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Abstract: Deep learning has garnered increasing attention in human activity detection
due to its advantages, such as not relying on expert knowledge and automatic feature
extraction. However, the existing deep learning-based approaches are primarily confined
to recognizing specific types of human activities, which hinders scientific decision-making
and comprehensive environmental protection. Therefore, there is an urgent need to de-
velop a deep learning model to address multiple-type human activity detection with
finer-resolution images. In this study, we proposed a new multi-task learning model
(named PE-MLNet) to simultaneously achieve change detection and land use classification
in GF-6 bitemporal images. Meanwhile, we also designed a pooling enhancement module
(PEM) to accurately capture multi-scale change details from the bitemporal feature maps
through combining differencing and concatenating branches. An independent annotated
dataset at Yellow River Delta was taken to examine the effectiveness of PE-MLNet. The
results showed that PE-MLNet exhibited obvious improvements in both detection accuracy
and detail handling compared with other existing methods. Further analysis uncovered
that the areas of buildings, roads, and oil depots has obviously increased, while the farm-
land and wetland areas largely decreased over the five years, indicating an expansion of
human activities and their increased impacts on natural environments.

Keywords: human activity; change detection; semantic segmentation; multi-task learning;
remote sensing

1. Introduction
Human activities encompass a diverse range of undertakings conducted continuously

for survival, development, and the enhancement of living standards [1]. With the accel-
eration of industrialization and urbanization globally, human activities have increasingly
impacted the natural environment, leading to environmental pollution and ecological
degradation, such as deforestation, lake reclamation [2], and overexploitation [3]. Con-
sequently, real-time monitoring of human activities is crucial for urban planning and
sustainable development.

Two primary means of monitoring human activities are aerial remote sensing and
satellite remote sensing [4]. Aerial remote sensing, leveraging aircraft or other airborne
platforms equipped with multi-band scanners, cameras, and radars, offers high accuracy
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and flexibility but is limited in scope for large-area, long-term monitoring due to aircraft
performance and economic constraints [5]. In contrast, satellite remote sensing boasts
global coverage, continuous observation, and low data acquisition costs [6–8], making it
widely applicable in urban planning, land management, resource exploration, and disaster
monitoring [9–11]. Notably, the advent of high-resolution satellites has provided finer data
sources for capturing intricate texture structures and change details and thus facilitating
more precise land identification [12], although high-resolution images usually offer less
spectral information compared to medium- and low-resolution images, like Landsat TM
and MODIS [13].

Change detection, defined as “the process of identifying differences in the state of
an object of phenomenon by observing it at different times” [14], is an effective means of
extracting human activity information through bitemporal image change mapping [15].
Early change detection methods relied on visual interpretation, which was both knowledge-
intensive and impractical for large-scale remote sensing data [16]. With advancements
in remote sensing and computer technology, automated and intelligent change detection
methods have emerged [17]. Algebra-based methods directly compute pixel differences and
apply preset thresholds to generate change maps [18], while transformation-based meth-
ods use Principal Component Analysis (PCA), Tasseled Cap transformation, or Gramm–
Schmidt transformation to separate change components before applying thresholds [19–21].
Both approaches face challenges in accurately setting thresholds due to the complexity
of and variability in remote sensing data [22]. Classification-based methods compare re-
sults after supervised or unsupervised classification results, reducing image information
utilization [23]. Advanced models, like reflectance models and spectral mixture models,
convert spectral information into physical parameters for change analysis, showing good
performance in specific scenarios but limited generalizability [24].

Deep learning has garnered significant attention in recent years, particularly in the
fields of image processing and remote sensing [25]. Compared to traditional change
detection methods, deep learning approaches excel in their ability to directly learn change
features from bitemporal or multi-temporal remote sensing images [26]. By leveraging these
features to segment the images, deep learning models generate change maps with superior
robustness [27]. Consequently, deep learning methods have been widely employed in
human activity detection [28]. For instance, de Bem et al. [29] utilized three convolutional
neural networks (SharpMask, U-Net, and ResUnet) to map deforestation in the Amazon
region of Brazil from 2017 to 2019 and all outperformed traditional machine learning
approaches. Murdaca et al. [30] introduced a semi-supervised deep learning framework
to detect changes in open-pit mines, which presented excellent robustness through the
incorporation of pseudo-labels. Meanwhile, D’Addabbo et al. [31] successfully detected
newly constructed buildings in urban areas by leveraging pre-trained AlexNet to extract
deep features and applying transfer learning techniques. Although these studies underscore
the efficacy of deep learning in human activity detection, the majority of current research
focuses exclusively on specific types of human activities, lacking a deep learning algorithm
capable of addressing the detection of multiple types of human activities.

To address the limitations in the existing research, this study aims to develop a
multi-class human activity detection model (PE-MLNet) based on high-resolution imagery
utilizing a multi-task learning approach. This model not only performs accurate land use
classification of bitemporal remote sensing images but also simultaneously identifies areas
of change, thereby enabling comprehensive detection of human activities within the study
region. Furthermore, we propose a pooling enhancement module (PEM) with a dual-branch
structure for capturing both global and local details of changes in bitemporal images.
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2. Materials and Methods
2.1. Study Region

The study area for this research is located in the Yellow River Delta of China. As
shown in Figure 1, this region has a diverse array of land use types, encompassing natural
landscapes such as rivers, wetlands, and lakes while simultaneously experiencing the
impact of human activities, like urban expansion, land development, and pond aquacul-
ture [32]. This study collected three GF-6 images covering the Yellow River Delta across
June 2019, July 2021, and June 2023, which include one 2 m panchromatic band and four
8 m multispectral bands, namely, the red, green, blue, and near-infrared bands. To accu-
rately capture the characteristics of complex land objects, we first fused the panchromatic
and multispectral bands to produce multispectral imagery with a resolution of 2 m.
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Figure 1. The location of the study area.

The sample collection strategy is illustrated in Figure 2. Specifically, 23 regions of
different sizes were selected for this study (Figure 2a), covering the majority of typical
human activity types and natural land covers. Manual annotation was then performed at
the selected sampling points (Figure 2b). For the annotation of change detection (Change), a
binary labeling system was adopted, with 1 representing “changed” and 0 representing
“unchanged”. As for land use annotation (Landuse1 and Landuse2), this study focused on
nine land types related to human activities, including building, natural water, cropland,
aquaculture pond, salt field, road, oil depot, wetland, and others. Subsequently, the images
and samples were cropped into 256 × 256 tiles, resulting in 1351 sets of training data.
After random partitioning, 1204 sets were designated as the training set, and 135 sets were
designated as the validation set. As shown in Figure 2c, the data labels include land use
labels (label1 and label2) and change detection labels (label_cd) for bitemporal images. Table 1
provides a summary of the label categories and pixel statistics for the YRD dataset.
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Figure 2. Sample collection strategy: (a) selected sample areas. There are a total of 23 selected green
squares.; (b) detailed display of sample area annotation. The Landuse1 and Landuse2 are land use
labels, and the Change is the change label. (c) Detailed display of some samples from the YRD dataset.
The label1 and label2 are used for semantic segmentation, and the label_cd is used for change detection.

Table 1. The label category and the number of pixels in the YRD dataset.

Task Class Train Validate

Change Detection Changed 3.7 × 107 4.7 × 106

Unchanged 2.0 × 108 2.2 × 107

Semantic Segmentation

Others 9.8 × 107 1.5 × 107

Building 1.0 × 107 2.0 × 106

Natural Water 9.4 × 107 9.4 × 106

Cropland 1.5 × 108 1.5 × 107

Aquaculture Pond 5.9 × 107 5.0 × 106

Salt Field 2.3 × 107 2.0 × 107

Road 3.1 × 106 3.5 × 105

Oil Depot 1.3 × 106 5.0 × 105

Wetland 4.4 × 107 4.7 × 106

2.2. Methodology

This study designed a human activity detection model called PE-MLNet based on
pooling enhancement and multi-task learning. This model not only identifies the change
area of dual-temporal images but also classifies the land use of the front and back images,
so as to realize the detection of multiple types of human activities in the study area, with
the workflow illustrated in Figure 3. It mainly includes four parts:

(1) Feature Extractor: It extracts common semantic features from the bitemporal images.
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(2) Semantic Segmentation Module: Utilizing the feature maps obtained from the feature
extractor as input, it outputs semantic segmentation results.

(3) Pooling Enhancement Module: It captures multi-scale change details within the
feature maps.

(4) Change Detection Module: Taking the multi-scale change feature maps extracted by
the PEM as input, it produces the change detection results.
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module, pooling enhancement module (PEM), and change detection module.

Based on the aforementioned four modules, multi-task learning encompasses
three tasks: (1) change detection in bitemporal images, (2) semantic segmentation,
and (3) measuring the consistency between semantic segmentation results and change
detection results.

2.2.1. Feature Extractor

In traditional change detection approaches, a single-branch network is often utilized as
a feature extractor, where bitemporal images are superimposed and directly input to obtain
a difference map [33]. However, this method is prone to information loss and often makes
it challenging for the network to converge [34]. To address this issue, we introduced a
dual-branch network based on shared parameters as the feature extractor, which is capable
of better extracting semantic information and differences from bitemporal images. The
branch network comprises four convolutional blocks, each consisting of Conv 3 × 3, batch
normalization, and ReLU. When bitemporal images are input into the feature extractor,
they undergo multiple downsampling processes, resulting in a continuous reduction in the
size of the feature maps and a gradual increase in the number of channels.
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2.2.2. Semantic Segmentation Module

To extract semantic features from dual-phase images and obtain semantic segmentation
results, the semantic segmentation module in this study adopts the structure of PSPNet [35].
The spatial pyramid pooling (SPP) module in PSPNet enhances the receptive field of the
network and captures richer semantic information from the image. After the feature maps
extracted by the feature extractor enter the semantic segmentation module, they first pass
through the SPP module where average pooling is applied using different kernel sizes of
1 × 1, 2 × 2, 3 × 3, and 6 × 6. The channel number is then reduced using 1 × 1 convolutions.
Subsequently, the feature maps are upsampled to restore their original dimensions and are
concatenated with the feature maps before entering the SPP module. Following this, two
1 × 1 convolution blocks are applied to reduce the channel number without altering the
dimensions and to predict the probability of each pixel belonging to different categories.
Finally, the segmentation results are output after interpolation upsampling.

2.2.3. Pooling Enhancement Module (PEM)

In the field of change detection research, two common methods for generating change
feature maps are differencing and concatenating. However, both approaches have inherent
limitations [36]. The differencing method creates a change feature map by subtracting
and then taking the absolute value. This method is susceptible to lighting and weather
conditions, leading to unstable results. Additionally, the high variability in high-resolution
imagery spectra introduces substantial noise during differentiation. The concatenating
method connects the deep features of dual-temporal images across channels, preserving a
majority of the semantic information. Yet it results in information redundancy, increases
computational costs, and lacks interpretability.

Addressing the limitations of these methods, this study introduced the PEM to capture
global and local change details while preserving semantic information (Figure 4). The PEM
comprises concatenation and differentiation branches. Upon receiving the feature maps
(F1 and F2) from the feature extractor, it produces a connecting feature map (A) and a
differential change map (D) through respective connection and differentiation processes.
The connecting feature map employs 3 × 3 and 1 × 1 convolution blocks to detect contextual
information and reduce channel numbers. For the differential change map, spatial pyramid
pooling is first applied, followed by average pooling using four types of receptive fields
(1 × 1, 2 × 2, 3 × 3, and 6 × 6). This extracts multi-scale change information from the
map, which is then upsampled and combined with the original map. Finally, contextual
information is detected using 3 × 3 convolution blocks, and pixel values are summed with
those from the connecting branch. The entire process can be described as follows:

A = [F1, F2] (1)

D = |F1 − F2| (2)

A′ = Conv1(Conv3(A)) (3)

D′ = SPP(D) (4)

F′ = A′ + D′ (5)

where [·] represents concatenation on the channel dimension, |·| denotes the absolute value,
and Conv3 and Conv1 refer to 3 × 3 and 1 × 1 convolution layers, respectively, followed by
batch normalization and ReLU. PEM integrates semantic information from dual-temporal
feature maps with multi-scale change details, effectively enhancing the representation
of changed regions while suppressing irrelevant distractions. Through the PEM, four
pooling-enhanced change maps of different scales are sequentially generated.
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2.2.4. Change Detection Module

The PEM extracts four types of pooling-enhanced change maps at different scales,
employing skip connections to pass multiple change maps to the change detection module.
The change detection module is designed as an alternating combination of convolutional
and upsampling blocks. Each upsampling block comprises Transposed Conv 3 × 3, batch
normalization, and ReLU. After the deep change map enters the change detection module, it
first reduces the channel count through convolution and then overlaps with the change map
from the previous layer through upsampling. Throughout the process, four upsampling
operations are performed to gradually restore the change map’s size and predict the
probability of pixel changes.

2.2.5. Loss Function

This study introduces a multi-task loss function to optimize multi-task learning,
consisting of three components: the change detection loss Lcd, the semantic segmenta-
tion loss Lse, and the consistency loss Lcs between the change detection and semantic
segmentation results.

The change detection loss Lcd quantifies the discrepancy between the binary change
map Icd predicted by the change detection module and label_cd. The BCELoss function is
employed to compute Lcd, with the formula for each pixel being the following:

Lcd = −yc log(pc)− (1 − yc) log(1 − pc) (6)

where yc indicates whether the pixel has changed in label_cd, with 1 indicating change
and 0 indicating no change. pc represents the probability of the change detection module
predicting a change in the pixel.

Semantic segmentation loss Lse represents the discrepancy between the segmentation
prediction results I1 and I2 and the corresponding label1 and label2 for the dual-temporal
images produced by the semantic segmentation module. In this study, Lse is computed us-
ing the CELoss, which is frequently employed in multi-classification tasks. The calculation
formula for each pixel is as follows:

Lse = −1
k

k

∑
i=1

yi log(pi) (7)



Remote Sens. 2025, 17, 159 8 of 19

where k denotes the number of semantic segmentation categories. yi denotes the category
in label1 or label2, while pi signifies the predicted probability for category i output by the
semantic segmentation module.

Lcd and Lse are, respectively, used to optimize the learning of change detection tasks
and semantic segmentation tasks. Additionally, this study proposes a loss Lcs that connects
semantic segmentation and change detection. By calculating the loss between the difference
(non-zero difference results are converted to 1) of the prediction results I1 and I2 of semantic
segmentation and label_cd, the semantic information changes in the semantic segmentation
prediction results are kept consistent with the change detection prediction results. The MSE
is used to calculate Lcs, and the calculation formula is as follows:

Lcs =
1
N

N

∑
i=1

(yi − pi)
2 (8)

where N represents the number of pixel points, yi is the true value of the i-th pixel point in
label_cd, and pi is the predicted value of the i-th pixel point in the difference result.

The loss for multi-task learning L is set as the sum of the semantic segmentation loss,
change detection loss, and consistency loss.

L = λ1Lcd + λ2(Lse1 + Lse2) + λ3Lcs (9)

where Lse1 and Lse2 represent the semantic segmentation losses for each temporal phase,
respectively. λ1, λ2, and λ3 denote the hyperparameters representing weights.

3. Results and Discussion
3.1. Experimental Setup and Accuracy Assessment

The experiments in this study were conducted on a workstation equipped with an
NVIDIA RTX A4000 GPU. All the models were built using the PyTorch library [37], with an
iteration count of 300. The Adam algorithm [38] was chosen as the gradient optimization
method, and the batch size was set to 10. To enhance the diversity and quantity of the
data, random flipping and mirroring were employed. For the multi-task loss function
L, considering that change detection and semantic segmentation are equally important,
we hoped to achieve a balance between them during the training process. Therefore, we
empirically set λ1 = 2 and λ2 = λ3 = 1 in order to unify the magnitude of different loss
values. The initial learning rate was set at 0.0001 and gradually decayed during the training
process, according to the following formula:

lr = lr_init ×
(

1 − epoch
max_epoch

)0.9
(10)

where lr represents the current learning rate, lr_init denotes the initial learning rate, epoch
signifies the current iteration count, and max_epoch indicates the total number of iterations.

To verify the effectiveness of the model, a quantitative analysis was conducted by
comparing the output results with the labels. For change detection, this study selected four
evaluation metrics for analysis, i.e., precision (P), recall (R), overall accuracy (OA), and F1-
score (F1). A higher P indicates fewer false positives, while a higher R signifies fewer false
negatives. Both F1 and OA serve as comprehensive evaluation metrics, and higher values
represent better model performance. For semantic segmentation, this study evaluated
model performance using five metrics, including the Intersection over Union (IOU), mean
Intersection over Union (mIOU), overall accuracy (OA) [39], Average Accuracy (AA), and
Kappa coefficient (Kappa) [40]. The IOU represents the ratio of the intersection and union
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between the predicted and true regions, measuring the overlap between the model’s
segmentation results and the ground truth labels. The mIOU is the average of the sum of
the IOUs for all the categories. The AA represents the average of the sum of the recalls
for each category, and the Kappa assesses the consistency of the segmentation results. The
formulas are as follows:

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)

OA =
TP + TN

TP + TN + FP + FN
(13)

F1 =
2 × P × R

P + R
(14)

IOU =
TP

TP + FN + FP
(15)

mIOU =
1
k

k

∑
i=1

IOUi (16)

AA =
1
k

k

∑
i=1

Ri (17)

Kappa =
OA − PRE

1 − PRE
(18)

PRE =
(TP + FP)× (TP + FN)× (TN + FN)× (TN + FP)

(TP + TN + FP + FN)2 (19)

where TP, FP, TN, and FN represent the number of positive samples correctly detected,
the number of negative samples detected as positive, the number of negative samples
correctly detected, and the number of positive samples detected as negative, respectively.
Additionally, k denotes the number of semantic segmentation categories.

3.2. Comparative Methods

To validate the effectiveness of the proposed model, this study compares it with
several classic change detection networks and semantic segmentation networks. For change
detection, the following networks are selected:

(1) Fully Convolutional-Early Fusion (FC-EF) [41]: This approach employs an early fu-
sion strategy, where bitemporal images are concatenated and fed into an FCN to
obtain a change map. Additionally, skip connections are incorporated to supplement
spatial information.

(2) Fully Convolutional Siamese-Concatenation (FC-Siam-conc) [41]: Based on FC-EF, this
method replaces the encoder with a dual-branch structure sharing weights. Deep
features from both temporal phases are extracted, concatenated, and then input into a
decoder to generate a change map.

(3) Fully Convolutional Siamese-Difference (FC-Siam-diff) [41]: This structure is similar to
FC-Siam-conc but with one key difference. After the encoder extracts deep features
from both temporal phases, they are fused using a difference approach.

(4) Image Fusion Network (IFN) [42]: This network introduces a Deep Difference Discrimi-
nation Network (DDN) based on an attention mechanism. It integrates multi-level
deep features with image difference features to construct a change map.
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(5) ChangeNet [43]: This network utilizes ResNet to extract change information at different
scales, which is then processed by a unified decoder for change detection, outputting
semantically meaningful change detection results.

(6) DTCDSCN [44]: This network introduces a spatial feature pyramid pooling module
as its central component, which expands the receptive field of the feature maps
and incorporates contextual features across different scales. Additionally, two extra
semantic segmentation decoders are trained simultaneously.

For semantic segmentation, this study selects the following networks:

(1) Fully Convolutional Network (FCN) [45]: Based on the VGG16 classification network,
this approach replaces the fully connected layers with convolutional layers. Addi-
tionally, skip connections are added to combine deep semantic information with
superficial information, aiming to generate precise segmentation results.

(2) UNet [46]: This network architecture forms a symmetrical “U” shape, consisting of an
encoder and a decoder. The encoder is responsible for feature extraction, while the
decoder performs upsampling through deconvolutions layer by layer, restoring the
feature map size and outputting the segmentation results.

(3) SegNet [47]: The encoder adopts the network structure of VGG16, while the decoder
utilizes pooling indices for upsampling to achieve pixel-level classification.

(4) HRNet [48]: The network maintains high-resolution features of the image through
the use of parallel connections while simultaneously fusing features of different
resolutions through repeated information exchange modules.

3.3. Change Detection

For change detection, all the models showed a stable convergence trend during training
(Figure 5a) and high accuracy over 90% (Figure 5b). This indicates that all the models are
capable of effectively learning from the training data and enhancing their performance.
Specifically, the FC series models exhibited a relatively fast convergence rate, stabilizing
after approximately 25 epochs, with an OA reaching around 92%. The IFN model showed
a higher initial loss and lower OA during the early stages of training, with significant
fluctuations in OA throughout the process. Although ChangeNet experienced significant
OA fluctuations in the first 50 epochs, it gradually stabilized afterward. Among all the
models, PE-MLNet demonstrated the most outstanding performance. During training, the
loss of PE-MLNet remained consistently lower than the other models, with an initial OA of
91% and a final OA of 97%. Additionally, the minimal fluctuation in OA further proved its
excellent performance in change detection.
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Furthermore, PE-MLNet also surpassed the other models in F1, precision, recall, and
OA, achieving scores of 96.52%, 96.80%, 96.24%, and 98.01%, respectively (Table 2). From
the visualization results (Figure 6), it can be observed that PE-MLNet is capable of extract-
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ing most of the changed areas while producing fewer false positives and negatives. For
instance, in Figure 6 (S1), only PE-MLNet detected the specific change from salt fields to
aquaculture ponds, whereas the other methods failed to fully identify this transforma-
tion. In Figure 6 (S2 and S3), the other methods mistakenly classified unchanged roads
as changed areas (S2) and failed to detect the emergence of small buildings (S3). This
could be due to the narrow pixel width occupied by roads and small buildings in the
imagery, leading to the loss of information during feature extraction and resulting in false
detections. The PEM in PE-MLNet is designed to capture and enhance change information
at different scales in the image, suppress noise, and detect subtle changes. Simultaneously,
the multi-task learning framework allows the model to focus more on semantic information
during feature extraction, thereby improving the model robustness.

Table 2. Quantitative comparison of change detection results among the different models. The best
results are highlighted in bold.

Method F1 (%) Precision (%) Recall (%) OA (%)

FC-EF 87.68 86.17 89.41 93.29
FC-Siam-conc 88.15 86.59 89.95 93.55
FC-Siam-diff 87.00 83.84 91.38 93.28

IFN 90.13 89.72 90.91 94.85
ChangeNet 91.73 91.74 91.72 95.31
DTCDSCN 95.55 96.08 95.04 97.44
PE-MLNet 96.52 96.80 96.24 98.01
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3.4. Semantic Segmentation

The loss of all the models rapidly decreased within the first 75 epochs and then gradu-
ally stabilized. Meanwhile, the OA of all the models steadily increased, with the highest
OA reaching over 92% (Figure 7). PE-MLNet and UNet exhibited better performance than
the other methods, achieving a maximum OA of over 94%. Considering more detailed
evaluation metrics (Table 3), the four evaluation metrics of PE-MLNet and UNet are notably
higher than those of the other methods. It is worth noting that, except for a slightly lower
AA compared to UNet, PE-MLNet achieved the highest levels in the other evaluation
metrics, especially in the mIOU, which is improved by 4.62%, 1.68%, 4.73%, and 1.94%
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compared to the other methods, respectively. This proved the excellent performance of the
model in semantic segmentation tasks.
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Table 3. Quantitative comparison of semantic segmentation results among the different models, with
the best outcomes highlighted in bold.

Method mIOU (%) OA (%) AA (%) Kappa (%)

FCN 76.88 92.96 87.80 91.15
UNet 79.82 94.09 90.34 92.06

SegNet 76.77 92.94 87.43 91.17
HRNet 79.56 92.97 86.42 91.18

PE-MLNet 81.50 94.69 88.06 93.33

To compare the segmentation effects of the different models on ground object iden-
tification, the Intersection over Union (IOU) for each category was calculated (Table 4).
PE-MLNet also obtained the highest IOU in multiple categories. Combined with the visu-
alization results (Figure 8), its prediction results are more accurate in identifying various
features, such as buildings, natural water bodies, and aquaculture ponds. This demon-
strates a stronger robustness and stability of PE-MLNet than the others. However, for the
identification of roads and oil depots, none of the models achieve satisfactory results. This
may be due to the limited sample size of these two categories in the training data, making
it difficult for the models to fully learn their features.

Table 4. Quantitative comparison of mean Intersection over Union (mIOU) across various categories
for different models. The best results are highlighted in bold.

Method Building Natural Water Cropland Aquaculture Pond Salt Field Road Oil Depot Wetland Others

FCN 69.47 86.05 95.37 88.95 84.62 42.46 55.23 85.87 83.88
UNet 69.88 88.63 93.19 90.22 88.06 50.14 65.39 90.62 82.25

SegNet 66.96 82.28 94.94 88.99 58.54 44.84 50.46 83.59 79.60
HRNet 70.65 83.14 95.93 93.01 83.99 49.75 63.04 87.97 89.58

PE-MLNet 72.94 89.67 96.58 94.58 89.37 50.55 63.65 89.43 86.70
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Figure 8. Visualization comparison of semantic segmentation results between PE-MLNet and other
methods on the YRD dataset. S1–S4 represent four representative samples.

3.5. Effects of PEM

To evaluate the significance of the PEM in change detection, we chose to replace the
PEM with two methods: concatenating (PE-MLNet_conc) and differencing (PE-MLNet_diff)
of the multi-layer feature maps obtained from the feature extractor. Although the PEM
increases the complexity of the model, it does not significantly impact computational
efficiency. In terms of evaluation metrics, while the improvement in the PEM in OA and
recall is not remarkable, it significantly outperforms the other two approaches in the F1,
IOU, and precision metrics (Table 5). This suggests that the PEM plays a crucial role in
optimizing the details and integrity of prediction results. It aids the network to concentrate
on more detailed information during the decoding process, thereby enhancing the overall
network performance. Among the three methods, PE-MLNet_diff performed worst. This
could be attributed to the high variability in high-resolution spectral imagery, where relying
solely on a difference approach might lead to information loss in detection results.

Table 5. Quantitative comparison of change detection results using different feature fusion methods.

Method FLOPS (G) Params (M) F1 (%) OA (%) IOU (%) Precision (%) Recall (%)

PE-MLNet_PEM 37.29 34.67 96.52 98.01 93.37 96.80 96.25
PE-MLNet_conc 66.93 19.94 95.50 97.47 91.54 95.08 95.93
PE-MLNet_diff 36.21 14.81 95.39 97.39 91.36 95.31 95.48
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By visualizing the Class Activation Maps (CAMs) for selected samples from the YRD
dataset, as shown in Figure 9, it becomes evident that the PEM method adaptively learns
weight-enhanced feature representations while accurately pinpointing the locations of
changing regions. This evidence supports that the introduction of the PEM enhances
the network ability to capture multi-scale detailed information, ultimately improving the
precision and completeness of prediction results.
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3.6. Human Activity Detection

By cropping high-resolution GF-6 images from 2019, 2021, and 2023 into a tile set
of 256 × 256 pixel size and inputting them into the trained PE-MLNet model, land use
changes and human activity intensity were evaluated. The detection results are shown
in Figure 10. By comparing the land use types before and after the change area, different
human activities can be obtained. The detailed display in Figure 11 shows that PE-MLNet
can accurately identify various types of human activities, such as buildings, aquaculture
ponds, roads, etc. The results of the land use transition diagrams uncovered that the areas of
buildings, roads, and oil depots have increased, while the farmland area largely decreased
over the five years, primarily transformed into aquaculture ponds and other land uses
(Figure 12). Regarding the spatial distribution, human activities were most intense in the
northeastern coastal areas, primarily reflected in the expansion of construction land and the
conversion of salt fields into aquaculture ponds. In the southeast estuary region, two main
types of changes were identified: The first is the degradation of wetlands, which is primarily
a result of recent artificial management efforts to control the invasion of Spartina alterniflora
in the area. The second is the extension of natural water bodies, possibly influenced by
increased runoff and more precipitation than normal [49].
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the stripe represents the land use type being transferred out. The width of the stripe represents the
size of the area, and the endpoint indicates the land use type into which it is being converted.

4. Conclusions
Rapid and intelligent detection of human activities is crucial for regional urban plan-

ning and ecological protection. High-resolution imagery provides a more detailed data
source for detecting human activities. To break the limitation of most current methods
only suitable for detecting specific types of human activities, this study constructed a
multi-task learning-based human activity detection model named PE-MLNet to simulta-
neously conduct change detection and semantic segmentation in bitemporal images. By
introducing the PEM to capture multi-scale change details and contextual information from
bitemporal images, PE-MLNet largely outperformed other classical change detection and
semantic segmentation approaches in identification accuracy and visualization details, with
an average increase of 7% in the F1 score for change detection and an average improvement
of 4% in the mIOU for semantic segmentation. Utilization data from the Yellow River Delta
uncovered that the buildings, roads, and oil depots have obviously expanded, while the
farmland area largely decreased over the five years, primarily transformed into aquaculture
ponds and other land uses. In future work, we will strive to further deepen and refine the
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classification system for semantic segmentation, aiming for a more granular categorization
to adapt to more diverse application scenarios and needs.
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