Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from Satellite SAR Data between the 1990s and 2017
Abstract
:1. Introduction
- -
- demonstrate the use of automated processing lines to obtain velocity fields from SAR sensors over large Arctic regions for at least two points in time over the last 20 years;
- -
- assess the accuracy of Sentinel-1 for relatively small Arctic glaciers detect long-term changes across regions and identify glaciers where dramatic changes are taking place;
- -
- utilize the dense temporal coverage of Sentinel-1 in order to obtain velocity time-series for selected rapidly changing (e.g., surging) glaciers;
- -
- better understand the dynamic behaviour of glacier instabilities.
2. Sites, Data and Methods
2.1. Study Regions
2.2. Data
2.2.1. Satellite SAR Data
2.2.2. Satellite Optical Data
2.2.3. Digital Elevation Data
2.2.4. Glacier Outlines
2.3. Methods
3. Results
3.1. Ice Surface Velocity Maps of Arctic Glaciers and Ice Caps
3.2. Variability of Glacier Dynamics in the Arctic Canada
3.3. Variability of Glacier Dynamics over Svalbard
3.4. Variability of Glacier Dynamics in the Russian Arctic
4. Discussion
4.1. Error Assessment
4.2. Interpretation of Results
5. Conclusions and Perspectives
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.O.; Hock, R.; Kaser, G.; Kienholz, C.; et al. The Randolph Glacier Inventory: A globally complete inventory of glaciers. J. Glaciol. 2014, 60, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, D.G.; Comiso, J.C.; Allison, I.; Carrasco, J.; Kaser, G.; Kwok, R.; Mote, P.; Murray, T.; Paul, P.; Ren, J. Observations: Cryosphere. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Church, J.; Clark, P.; Cazenave, A.; Gregory, J.; KhanJevrejeva, S.A.; Levermann, A.; Merrifield, M.; Milne, G.; Nerem, R.; Nunn, P.; et al. Sea Level Change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Zekollari, H.; Huybrechts, P.; Noël, B.; van de Berg, W.J.; van den Broeke, M. Sensitivity, stability and future evolution of the world’s northernmost ice cap, Hans Tausen Iskappe (Greenland). Cryosphere 2017, 11, 805–825. [Google Scholar] [CrossRef]
- Dunse, T.; Schellenberger, T.; Hagen, J.-O.; Kääb, A.; Schuler, T.; Reijmer, C. Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt. Cryosphere 2015, 9, 197–215. [Google Scholar] [CrossRef]
- Paterson, W.S.B. The Physics of Glaciers, 3rd ed.; Pergamon: New York, NY, USA, 1994; p. 480. [Google Scholar]
- Huss, M.; Farinotti, D. A high-resolution bedrock map for the Antarctic Peninsula. Cryosphere 2014, 8, 1261–1273. [Google Scholar] [CrossRef]
- Millan, R.; Mouginot, J.; Rignot, E. Mass budget of the glaciers and ice caps of the Queen Elizabeth Islands, Canada, from 1991 to 2015. Environ. Res. Lett. 2017, 12, 2. [Google Scholar] [CrossRef]
- Gardner, A.; Moholdt, G.; Wouters, B.; Wolken, G.; Burgess, D.; Sharp, M.; Cogley, J.; Braun, C.; Labine, C. Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 2011, 473, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.; Moholdt, G.; Arendt, A.; Wouters, B. Accelerated contributions of Canada’s Baffin and Bylot Island glaciers to sea level rise over the past half century. Cryosphere 2012, 6, 1103–1125. [Google Scholar] [CrossRef]
- Van Wychen, W.; Copland, L.; Gray, L.; Burgess, D.; Danielson, B.; Sharp, M. Spatial and temporal variation of ice motion and ice flux from Devon Ice Cap, Nunavut, Canada. J. Glaciol. 2012, 580, 657–664. [Google Scholar] [CrossRef]
- Van Wychen, W.; Copland, L.; Burgess, D.; Gray, L.; Schaffer, N. Glacier velocities and dynamic discharge from the ice masses of Baffin Island and Bylot Island, Nunavut, Canada. Can. J. Earth Sci. 2015, 52, 980–989. [Google Scholar] [CrossRef]
- Van Wychen, W.; Davis, J.; Burgess, D.; Copland, L.; Gray, L.; Sharp, M.; Mortimer, C. Characterizing interannual variability of glacier dynamics and dynamic discharge (1999–2015) for the ice masses of Ellesmere and Axel Heiberg Islands, Nunavut, Canada. J. Geophys. Res. Earth Surf. 2016, 121, 39–63. [Google Scholar] [CrossRef]
- Melkonian, A.; Willis, M.; Pritchard, M.; Stewart, A. Recent changes in glacier velocities and thinning at Novaya Zemlya. Remote Sens. Environ. 2016, 174, 244–257. [Google Scholar] [CrossRef]
- McMillan, M.; Shepherd, A.; Gourmelen, N.; Dehecq, A.; Leeson, A.; Ridout, A.; Flament, T.; Hogg, A.; Gilbert, L.; Benham, T.; et al. Rapid dynamic activation of a marine-based Arctic ice cap. Geophys. Res. Lett. 2014, 41, 8902–8909. [Google Scholar] [CrossRef] [Green Version]
- Schellenberger, T.; Van Wychen, W.; Copland, L.; Kääb, A.; Gray, L. An Inter-Comparison of Techniques for Determining Velocities of Maritime Arctic Glaciers, Svalbard, Using Radarsat-2 Wide Fine Mode Data. Remote Sens. 2016, 8, 785. [Google Scholar] [CrossRef]
- Sund, M.; Lauknes, T.R.; Eiken, T. Surge dynamics in the Nathorstbreen glacier system, Svalbard. Cryosphere 2014, 8, 623–638. [Google Scholar] [CrossRef] [Green Version]
- Strozzi, T.; Kääb, A.; Schellenberger, T. Frontal destabilisation of Stonebreen, Edgeøya, Svalbard. Cryosphere 2017, 11, 553–566. [Google Scholar] [CrossRef]
- Schellenberger, T.; Dunse, T.; Kääb, A.; Schuler, T.; Hagen, J.-O.; Reijmer, C. Multi-year surface velocities and sea-level rise contribution of the Basin-3 and Basin-2 surges, Austfonna, Svalbard. Cryosphere Discuss. 2017. [Google Scholar] [CrossRef]
- Luckman, A.; Benn, D.; Cottier, F.; Bevan, S.; Nilsen, F.; Inall, M. Calving rates at tidewater glaciers vary strongly with ocean temperature. Nat. Commun. 2015, 6, 8566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowdeswell, J.; Bassford, R.; Gorman, M.; Williams, M.; Glazovsky, A.; Macheret, Y.; Shepherd, A.; Vasilenko, Y.; Savatyuguin, L.; Hubberten, H.-W.; et al. Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic. J. Geophys. Res. 2002, 107, 2076. [Google Scholar] [CrossRef]
- Strozzi, T.; Kouraev, A.; Wiesmann, A.; Wegmüller, U.; Sharov, A.; Werner, C. Estimation of Arctic glacier motion with satellite L-band SAR data. Remote Sens. Environ. 2008, 112, 636–645. [Google Scholar] [CrossRef]
- Glazovsky, A.; Bushueva, I.; Nosenko, G. “Slow” surge of the Vavilov Ice Cap, Severnaya Zemlya. In Proceedings of the IASC Workshop on the Dynamics and Mass Balance of Arctic Glaciers, Obergurgl, Austria, 23–25 March 2015. [Google Scholar]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmüller, U.; Werner, C. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef]
- Paul, P.; Bolch, T.; Kääb, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, A.; Strozzi, T.; Ticconi, F.; Bhambri, R.; et al. The glaciers climate change initiative: Methods for creating glacier area; elevation change and velocity products. Remote Sens. Environ. 2015, 162, 408–426. [Google Scholar] [CrossRef]
- Dehecq, A.; Gourmelen, N.; Trouve, E. Deriving large-scale glacier velocities from a complete satellite archive: Application to the Pamir-Karakoram-Himalaya. Remote Sens. Environ. 2015, 162, 55–66. [Google Scholar] [CrossRef]
- Fahnestock, M.; Scambos, T.; Moon, T.; Gardner, A.; Haran, T.; Klinger, M. Rapid large-area mapping of ice flow using Landsat 8. Remote Sens. Environ. 2016, 185, 84–94. [Google Scholar] [CrossRef]
- Burgess, E.; Forster, R.; Larsen, C. Flow velocities of Alaskan glaciers. Nat. Commun. 2013, 4, 2146. [Google Scholar] [CrossRef] [PubMed]
- Nagler, T.; Rott, H.; Hetzenecker, M.; Wuite, J.; Potin, P. The Sentinel-1 Mission: New Opportunities for Ice Sheet Observations. Remote Sens. 2015, 7, 9371–9389. [Google Scholar] [CrossRef]
- Heid, T.; Kääb, A. Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. Cryosphere 2012, 6, 467–478. [Google Scholar] [CrossRef]
- Kääb, A.; Winsvold, S.H.; Altena, B.; Nuth, C.; Nagler, T.; Wuite, J. Glacier remote sensing using Sentinel-2. Part I: Radiometric and geometric performance, and application to ice velocity. Remote Sens. 2016, 8, 598. [Google Scholar] [CrossRef]
- Altena, B.; Kääb, A. Elevation change and improved velocity retrieval using orthorectified optical satellite data from different orbits. Remote Sens. 2017, 9, 300. [Google Scholar] [CrossRef]
- Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.-O.; Hock, R.; Huss, M.; Kaser, G.; Kienholz, C. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 5.0. Global Land Ice Measurements from Space; Digital Media: Boulder Colorado, CO, USA, 2015. [Google Scholar]
- Dunbar, M.J.; Adams, P.R. The Canadian Encyclopedia. Arctic Archipelago. 2006. Available online: http://www.thecanadianencyclopedia.ca/en/article/arctic-archipelago (accessed on 31 May 2017).
- Lefauconnier, B.; Hagen, J.-O. Surging and Calving Glaciers in Eastern Svalbard; Meddelelser Nr. 116; Norsk Polarinstitutt: Oslo, Norway, 1991. [Google Scholar]
- Martín-Moreno, R.; Allende Álvarez, F.; Hagen, J.-O. ‘Little Ice Age’ glacier extent and subsequent retreat in Svalbard archipelago. Holocene 2017, 1–12. [Google Scholar] [CrossRef]
- Hagen, J.-O.; Liestøl, O.; Roland, E.; Jørgensen, T. Glacier Atlas of Svalbard and Jan Mayen (Meddelelser 129); Norsk Polarinstitutt: Oslo, Norway, 1993. [Google Scholar]
- Nordli, Ø.; Przybylak, R.; Ogilvie, A.; Isaksen, K. Long-term temperature trends and variability on Spitsbergen: The extended Svalbard Airport temperatures series, 1898–2012. Polar Res. 2014, 33, 21349. [Google Scholar] [CrossRef]
- Rastner, P.; Strozzi, T.; Paul, F. Fusion of multi-source satellite data and DEMs to create a new glacier inventory for Novaya Zemlya. Remote Sens. 2017. in review. [Google Scholar]
- Moholdt, G.; Wouters, B.; Gardner, A. Recent mass changes of glaciers in the Russian High Arctic. Geophys. Res. Lett. 2012, 39, 1–5. [Google Scholar] [CrossRef]
- Grant, K.; Stokes, C.; Evans, I. Identification and characteristics of surge-type glaciers on Novaya Zemlya, Russian Arctic. J. Glaciol. 2009, 55, 194. [Google Scholar] [CrossRef] [Green Version]
- Zeeberg, J. Climate and Glacial History of the Novaya Zemlya Archipelago, Russian Arctic; Rozenberg Publishers: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Dowdeswell, J. Glaciers in the High Arctic and recent environmental change. Philos. Trans. Phys. Sci. Eng. 1995, 352, 321–334. [Google Scholar] [CrossRef]
- Barr, S. Franz Josef Land; Norwegian Polar Institute: Oslo, Norway, 1995; ISBN 82-7666-095-9. [Google Scholar]
- DLR EOC—Earth Observation Center. TanDEM-X Ground Segment DEM Products Specification Document; Issue 3.0; German Aerospace Center (DLR): Cologne, German, 2013. [Google Scholar]
- Mohr, J.J.; Reeh, N.; Madsen, S. Three-dimensional glacial flow and surface elevation measured with radar interferometry. Nature 1998, 391, 273–276. [Google Scholar] [CrossRef]
- Murray, T.; Strozzi, T.; Luckman, A.; Jiskoot, H.; Christakos, P. Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions. J. Geophys. Res. 2003, 108, 2237. [Google Scholar] [CrossRef]
- Rignot, E.; Echelmeyer, K.; Krabill, W. Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophys. Res. Lett. 2001, 28, 3501–3504. [Google Scholar] [CrossRef]
- Paul, P.; Bolch, T.; Briggs, K.; Kääb, A.; McMillan, M.; McNabb, R.; Nagler, T.; Nuth, C.; Rastner, P.; Strozzi, T.; et al. Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity products derived from satellite data. Remote Sens. Environ. 2017. in review. [Google Scholar]
- Voytenko, D. Glaciological Applications of Terrestrial Radar Interferometry. Ph.D. Thesis, University of South Florida, Tampa Bay, FL, USA, 2015. [Google Scholar]
Study Region | Satellite Sensor | Time Period |
---|---|---|
Canadian Arctic South | PALSAR-1 | 2007–2011 |
Sentinel-1 | 2015 | |
Canadian Arctic South | PALSAR-1 | 2007–2011 |
Sentinel-1 | 2016 | |
Svalbard | JERS-1/PALSAR-1/TerraSAR-X | 1994–2011 |
Sentinel-1 | 2015–2017 | |
Novaya Zemlya | PALSAR-1 | 2008–2010 |
Sentinel-1 | 2017 | |
Franz-Josef Land | JERS-1/PALSAR-1 | 1998–2011 |
Sentinel-1 | 2016 | |
Severnaya Zemlya | PALSAR-1 | 2010 |
Sentinel-1 | 2016–2017 |
Inter-Comparison Experiment | Mean Difference | Standard Deviation |
---|---|---|
Regions far from glacier calving fronts and shear zones | ||
Radarsat-2 WUF Mode Basin-2, Basin-3 and Stonebreen | 17 m/year | 26 m/year |
GPRI-2 Kronebreen (3 h) | 8 m/year | 22 m/year |
Regions close to glacier calving fronts and shear zones | ||
Radarsat-2 WUF Mode Basin-2, Basin-3 and Stonebreen | 38 m/year | 64 m/year |
Radarsat-2 WUF Mode Vavilov Ice Cap | −2 m/year | 63 m/year |
GPRI-2 Kronebreen (3 h) | 67 m/year | 268 m/year |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strozzi, T.; Paul, F.; Wiesmann, A.; Schellenberger, T.; Kääb, A. Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from Satellite SAR Data between the 1990s and 2017. Remote Sens. 2017, 9, 947. https://doi.org/10.3390/rs9090947
Strozzi T, Paul F, Wiesmann A, Schellenberger T, Kääb A. Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from Satellite SAR Data between the 1990s and 2017. Remote Sensing. 2017; 9(9):947. https://doi.org/10.3390/rs9090947
Chicago/Turabian StyleStrozzi, Tazio, Frank Paul, Andreas Wiesmann, Thomas Schellenberger, and Andreas Kääb. 2017. "Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from Satellite SAR Data between the 1990s and 2017" Remote Sensing 9, no. 9: 947. https://doi.org/10.3390/rs9090947
APA StyleStrozzi, T., Paul, F., Wiesmann, A., Schellenberger, T., & Kääb, A. (2017). Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from Satellite SAR Data between the 1990s and 2017. Remote Sensing, 9(9), 947. https://doi.org/10.3390/rs9090947