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Abstract: The Taipei Basin (TPB) and the Lanyang Plain (LYP) are geographically similar, both
situated in northern Taiwan. However, significant differences in heat transfer processes arise between
the two regions due to local terrain influences under the Northeast Monsoon. Precipitation patterns
in the TPB and LYP, especially during the case study of 26 November 2021, differ markedly due to the
distinctive dustpan-shaped terrain of the LYP. Our study, based on the WRF model, reveals that while
both the TPB and LYP are characterized by downward cold air transfer, the TPB exhibits stronger
atmospheric boundary layer mixing and a higher mixing layer height compared to the LYP. Turbulent
kinetic energy (TKE) in the TPB is higher during the morning and evening, while vertical heat flux
is more pronounced in the LYP. The average sensible heat flux is greater in the TPB, whereas latent
heat flux is higher in the LYP. In addition, the amount of water vapor transported into the LYP by the
Northeast Monsoon is greater than in the TPB. In the TPB, the wind field, influenced by the terrain,
shifts predominantly from northeast to northeasterly and southeasterly. However, upon entering
the LYP, the same environmental wind field is affected by the dustpan-shaped terrain, resulting
in a counterclockwise near-surface wind pattern. The wind field transitions from northeasterly in
the north to westerly, southwesterly, or northwesterly in the south. This difference in wind field
causes precipitation in the TPB to be confined mainly to the windward side of the mountainous areas
whereas, in the LYP, precipitation occurs both on the windward side and, more abundantly, in the
plains. The effect of different types of terrain under the Northeast Monsoon is quite obvious.

Keywords: northeast monsoon; Taipei basin; Lanyang plain; regional precipitation; terrain effect;
heat transfer process

1. Introduction

The East Asian winter monsoon, characterized by cold and dry air masses, primarily
originates from the high-latitude inland regions of Siberia and Mongolia. As these cold air
masses move southward across East Asia and the adjacent ocean, they absorb heat and
moisture, increasing in temperature and humidity [1,2]. Cold air outbreaks, which pass
through the ocean and change atmospheric properties, often occur during winter around
the world [3–6]. Strengthened northerly winds lead to a significant drop in air temperatures
across East Asia [7,8]. Moreover, the prevailing northeasterly winds enhance the cold air’s
impact on the atmospheric boundary layer from the surface up to 700 hPa [7].

During winter, as the cold air outbreaks meet warmer oceans, they interact with water
vapor, forming different types of clouds [9–12]. When the cold air reaches Taiwan, its
latent heat flux will be bigger than off the coast from mainland China [13]. This means
that the dry and cold properties of the cold air have changed to warm and moist. When
the cold air reaches Taiwan, it usually appears in the form of northerly or northeasterly
winds, called the Northeast Monsoon in Taiwan [14,15]. The Northeast Monsoon will
interact with Taiwan’s topography, particularly on windward slopes and coastal areas of
northern Taiwan, significantly enhancing orographic precipitation, and resulting in higher
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rainfall compared to other regions [16,17]. Precipitation mechanisms differ between coastal
windward slopes and plains in northern Taiwan during the Northeast Monsoon. In coastal
windward areas, precipitation is primarily driven by orographic lift. As the Northeast
Monsoon shifts northerly and wind speeds increase, the combination of oceanic moisture
and orographic lift frequently leads to increased rainfall in these regions [18]. When the
Northeast Monsoon strengthens, coastal precipitation increases significantly. However,
precipitation patterns shift when the monsoon weakens or the wind direction changes [17].
These observations highlight the critical role of the Northeast Monsoon in the precipitation
distribution across northern and northeastern Taiwan, with topographic effects and airflow
also playing key roles in regional precipitation mechanisms. However, there is no further
discussion on the differences in precipitation caused by basin terrain and plain terrain in
local areas.

In northern Taiwan, environmental wind fields vary with the intensity and movement
of continental cold high-pressure systems. Both the Taipei and Yilan regions are surrounded
by mountains. The Taipei Basin (TPB) is relatively flat, whereas the Lanyang Plain (LYP),
which is surrounded by mountains on three sides, faces the sea to the east, and has a
dustpan-shaped terrain (Figure 1), displays distinct local wind fields under the same
Northeast Monsoon conditions. The channel effect on the right side of Datun Mountain
is helpful to the advection of water vapor into the TPB and increases the precipitation in
the TPB [19]. Numerical simulations indicate that, when stable laminar flow interacts with
topography, the behavior of the airflow is influenced by the Froude number. Simulations
have shown that, when the Froude number exceeds 1.0, the airflow is capable of crossing
over the mountain range, resulting in a minimum wind speed at the peak. Conversely,
when the Froude number is below 1.0, part of the airflow is blocked by the terrain and
is forced to flow around the mountain. Consequently, the downslope airflow accelerates,
forming vortices on the leeward side [20–23]. This interaction between topography and
airflow significantly affects the precipitation distribution in local areas of the TPB and
LYP [24].

Kabasawa [25], in a report by the Japan Meteorological Agency, observed that, during
the Northeast Monsoon, the mid- to low-level airflow was obstructed by the Yilan Moun-
tains, leading to a convergence of westerly and northeasterly winds at lower altitudes.
Chen et al. [26] also indicate the impact of orographic lifting and terrain blocking on heavy
rainfall in the LYP during the Northeast Monsoon. On the western side of the plain, easterly
winds are blocked by the terrain which lifts the moist northeasterly winds, leading to heavy
rainfall in the southern mountain regions of the LYP. In other words, atmospheric moisture
and topographic effects play equally important roles in the formation and maintenance of
heavy rainfall in northeastern Taiwan.

The Yilan Experiment of Severe Rainfall in 2020 (YESR2020) investigated the interac-
tion between complex terrain, winter northeasterly monsoon events, and local circulations
in Yilan, Taiwan. The northeasterly monsoon, combined with the humid marine boundary
layer, provides a stable low-level moisture flux, which is crucial for heavy rainfall on Yilan’s
windward slopes and plains. The convergence zone likely results from the interaction
between the northeasterly monsoon and orographic precipitation. Terrain-induced local
turbulence contributes to heavy rainfall in the southern mountainous areas of Yilan and
nearby plains. Thus, the interaction between complex terrain, circulation, and precipitation
plays a critical role in rainfall intensity and efficiency [27].

The energy flux transmitted vertically in the atmosphere near the ground is mainly
carried out through latent heat flux (LH) and sensible heat flux (SH). The main distribution
of the two fluxes is determined by the humidity on the surface. In dry regions, SH dominates
whereas, in humid regions, LH becomes more dominant [28]. Heat flux determines the
distribution of temperature, humidity, and thickness in the atmospheric boundary layer
and atmospheric stability, all of which influence cloud formation and precipitation [29].
Therefore, orographic effects not only influence the wind field and trigger heavy rainfall
but also affect vertical energy transport, the vertical structure of atmosphere, and local
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circulation within the boundary layer. In the atmospheric boundary layer of the TPB and
LYP, due to the different states of the surface, there may be differences in the vertical
transport of energy flux. However, no researchers have conducted relevant studies on this
in the past.
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Lanyang Plain; A: Datun Mountain; B: Linkou Terrace; C: Xueshan Range; D: Central Mountain 
Range. Map Source: Google Earth. (In (c), white and yellow dashed boxes are the innermost domain 
of four nested domains that our WRF model designed with a horizontal resolution of 0.5 km). 
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Figure 1. (a) Geographical location of Taiwan in East Asia. (b) Topography of Taiwan (enlarged view).
(c) Topography of northern Taiwan (enlarged view). The numbers and English letters in the picture
represent, respectively: 1. Tamsui River Basin; 2. Keelung River Basin; 3. Taipei Basin; 4. Lanyang
Plain; A: Datun Mountain; B: Linkou Terrace; C: Xueshan Range; D: Central Mountain Range. Map
Source: Google Earth. (In (c), white and yellow dashed boxes are the innermost domain of four
nested domains that our WRF model designed with a horizontal resolution of 0.5 km).

Despite extensive research on the TPB and LYP, relatively few studies have investi-
gated the relationship between environmental wind fields, cold air modification, regional
precipitation, and the effects of complex terrain under identical northeasterly monsoon
conditions. Taipei and Yilan, located in northern Taiwan and approximately 50 km apart,
exhibit significant differences in atmospheric boundary layer characteristics due to their
distinct geographic locations and complex terrain. This study uses the Weather Research
and Forecasting (WRF) model for numerical simulations, combined with observational
data from the Central Weather Administration (CWA) and the Yilan Experiment of Severe
Rainfall in 2021 (YESR2021), to analyze how the northeasterly monsoon interacts with
these two distinct topographic regions. This research focuses on the influence of large-scale
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wind fields, local circulations, and terrain on airflow, and how these factors impact the
regional precipitation distribution. In this study, numerical simulations using the WRF
(Weather Research and Forecasting) model, combined with observations from the CWA and
YESR2021, are used to analyze the impacts of the Northeast Monsoon on these two regions.
The focus of this study is to investigate the effects of the large-scale wind field, local circula-
tion, and topographic complexity on the airflow, and to analyze the role of these factors on
the regional precipitation distribution. In addition, the similarities and differences in the
boundary layer properties of the TPB and LYP under the same large-scale environmental
conditions are also analyzed. The remainder of this paper is organized as follows. Section 2
introduces the data and the numerical experiment used in this study. Section 3 provides
the simulation results and discussion. The main summary and conclusion are presented in
Section 4.

2. Data Analysis and Numerical Experiment
2.1. Synoptic Weather Analysis

Ground-based, satellite, and radiosonde data from the CWA and YESR2021, collected
on 26 November 2021, serve as the basis for analysis. The East Asia surface weather analysis
(Figure 2a) reveals that a split cold high-pressure system over Inner Mongolia (central
pressure 1038 hPa) moved southeastward at 15 km h−1. Taiwan was impacted by the
Northeast Monsoon, which is considered to have been modified during its passage over the
ocean. The northern coastal areas exhibited thin but abundant cloud cover, with a low-level
cloud system throughout the day (Figure 2b).
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Figure 2. From 0000 UTC on 26 November 2021. (a) Surface analysis map of East Asia and
(b) Himawari-8 true-color satellite imagery of Taiwan.

2.2. Observation Analysis

Surface wind observations at 0100 UTC (0900 LST, UTC+8) and 0400 UTC (1200 LST,
UTC+8) in the TPB (Figure 3a,b) indicate that northeasterly winds dominated the northern
part of the basin (Figure 3a, light-blue dotted box). Datun Mountain may block portions of
the airflow, redirecting it, while other air currents bypass or cross the ridge, resulting in
substantial variations in wind direction in the TPB. By 1000 UTC, the winds across most of
the TPB had shifted to east–northeast or east–southeast wind (as the red dashed circle in
Figure 3b shows) [19–22]. Obviously, the terrain in the northern part of the TPB, in addition
to blocking the wind field, will also change the wind field entering the TPB.

At 0100 UTC in the LYP (Figure 4a), the coastal area north of the central LYP exhibited
northeasterly to east–northeasterly winds of less than about 2.5 m s−1 (or 5 knots) near the
surface while, south of the central LYP near the mountainous areas experienced west to
northwest winds. The plains to the south of the central region had westerly winds, while
the coastal areas observed northwesterly to west–northwesterly winds. The local circulation
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of the Northeast Monsoon, influenced by terrain effects, produced counterclockwise circula-
tion and caused wind direction changes (as the slight blue arrow in Figure 4a–c shows). At
0400 UTC (Figure 4b), surface wind speed on the northern side of the LYP slightly increased,
with northeasterly to east–northeasterly winds prevailing across the plains, and no westerly
winds observed. As the Northeast Monsoon entered the LYP, wind speed decreased to
below 2.5 m s−1 (or 5 knots), leading to the local counterclockwise flow phenomenon due
to the dustpan-shaped topography effect being further away from the mountainous area
than at 0100 UTC. By 1000 UTC (Figure 4c), the counterclockwise flow moves to the coastal
area. The wind field had shifted to southerly near the mountains. Previous studies by
scholars have found that, after the Northeast Monsoon enters the LYP, it will generate a
reverse backflow wind field when blocked by the terrain [25–27]. In Figure 4c, a similar
situation occurs in the green box near the mountainous area. However, we will further
explain the reasons for this phenomenon through subsequent numerical simulations.
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Figure 3. TPB terrain and CWA surface weather station observation data (surface wind field, tem-
perature, and relative humidity) and terrain distribution map on 26 November 2021. The Tamsui,
Keelung, and Taipei stations are designated as specific stations. Here, (a–c) represent 0100 UTC,
0400 UTC, and 1000 UTC, respectively. In (a), points A, B, C, D, and E on the northern side of Datun
Mountain in the TPB indicate the locations where the Froude number is simulated in Figure 17 using
WRF. In (c), the blue box represents the selected area for averaging. The light-blue dotted box is the
location of the northeast wind in (a). The red dashed circle is the location where the Tamsui River
enters the TPB in (b).
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Before 0300 UTC on 26 November, air temperatures near the surface in both the TPB
and LYP displayed a pattern of lower temperatures in the north and higher temperatures
in the south due to geographic characteristics (as shown in Figure 5, where the stations
are arranged from north to south). The cold air associated with the Northeast Monsoon
began affecting northern Taiwan on the 26th, particularly after 0300 UTC, when its intensity
increased. The first station to be affected was Tamsui in northwestern Taiwan, where
the air temperature dropped, followed by Keelung an hour later. Then, at 0500 UTC,
air temperatures in Taipei declined. The Dafu and Luodong stations in the LYP showed
temperature declines similar to those observed in the TPB, despite Yilan being at a lower
latitude. At the Suao station, located near Luodong, the temperature dropped about two
hours later than at Dafu and Luodong. By 1100 UTC, air temperatures in the LYP had
dropped below those in the TPB. This seems to show that, when the Northeast Monsoon
enters northern Taiwan, the air temperature changes are not simply affected by latitude.
The LYP, situated at the southern end of the region, showed a faster temperature drop,
suggesting that topographic effects and water evaporation may have also contributed to
local air temperature variations.

Atmosphere 2024, 15, x FOR PEER REVIEW 7 of 23 
 

 

 
Figure 5. In Figures 3 and 4, the 24 h (from 1700 UTC on the 25th to 1600 UTC on the 26th) time 
series diagram of the air temperature observed at a specific weather station is shown. The weather 
stations in TPB are blue lines, the weather stations in LYP are green lines, and the light grayscale 
lines are specific times and air temperature. 

In the Tamsui and Keelung regions, situated outside the TPB, the wind direction was 
dominantly northerly (Figure 6a). After 1200 UTC, the wind direction began to shift sig-
nificantly as the cold high pressure from the mainland moved eastward. At the Taipei sta-
tion of the TPB, the wind direction shifted primarily to easterly, as the topographic effect 
of the northern TPB blocked northerly winds, forcing the airflow to move around the 
mountain. At the same time, the wind direction at the three stations located in the north, 
center, and south of the LYP was influenced by its dustpan-shaped topography, resulting 
in greater variability. 

 
Figure 6. Same as Figure 5, but for the 24 h time series of wind direction (degrees) from 1700 UTC 
on 25 November 2021 to 1600 UTC on 26 November 2021, for the TPB (a) and LYP (b). The light gray 
lines are specific times. 

Figure 5. In Figures 3 and 4, the 24 h (from 1700 UTC on the 25th to 1600 UTC on the 26th) time series
diagram of the air temperature observed at a specific weather station is shown. The weather stations
in TPB are blue lines, the weather stations in LYP are green lines, and the light grayscale lines are
specific times and air temperature.

In the Tamsui and Keelung regions, situated outside the TPB, the wind direction
was dominantly northerly (Figure 6a). After 1200 UTC, the wind direction began to shift
significantly as the cold high pressure from the mainland moved eastward. At the Taipei
station of the TPB, the wind direction shifted primarily to easterly, as the topographic
effect of the northern TPB blocked northerly winds, forcing the airflow to move around the
mountain. At the same time, the wind direction at the three stations located in the north,
center, and south of the LYP was influenced by its dustpan-shaped topography, resulting in
greater variability.

At the Dafu station in the north, wind direction fluctuated between southerly and
northerly before 2100 UTC on the 25th, then shifted to northerly from 2100 UTC on the
25th to 0000 UTC on the 26th, eventually stabilizing as northeasterly. After 1100 UTC,
the wind shifted from northwesterly to west–northwesterly. At the Luodong station near
the mountains, winds were mostly west–southwesterly before 0400 UTC, with north–
northeasterly winds occurring for only about 4 h (i.e., from 0400 UTC to 0800 UTC), before
reverting to west–southwesterly after 0000 UTC. This variation indicates that the terrain
effects in the LYP may cause the prevailing Northeast Monsoon to induce recirculation,
altering local circulation patterns.
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Wind speeds were reduced at the Taipei station due to the topographic barrier effect
(Figure 7), while they were higher at the Tamsui and Keelung stations, situated outside the
TPB. Wind speed in the LYP was affected by the gradual eastward movement of the cold
and high pressure, and varied with wind direction. Wind speeds were more variable at the
Dafu and Suao stations on the windward side whereas, at Luodong, closer to the inland
mountainous area, wind speed remained relatively stable (Figure 7). The terrain effect has
a considerable impact on the wind speed of the TPB and LYP.
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In terms of relative humidity (Figure 8), the LYP exhibited higher levels than the TPB.
The Keelung and Dafu stations on the windward side displayed similar relative humidity
patterns, while the Tamsui station, located on the northwest side of the TPB, showed
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significant fluctuations in relative humidity due to changes in air temperature and wind
speed. In contrast, relative humidity at the Taipei station in the TPB and the Luodong
station in the LYP exhibited the lowest levels in both regions. Although the observation
highlights the influence of the terrain effect, the results of subsequent simulations can
further confirm it. These observations suggest that, under the same northeastern monsoon,
stations in Taipei and Yilan had significant differences in air temperature, wind field,
and relative humidity, attributable to their distinct geographic locations and topographic
characteristics. Simulating this characteristic can allow us to better understand the physical
reasons for the differences in air temperature, wind field, and relative humidity between
the TPB and YPL regions.

Atmosphere 2024, 15, x FOR PEER REVIEW 9 of 23 
 

 

 
Figure 8. Same as Figure 5, but for the 24 h time series of relative humidity (%). 

The accumulated rainfall map (Figure 9) shows that cumulative rainfall in northern 
Taiwan gradually increased from west to east, with concentrations in northeastern Taiwan 
and the LYP. The northern region of the TPB was affected by terrain effects, resulting in 
higher precipitation on the windward side, with some areas accumulating over 110 mm 
of rainfall. In the eastern and southern regions of the TPB, accumulated rainfall decreased 
progressively from the estuaries of the Keelung River toward the southwestern basin, with 
totals below 15 mm. On the leeward side of Datun Mountain and areas east of the Tamsui 
River, accumulated rainfall was considerably lower, totaling below 10 mm. In contrast, 
the adjacent LYP displayed distinctly different precipitation patterns and amounts. Rain-
fall was concentrated in the Suao region on the southern windward side and in the 
Luodong area of the plains, where totals surpassed 90 mm. Total precipitation in the Yilan 
mountains was significantly lower than in the plains, a pattern that contrasts with the 
topographic precipitation effect observed in the TPB. Further study research is required 
to understand the physical processes underlying these precipitation differences. 
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The accumulated rainfall map (Figure 9) shows that cumulative rainfall in northern
Taiwan gradually increased from west to east, with concentrations in northeastern Taiwan
and the LYP. The northern region of the TPB was affected by terrain effects, resulting in
higher precipitation on the windward side, with some areas accumulating over 110 mm of
rainfall. In the eastern and southern regions of the TPB, accumulated rainfall decreased
progressively from the estuaries of the Keelung River toward the southwestern basin, with
totals below 15 mm. On the leeward side of Datun Mountain and areas east of the Tamsui
River, accumulated rainfall was considerably lower, totaling below 10 mm. In contrast, the
adjacent LYP displayed distinctly different precipitation patterns and amounts. Rainfall
was concentrated in the Suao region on the southern windward side and in the Luodong
area of the plains, where totals surpassed 90 mm. Total precipitation in the Yilan mountains
was significantly lower than in the plains, a pattern that contrasts with the topographic
precipitation effect observed in the TPB. Further study research is required to understand
the physical processes underlying these precipitation differences.

To analyze the characteristics of the lower atmosphere in the TPB and LYP under
terrain influence, sounding data from the TPB was collected through daily balloon launches
by the CWA, while data for the LYP came from the YESR2021 at the Luodong station in
Yilan [30]. Sounding data from Taipei (Figure 10a) indicate that the near-surface winds were
northeasterly up to about 0.5 km, shifting to southwesterly around 2.5 km, with a lifting
condensation level at 0.114 km. Relative humidity in the lower atmosphere, 900 hPa to
850 hPa, was nearly saturated, becoming drier between 850 hPa and 750 hPa. A subsidence
inversion was observed above 850 hPa. At Luodong (Figure 10b), near-surface winds were
southwesterly or southerly, shifting to northeasterly between 0.9 km and 2 km, before
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turning southwesterly above 3 km. The atmosphere near 925 hPa was nearly saturated,
with saturation extending down to 725 hPa. Above 725 hPa, the atmosphere became drier,
with a subsidence inversion observed at 700 hPa.
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The depth of the Northeast Monsoon is below 800 hPa at Luodong and approximately
850 hPa at Taipei. However, due to the location and terrain of the TPB, the depth of
Northeast Monsoon at Taipei may be less accurate. In summary, although the locations
of Taipei and Yilan are geographically close, significant differences in the thickness of the
low-level northeasterly monsoon, cloud development height, and near-surface wind fields
are observed, reflecting diverse atmospheric conditions between the two regions. Therefore,
it is necessary to use numerical models for physical process analysis.

2.3. Model and Experimental Design

The WRF model is a mesoscale numerical weather prediction system that aims to
meet the needs of both atmospheric research and weather forecasting. It has two power
cores, a data assimilation system, and a software architecture that is conducive to parallel
computing and system scalability. This model provides a wide range of meteorological
applications across scales, from tens of meters to thousands of kilometers. Some studies
use WRF to simulate terrain effects of valley precipitation enhancement event in winter
with a high horizontal space resolution of 0.5 km and get pretty good results [31].

The WRF model allows researchers to generate atmospheric simulations based on
actual data (observations and analyses) or idealized conditions. The two power cores of
the WRF model are designed according to different purposes, namely, ARW (Advanced
Research WRF) and NMM (Non-hydrostatic Mesoscale Model). The two are the same in
terms of WRF architecture, but they focus on different aspects. The main physical processes
of WRF-ARW can be divided into microphysics, cumulus parameterization, planetary
boundary layer, surface processes, and radiation. Jiménez-Esteve et al. [32] studied the
impact of land use and horizontal resolution on simulating near-surface atmospheric vari-
ables over complex terrain. The results show that, with constant land use data, increasing
the horizontal resolution to 0.5 km provides a more detailed representation of terrain
features, significantly improving surface air temperature predictions for the valley bottom
and slopes.

This study employs the WRF model to simulate the Taipei Basin and Lanyang Plain of
Taiwan from 1800 UTC on 25 November to 1800 UTC on 26 November 2021. A four-layer
nested grid configuration was used, with the highest spatial resolution of 0.5 km. The initial
and boundary conditions were derived from the reanalysis data provided by the National
Centers for Environmental Prediction (NCEP), with a horizontal grid resolution of 0.25◦.
The model comprises 50 vertical layers, 22 of which are below 3 km. The parameterization
schemes in WRF were listed as follows: the WRF Single Moment 5 class (WSM5) scheme [33]
used for the cloud microphysics process, the MM5 scheme [34] used for the surface layer
process, the Yonsei University scheme (YSU) [35] used for the boundary layer process, the
Rapid Radiative Transfer Model (RRTM) longwave radiation scheme [36], the Goddard
Shortwave scheme [37] for the shortwave radiation, and the Noah land-surface model
(LSM) for four soil layers [38]. In addition, cumulus parameterization schemes (CPSs)
are not used in this study because convection or deep cumulus clouds typically have a
horizontal scale of around 10 km. Thus, models with a 5 km horizontal grid spacing can
theoretically resolve these convective processes without additional parameterization [39].

3. Results and Discussion

Through the previous observation and analysis, we found that the TPB and YPL in
northern Taiwan show different regional weather characteristics due to different geograph-
ical characteristics under the influence of the Northeast Monsoon. In this section, the
physical factors causing weather differences are further discussed and analyzed through
the simulation results of the WRF model.

3.1. Cold Air Transformation Process

To analyze how cold air is modified across different geographical locations within
the TPB and LYP, and to assess the intensity of the Northeast Monsoon relative to terrain,



Atmosphere 2024, 15, 1527 11 of 21

vertical profile simulations are conducted at three locations in each region (Figure 11). The
top of the Northeast Monsoon is estimated at approximately 800 hPa, based on the analysis
in Figure 11. Thus, the 10 ◦C isotherm (as defined by the CWA for cold surges) is used
as the reference level for cold air entering northern Taiwan. Comparing the two regions,
simulation results indicate that, by 0300 UTC, the 10 ◦C isotherm at Tamsui, Keelung,
and Taipei gradually descended as the vertical temperature gradient steepened, causing
cold air to move closer to the surface (Figure 11a–c). The diurnal variation of the 10 ◦C
isotherm in the LYP is similar to that in the TPB. However, the 10 ◦C isotherm at Dafu
is lower than at Luodong and Suao, likely due to the broad, flat terrain of the LYP and
Dafu’s upstream position relative to the cold airflow. However, the air thickness above
10 ◦C remains uniform across the region (Figure 11d–f). Vertical temperature fluctuations
in the TPB are more pronounced, likely a result of urban heat effects. As the Northeast
Monsoon intensified, the volume of cold air moving into both regions increased, causing
it to descend from higher altitudes to the surface and bringing the 10 ◦C isotherm closer
to the ground. Simulation results suggest that the terrain in the TPB funneled cold air
primarily through the Keelung River valley, leading to variations in cold air thickness
across locations. Conversely, the relatively flat terrain of the LYP enables a more uniform
cold airflow. As the Northeast Monsoon intensified, cold air descent from the upper layers
significantly impacted the vertical temperature gradient. These findings demonstrate that
the combined effects of terrain and the Northeast Monsoon led to significant differences in
cold air modification between the two regions.

Atmosphere 2024, 15, x FOR PEER REVIEW 13 of 23 
 

 

 
Figure 11. Figure (a–f) are time series of vertical air temperature profiles at specific stations from 
Figures 3 and 4, with the blue dotted areas representing the region of air above 10 °C. 

Typically, cold air becomes warmer and more humid after passing over the ocean. 
However, this study found that the cold air moving into northern Taiwan remains rela-
tively cold and dry. As a result, specific humidity gradually decreases at the Tamsui, Kee-
lung, and Taipei stations in the TPB (Figure 12a–c), as well as at the Dafu, Luodong, and 
Suao stations in the LYP (Figure 12d–f). Notably, specific humidity at Dafu, Luodong, and 
Suao is higher than in the TPB. This suggests that, as the modified cold air moves into 
northern Taiwan, moisture content does not increase but decreases. The decrease in water 
vapor pressure contributes to this trend, while pressure in both the TPB and LYP rises 
(Figure 12a–f). Additionally, the relatively unobstructed terrain in the LYP facilitated 
greater moisture advection compared to the TPB, leading to higher specific humidity lev-
els. 

 
Figure 12. (a–f) are same spots as Figure 11, but for the vertical of specific humidity. The color shad-
ing corresponds to the specific humidity (g kg−1), and the black contour lines are the water vapor 
pressure (hPa). 
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Typically, cold air becomes warmer and more humid after passing over the ocean.
However, this study found that the cold air moving into northern Taiwan remains relatively
cold and dry. As a result, specific humidity gradually decreases at the Tamsui, Keelung, and
Taipei stations in the TPB (Figure 12a–c), as well as at the Dafu, Luodong, and Suao stations
in the LYP (Figure 12d–f). Notably, specific humidity at Dafu, Luodong, and Suao is higher
than in the TPB. This suggests that, as the modified cold air moves into northern Taiwan,
moisture content does not increase but decreases. The decrease in water vapor pressure
contributes to this trend, while pressure in both the TPB and LYP rises (Figure 12a–f).
Additionally, the relatively unobstructed terrain in the LYP facilitated greater moisture
advection compared to the TPB, leading to higher specific humidity levels.



Atmosphere 2024, 15, 1527 12 of 21

Atmosphere 2024, 15, x FOR PEER REVIEW 13 of 23 
 

 

 
Figure 11. Figure (a–f) are time series of vertical air temperature profiles at specific stations from 
Figures 3 and 4, with the blue dotted areas representing the region of air above 10 °C. 

Typically, cold air becomes warmer and more humid after passing over the ocean. 
However, this study found that the cold air moving into northern Taiwan remains rela-
tively cold and dry. As a result, specific humidity gradually decreases at the Tamsui, Kee-
lung, and Taipei stations in the TPB (Figure 12a–c), as well as at the Dafu, Luodong, and 
Suao stations in the LYP (Figure 12d–f). Notably, specific humidity at Dafu, Luodong, and 
Suao is higher than in the TPB. This suggests that, as the modified cold air moves into 
northern Taiwan, moisture content does not increase but decreases. The decrease in water 
vapor pressure contributes to this trend, while pressure in both the TPB and LYP rises 
(Figure 12a–f). Additionally, the relatively unobstructed terrain in the LYP facilitated 
greater moisture advection compared to the TPB, leading to higher specific humidity lev-
els. 

 
Figure 12. (a–f) are same spots as Figure 11, but for the vertical of specific humidity. The color shad-
ing corresponds to the specific humidity (g kg−1), and the black contour lines are the water vapor 
pressure (hPa). 

Figure 12. (a–f) are same spots as Figure 11, but for the vertical of specific humidity. The color
shading corresponds to the specific humidity (g kg−1), and the black contour lines are the water
vapor pressure (hPa).

3.2. Sensible and Latent Heating Flux

Since the TPB and LYP have different topographic and landform features, in order to
understand the difference in energy fluxes of cold air to these two regions, we performed
simulations and calculations for SH, LH, and GH. In the TPB, by 2300 UTC on the 25th,
the surface heating effect from solar radiation caused SH to gradually increase, peaking at
0200 UTC (Figure 13). A similar pattern was observed in the LYP but, due to its predomi-
nantly vegetated surface, SH remains significantly lower than in the TPB. By 0300 UTC in
the TPB, SH slightly decreased due to brief scattered rainfall but increased again with ra-
diative heating, peaking at 0400 UTC before gradually declining. Conversely, by 0300 UTC
in the LYP, LH had become significantly higher than SH after 0000 UTC, likely due to the
increased area of vegetation and recent rainfall. Consequently, LH remains higher than SH
for most of the period in the LYP. Furthermore, by 0300 UTC, after LH had reached its peak,
rainfall increased atmospheric moisture, but the wind speed gradually decreased, causing
LH to decline as well. In terms of ground heat flux (GH), the difference between urban and
rural landscapes became more pronounced. Before 0300 UTC, downward GH in the TPB
was significantly higher than in the LYP, indicating that the surface heated more rapidly
and transferred energy to deeper soil layers. As cold air from the Northeast Monsoon
gradually entered the basin, near-surface air temperatures dropped, leading to a decrease
in downward GH. Due to the rapid surface cooling, GH reversed, transferring heat back
toward the surface.

The topography of both the TPB and LYP plays a crucial role in influencing SH and
LH variations. The TPB features basin terrain effects and less precipitation, resulting in
consistently higher SH compared to the LYP, both during daytime and nighttime (Figure 13).
However, as the Northeast Monsoon intensified, the intrusion of cold air reduced the
vertical temperature gradient near the surface, subsequently lowering SH. Additionally,
the relatively low rainfall contributes to a reduction in daytime LH. In contrast, extensive
vegetation cover in the LYP contributes to lower daytime SH (Figure 13), while the higher
rainfall contributes to an increase in LH. The interaction of terrain, rainfall distribution,
and cold air intrusion affects heat transfer and dynamic processes within the atmospheric
boundary layers in both regions. These factors contribute to variations in the cold air
modification processes, resulting in distinct atmospheric properties between urban and
rural environments.
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3.3. Terrain Effect on Wind Field

Flat areas in the TPB (red box) and LYP (blue box) (Figures 3c and 4c) are selected
to spatially average the simulated physical parameters and analyze their variations with
altitude to explore how the Northeast Monsoon acts under the influence of different
terrains. Simulation results indicate that, as the Northeast Monsoon intensifies, the lower
atmosphere wind field in the TPB is influenced by the Keelung River basin, maintaining a
relatively stable wind direction from morning to afternoon (averaging east–northeast). In
the morning, wind speeds in the lower atmosphere are higher in the TPB compared to the
LYP, but this trend reverses in the afternoon. In contrast, the flat terrain of the LYP leads
to more pronounced wind shifts, with near-surface winds transitioning from southeast at
0200 UTC to east–northeast by 1000 UTC. In the afternoon, wind speed increases, with the
direction shifting once again to east–northeast (Figure 14a,b). Vertical wind shear in the TPB
occurs mainly at higher altitudes, contributing to differences in turbulence characteristics
between the TPB and LYP, strongly influenced by terrain (Figure 14a).

Through the simulation of wind fields in different directions, it is easier to understand
the changes in thickness of the Northeast Monsoon when it passes through different types
of terrain. Therefore, we performed wind direction vertical structure simulations for the
selected positions of the TPB and LYP in Figures 3c and 4c. Simulation results indicate
that the average thickness of the easterly and northerly wind components in the TPB
is consistently lower than in the LYP during both morning and afternoon periods, with
smaller variations in the thickness of these wind components in the TPB. In the afternoon, as
the Northeast Monsoon intensified slightly, the thickness of the northerly wind component
in the TPB increased, whereas the easterly wind component became thinner. The reduced
variability in wind component thickness within the TPB can likely be attributed to the
influence of terrain. In the LYP, where there is no significant terrain blocking the east,
morning simulations revealed that the easterly wind was thinner but stronger compared
to the afternoon. Overall, the variation in easterly wind thickness in the LYP between
morning and afternoon was more significant than in the TPB, with greater variability in
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northerly wind thickness and intensity in the afternoon (Figure 15a,b). These findings
suggest that, under identical conditions, intensification of the Northeast Monsoon leads
to substantial differences in wind field thickness and intensity between these two terrain
regions in northern Taiwan. Specifically, wind direction, wind speed, and changes in the
wind field exhibit distinct characteristics in both regions. In the LYP, variations in the
environmental wind field, influenced by the position of the cold high-pressure system and
terrain, are likely key factors influencing the location and intensity of precipitation.
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Figure 15. Same as Figure 14, but for the (a) zonal wind (U) (m s−1) and (b) meridional wind
(V) (m s−1). The light gray line represents a calm breeze.

Terrain effects result in higher wind speeds and TKE in the TPB compared to the LYP.
As a result, atmospheric mixing below 925 hPa is stronger in the TPB, leading to a higher
mixing layer height (Figure 16a,b). Cold air modification processes across different terrains
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are significantly influenced by topography, as flux variations reveal distinct dynamic and
thermal mechanisms. The complex terrain and valley channeling in the TPB contribute to
increased TKE and enhanced vertical atmospheric mixing. As a result, the open topography
of the LYP is more conducive to vertical heat flux transfer, particularly during the sinking
process of cold air, with more substantial heat exchange occurring in this region. These
findings demonstrate that topographic differences distinctly affect flux transfer characteris-
tics, and further illustrate the influence of the cold air modification process on the structure
of the atmospheric boundary layer.
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3.4. TPB and LYP Rainfall Pattern and Amount

Situated on the northern side of the TPB, the terrain of Datun Mountain significantly
influences the characteristics of the lower-level Northeast Monsoon airflow. Based on
simulation results, we calculated the Froude number (Fr = U/NH, where U is the average
upstream wind speed, N is the dry Brunt–Väisälä frequency, and H is the terrain height) [40]
for locations A, B, C, D, and E on the windward slope of Datun Mountain to analyze
airflow characteristics in the region. The results (Figure 17) show that, from 1800 UTC on
25 November to 1600 UTC on 26 November, the Froude numbers at points B and C exceed 1.
When the Froude number exceeds the critical value (close to 1), the Northeast Monsoon can
cross the mountain range [41,42]. At point A, the Froude number stays below 1 (green area)
in the early morning, while the Froude numbers at points D (yellow area) and E (blue area)
remain below 1 throughout the day and part of the night. Idealized model studies suggest
that, when the Froude number is less than 1, flow splitting occurs [42]. As the Northeast
Monsoon crosses Datun Mountain on the northern side of the TPB, the airflow descends
over the mountain and enters the TPB through the Tamsui and Keelung estuaries [32].
Additional simulation results reveal ascending airflow on the windward side of Datun
Mountain, accompanied by subsidence on the leeward side (Figure 18a–c). Consequently,
no precipitation develops within the TPB. The Northeast Monsoon transports moisture
into the basin through the Keelung estuary. This moisture is blocked by the Xueshan
Mountain Range to the south, causing it to accumulate in the southeastern part of the
basin and gradually decrease toward the northwest. Therefore, precipitation in the TPB is
concentrated on the windward side and in the eastern mountainous areas.
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Figure 17. In Figure 3a, Froude number simulation results are obtained at five positions A, B, C,
D, and E on the north side of TPB Datun Mountain. The simulation time is from 1800 UTC on
25 November to 1500 UTC on 26 November 2021. The green, yellow, and blue areas are the periods
when the Froude number of positions A, D, and E is less than 1, respectively. The vertical light-gray
lines represent specific times and the purple line in each figure indicates that the Froude number
equals 1.
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distribution map. The color shading corresponds to vertical velocity and the green dashed lines
represent hourly accumulated rainfall at the surface.

Under the same environmental wind conditions, as the Northeast Monsoon moves
into the LYP, simulation results show that, at 0100 UTC, north–northeast winds in the LYP
generate a counterclockwise recirculation due to terrain effects (Figure 19a). Precipita-
tion is concentrated in the convergence and ascending region formed by the recirculation
(Figure 20a), predominantly in the outer part of the plain. Three hours later (Figure 19b),
when the wind shifted to northeasterly, the recirculation in the LYP weakened, causing
precipitation concentrated in the southern mountainous region. By 1000 UTC, as the wind
shifted back to north–northeasterly, the recirculation reappeared in the LYP (Figure 19c),
with precipitation once again concentrated in the southern convergence and ascending re-
gion (Figure 20c). During this period, the large convergence area in the LYP, combined with
moisture advection from the environmental wind field, results in widespread precipitation
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across the plain (Figure 20a–c). From the above discussion, it can be seen that the wind
direction of the LYP, which is affected by topography, is a key factor leading to the location
of precipitation in the LYP. The results of such a wind field simulation are generally the
same, although there are some differences from the observations in Figures 3 and 4.
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Figure 19. Simulated hourly accumulated rainfall (mm hr−1) in the LYP at different times, (a) from
0000 UTC to 0100 UTC, (b) from 0300 UTC to 0400 UTC, and (c) from 0900 UTC to 1000 UTC. The
color shading corresponds to accumulated rainfall.
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Figure 20. (a–c) are same times as Figure 18, but for the 950 hPa vertical velocity (m s−1) in the LYP.
The color shading corresponds to vertical velocity.

Observations and simulations indicate that the terrain of Datun Mountain significantly
influences cold air transport and moisture supply driven by the Northeast Monsoon. Some
cold air accumulates on the windward side, while other portions cross the terrain, with
the remainder flowing through specific channels, causing noticeable changes in airflow
patterns. Conversely, the flat terrain of the Yilan region allows for more uniform airflow
and sufficient moisture supply. In the LYP, the dustpan-shaped terrain converges sections of
the airflow with the Northeast Monsoon, leading to precipitation not only on the windward
side but also across the plains. Thus, precipitation distribution in both regions is closely
related to terrain, elevation, airflow patterns, and moisture supply.

4. Summary and Conclusions

In this study, it is found that, although the TPB and the YLP of northern Taiwan are
geographically close to each other, they are subject to the same influence of the Northeast
Monsoon and differing terrain effects, which result in different changes in the near-surface
wind fields, air temperatures, relative humidity, cold air mass transformation processes,
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rainfall patterns and distributions, and the characteristics of the low-level atmospheric
boundary layer. The results show that, when the Northeast Monsoon enters northern
Taiwan, air temperatures are lower at lower latitudes, contrary to expectations of lower
temperatures at higher latitudes. As the cold air, having undergone marine transformation,
gradually enters North Taiwan, the moisture content in the two areas will decrease rather
than increase over time. Furthermore, air temperatures in the LYP, at a lower latitude,
decrease more rapidly compared to the higher-latitude TPB. This suggests that local terrain
and water evaporation effects significantly influence localized air temperature variations.
Relative humidity in the LYP is significantly higher than in the TPB and, similarly, moisture
content is higher in the LYP due to terrain effects. Under the same Northeast Monsoon
conditions, the differences in air temperatures, relative humidity, and moisture content
between the stations in the TPB and LYP can be attributed to their distinct geographic
locations and terrain influences.

As the continental cold high pressure shifts eastward, the winds in the TPB and LYP
regions change, and the topography on the north side of the TPB blocks the northerly
winds and forces the northeasterly monsoon to produce partly over-mountain and partly
around-mountain airflow. The Froude number was calculated at five locations on the
windward side of Datun Mountain in the northern TPB to analyze the change of airflow
characteristics in the area, and found that there are three locations (A, D, and E) where the
Froude number is less than 1 for some periods. As a result, airflow enters the TPB around
the mountains through the estuaries of the Tamsui and Keelung rivers. At other times,
and at locations B and C, the Froude number is greater than 1, allowing the Northeast
Monsoon to pass over Datun Mountain in the north of the TPB, so there is a situation in the
airflow across the mountain sinks. Further simulation results show that there is a rising
area of airflow on the windward side of Datun Mountain, but a subsidence movement on
the leeward side. Therefore, there is no precipitation inside the TPB, and the topography of
Datun Mountain in the TPB significantly impacts the cold air transport and water supply
of the Northeast Monsoon.

It is also found that the dustpan-shaped terrain of the LYP does cause the Northeast
Monsoon to produce counterclockwise circulation and partially topographic backflow
which, in turn, changes the local circulation pattern in the LYP. The wind field within the
LYP is affected by the relative position of cold and high pressure and the topographic
effect, which may be the key factors for the location and intensity of precipitation in the
region. Therefore, a detailed analysis of the wind field changes and precipitation locations
reveals that precipitation is concentrated in the Suao region on the windward side of the
southern LYP and in the Luodong area, located on the inner plain. Precipitation in the
mountainous areas of the LYP is considerably lower than in the plains, and the local wind
field changes influenced by terrain are highly correlated with the precipitation distribution.
In the TPB, due to the terrain effect, more precipitation falls on the windward side of Datun
Mountain. In the eastern and southern areas of the TPB, the cumulative precipitation
decreases from the Keelung River estuary to the southwest of the basin. This precipitation
pattern is different from the terrain precipitation effect in the LYP. Therefore, precipitation
distribution in both regions is closely related to terrain height, airflow characteristics, and
water vapor supply.

There is also a significant difference in the cold air transformation process introduced
by the Northeast Monsoon after entering the TPB and the LYP. In terms of TKE, the wind
speed in the TPB is higher than that in the LYP due to the terrain effect, and thus the
atmospheric mixing condition in the TPB is better below 925 hPa and the height of the
mixed layer is higher than that in the LYP. In the low level, energy transfers part of the
SH in the TPB, higher than that in the LYP all day due to the complicated topography
and urbanization. However, as the Northeast Monsoon intensifies, there is an increase in
the amount of incoming cold air, which lowers the vertical temperature gradient near the
surface, leading to a decrease in SH and less rainfall, resulting in a lower LH during the
daytime. In contrast, the open plain and vegetation cover in the LYP result in lower SH
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during the daytime, but more rainfall enhances LH. In the GH component, the downward
GH, transferred from the TPB, is much larger than that from the LYP before midday, which
means that the surface heats up faster, and more energy can be transferred to the deep
soil. With the gradual inflow of cold air into the TPB during the Northeast Monsoon,
near-surface air temperature decreases, and the downward transfer of GH also decreases.
Because the surface cools down too quickly, the GH starts to transfer heat to the surface in
the opposite direction. It can be seen that, after the Northeast Monsoon passes over North
Taiwan, the cold air transformation process in both the TPB and LYP has different effects
on the flux transfer characteristics through the terrain effect and rainfall distribution, which
in turn affects the heat transfer and dynamics in the atmospheric boundary layer of the
two regions. It also causes the cold air transformation process to occur over land, resulting
in differences in atmospheric properties between the urban and the rural areas. Cold air
behind the front would be too thick and the CAPE would vanish, as shown in Figure 2b.
Thus, any convection too far to the north could not be supported and developed.
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