2015, 77, 769–786. [Google Scholar] [CrossRef]
- Lv, T.B.; Li, D. Introduction of Debris Flow Resulted from Glacial Lakes Failed; Sichuan University Publishing House: Chengdu, China, 1999. [Google Scholar]
- O’Connor, J.E.; Baker, V.R. Magnitudes and implications of peak discharges from glacial Lake Missoula. GSAMB 1992, 104, 267–279. [Google Scholar] [CrossRef]
- Huggel, C.; Kääb, A.; Haeberli, W.; Teysseire, P.; Paul, F. Remote sensing based assessment of hazards from glacier lake outbursts: A case study in the Swiss Alps. Can. Geotech. J. CaGeJ 2002, 39, 316–330. [Google Scholar] [CrossRef] [Green Version]
- Stoffel, M.; Huggel, C. Effects of climate change on mass movements in mountain environments. Prog. Phys. Geogr. 2012, 36, 421–439. [Google Scholar] [CrossRef]
- Cui, P.; Zhou, G.G.; Zhu, X.; Zhang, J. Scale amplification of natural debris flows caused by cascading landslide dam failures. Geomorphology 2013, 182, 173–189. [Google Scholar] [CrossRef]
- Cui, P.; Zhuang, J.Q.; You, Y.; Chen, X.Q.; Scott, K.M. Landslide-dammed lake at Tangjiashan, Sichuan province, China (triggered by the Wenchuan Earthquake, May 12, 2008): Risk assessment, mitigation strategy, and lessons learned. Environ. Earth Sci. 2012, 65, 1055–1065. [Google Scholar] [CrossRef]
- Fan, X.; Tang, C.X.; Westen, C.J.V.; Alkema, D. Simulating dam-breach flood scenarios of the Tangjiashan landslide dam induced by the Wenchuan Earthquake. Nat. Hazards Earth Syst. Sci. 2012, 12, 3031–3044. [Google Scholar] [CrossRef] [Green Version]
- Li, W. Handbook of Hydraulic Calculations; Water Publication: Beijing, China, 1980. [Google Scholar] [CrossRef]
- Liu, J.; You, Y.; Chen, X.; Liu, J.; Chen, X. Characteristics and hazard prediction of large-scale debris flow of Xiaojia Gully in Yingxiu Town, Sichuan Province, China. Eng. Geol. 2014, 180, 55–67. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, T. Spatial change detection of glacial lakes in the Koshi River Basin, the Central Himalayas. Environ. Earth Sci. 2014, 72, 4381–4391. [Google Scholar] [CrossRef]
- Bajracharya, S.R. Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Ann. Glaciol. 2009, 50, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Nie, Y.; Liu, Q.; Wang, J.; Liu, L.; Hassan, J.; Liu, X.; Xu, X. Glacier Change, Supraglacial Debris Expansion and Glacial Lake Evolution in the Gyirong River Basin, Central Himalayas, between 1988 and 2015. Remote Sens. 2018, 10, 986. [Google Scholar] [CrossRef] [Green Version]
- Gardelle, J.; Arnaud, Y.; Berthier, E. Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Glob. Planet. Chang. 2011, 75, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Bhambri, R.; Bolch, T. Glacier mapping: A review with special reference to the Indian Himalayas. Prog. Phys. Geogr. 2009, 33, 672–704. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Xiang, Y.; Gao, Y.; Lu, A.; Yao, T. Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas. Hydrol. Process. 2015, 29, 859–874. [Google Scholar] [CrossRef]
- Emmer, A. Geomorphologically effective floods from moraine-dammed lakes in the Cordillera Blanca, Peru. Quat. Sci. Rev. 2017, 177, 220–234. [Google Scholar] [CrossRef]
- Wilson, R.; Glasser, N.F.; Reynolds, J.M.; Harrison, S.; Anacona, P.I.; Schaefer, M.; Shannon, S. Glacial lakes of the Central and Patagonian Andes. Glob. Planet. Chang. 2018, 162. [Google Scholar] [CrossRef]
- Emmer, A.; Vilímek, V.; Huggel, C.; Klimeš, J.; Schaub, Y. Limits and challenges to compiling and developing a database of glacial lake outburst floods. Landslides 2016, 13, 1579–1584. [Google Scholar] [CrossRef]
- Clarke, G.K.C.; Mathews, W.H.; Pack, R.T. Outburst floods from glacial Lake Missoula. Quat. Res. 1984, 22, 289–299. [Google Scholar] [CrossRef]
- Martha, T.R.; Roy, P.; Mazumdar, R.; Govindharaj, K.B.; Kumar, K.V. Spatial characteristics of landslides triggered by the 2015 M w 7.8 (Gorkha) and M w 7.3 (Dolakha) earthquakes in Nepal. Landslides 2016, 1–8. [Google Scholar] [CrossRef]
- Kargel, J.; Leonard, G.; Shugar, D.H.; Haritashya, U.; Bevington, A.; Fielding, E.; Fujita, K.; Geertsema, M.; Miles, E.; Steiner, J. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science 2016, 351, aac8353. [Google Scholar] [CrossRef] [Green Version]
Data Usage | Sensor | Product ID | Date | Cloud (%) |
---|---|---|---|---|
Glacial lake mapping | PMS1 | 2056413 | 20 December 2016 | 13 |
PMS1 | 2056415 | 20 December 2016 | 4 | |
PMS1 | 2056414 | 20 December 2016 | 3 | |
PMS1 | 1929663 | 1 November 2016 | 13 | |
PMS1 | 1929664 | 1 November 2016 | 16 | |
PMS1 | 1929665 | 1 November 2016 | 6 | |
PMS2 | 1524197 | 14 April 2016 | 15 | |
Landslide mapping post-earthquake | PMS2 | 1242505 | 13 December 2015 | 11 |
PMS2 | 1242506 | 13 December 2015 | 1 | |
PMS2 | 820531 | 22 May 2015 | 1 | |
PMS1 | 827786 | 23 May 2015 | 3 | |
PMS2 | 1062062 | 26 May 2015 | 14 | |
PMS2 | 1062061 | 26 September 2015 | 0 | |
PMS2 | 1242505 | 13 December 2015 | 11 | |
PMS1 | 1251892 | 17 December 2015 | 3 | |
Landslide mapping pre-earthquake | PMS2 | 751296 | 11 April 2015 | 0 |
PMS2 | 598009 | 19 January 2015 | 12 | |
PMS2 | 507470 | 9 December 2014 | 1 | |
PMS3 | 507469 | 9 December 2014 | 19 | |
PMS1 | 646048 | 22 September 2014 | 16 | |
PMS1 | 232717 | 22 May 2014 | 2 | |
PMS1 | 142225 | 30 December 2013 | 9 |
Id | Name | Longitude (°) | Latitude (°) | Elevation (m) | Dam Type | Area (km2) | Qpl (m3) | Qdf (m3) | Probablity of Outburst | Flow Magnitude | Hazard |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Qiezelaco | 86.26 | 28.37 | 5532 | moraine | 0.26 | 1967 | High | High | Very High | |
3 | Cawuqudenco | 86.19 | 28.34 | 5423 | moraine | 0.55 | 6666 | High | High | Very High | |
7 | Paquco | 86.16 | 28.30 | 5307 | moraine | 0.58 | 7950 | High | High | Very High | |
16 | 86.09 | 28.22 | 5178 | moraine | 0.09 | 726 | 1814 | High | High | Very High | |
18 | 86.06 | 28.17 | 5194 | moraine | 0.05 | 239 | 597 | High | High | Very High | |
22 | Cirenmaco | 86.07 | 28.07 | 4633 | moraine | 0.34 | 5087 | 12,717 | High | High | Very High |
34 | Gangxico | 85.87 | 28.36 | 5212 | moraine | 4.52 | 172,879 | High | High | Very High | |
61 | Galongco | 85.84 | 28.32 | 5077 | moraine | 5.29 | 145,746 | 364,365 | High | High | Very High |
62 | 85.82 | 28.30 | 5093 | moraine | 0.27 | 1832 | 4580 | High | High | Very High | |
80 | Jialongco | 85.85 | 28.21 | 4380 | moraine | 0.63 | 8336 | 20,840 | High | High | Very High |
81 | Nongjue | 85.87 | 28.19 | 4628 | moraine | 0.07 | 398 | 994 | High | High | Very High |
2 | Youmojiaco | 86.23 | 28.35 | 5337 | moraine | 0.55 | 4881 | Medium | High | High | |
6 | Gangpuco | 86.16 | 28.32 | 5543 | moraine | 0.22 | 2355 | Medium | High | High | |
8 | Southhu | 86.15 | 28.30 | 5343 | moraine | 0.17 | 1227 | Medium | High | High | |
9 | Taracuo | 86.13 | 28.29 | 5257 | moraine | 0.23 | 2186 | Medium | High | High | |
10 | Tuzhuocuo | 86.10 | 28.25 | 5201 | moraine | 0.15 | 1309 | 3272 | Low | High | High |
23 | 86.03 | 28.07 | 4486 | bedrock | 0.03 | 257 | 642 | Medium | High | High | |
32 | Yinreco | 85.89 | 28.37 | 5245 | moraine | 0.28 | 2878 | Low | High | High | |
40 | Mabiya | 85.91 | 28.32 | 5384 | moraine | 0.14 | 931 | Medium | High | High | |
42 | 85.92 | 28.32 | 5345 | moraine | 0.08 | 504 | Medium | High | High | ||
43 | Mulaco | 85.93 | 28.32 | 5306 | moraine | 0.11 | 760 | Medium | High | High | |
44 | Xiahu | 85.95 | 28.31 | 5232 | moraine | 0.31 | 3352 | Medium | High | High | |
51 | Cuonongjue | 85.92 | 28.26 | 5095 | moraine | 0.23 | 2353 | Low | High | High | |
63 | 85.83 | 28.29 | 5013 | moraine | 0.26 | 1863 | 4658 | Medium | High | High | |
64 | 85.83 | 28.29 | 5050 | moraine | 0.06 | 204 | 511 | Medium | High | High | |
70 | 85.78 | 28.29 | 5418 | moraine | 0.05 | 130 | 324 | High | Medium | High | |
72 | 85.78 | 28.27 | 5309 | moraine | 0.07 | 184 | 459 | High | Medium | High | |
83 | 85.87 | 28.17 | 4712 | moraine | 0.04 | 125 | 312 | High | Medium | High | |
84 | Daroco | 85.92 | 28.18 | 4366 | bedrock | 0.48 | 10,966 | 27,414 | Low | High | High |
85 | 85.91 | 28.15 | 4486 | ice | 0.20 | 2468 | Medium | High | High | ||
86 | 85.92 | 28.14 | 4871 | moraine | 0.09 | 597 | Medium | High | High | ||
88 | 85.94 | 28.07 | 4524 | bedrock | 0.06 | 391 | 977 | Low | High | High | |
89 | Bhairab Kunda | 85.88 | 27.99 | 4102 | bedrock | 0.06 | 304 | 760 | Low | High | High |
102 | 85.83 | 28.05 | 4250 | bedrock | 0.07 | 210 | 524 | Low | High | High | |
103 | Gongco | 85.87 | 28.33 | 5113 | bedrock | 2.09 | 28936 | Low | High | High |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Chen, N.; Zhang, Y.; Deng, M. Glacial Lake Inventory and Lake Outburst Flood/Debris Flow Hazard Assessment after the Gorkha Earthquake in the Bhote Koshi Basin. Water 2020, 12, 464. https://doi.org/10.3390/w12020464
Liu M, Chen N, Zhang Y, Deng M. Glacial Lake Inventory and Lake Outburst Flood/Debris Flow Hazard Assessment after the Gorkha Earthquake in the Bhote Koshi Basin. Water. 2020; 12(2):464. https://doi.org/10.3390/w12020464
Chicago/Turabian StyleLiu, Mei, Ningsheng Chen, Yong Zhang, and Mingfeng Deng. 2020. "Glacial Lake Inventory and Lake Outburst Flood/Debris Flow Hazard Assessment after the Gorkha Earthquake in the Bhote Koshi Basin" Water 12, no. 2: 464. https://doi.org/10.3390/w12020464
APA StyleLiu, M., Chen, N., Zhang, Y., & Deng, M. (2020). Glacial Lake Inventory and Lake Outburst Flood/Debris Flow Hazard Assessment after the Gorkha Earthquake in the Bhote Koshi Basin. Water, 12(2), 464. https://doi.org/10.3390/w12020464