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Abstract: To ensure the success of energy transition and achieve the target of reducing the carbon
footprint of energy systems, the management of energy systems needs to be decentralized. Public
blockchains offer favorable features to support energy sector democratization and reinforce citizens’
trust, such as tamper-proof energy data registration and sharing, decentralization, transparency, and
support for peer-to-peer (P2P) energy trading. However, in blockchain-based P2P energy markets,
transactional data are public and accessible, which raises privacy concerns related to prosumers’
energy profiles while lacking scalability and featuring high transactional costs. In this paper, we
employ secure multi-party computation (MPC) to assure privacy on a P2P energy flexibility market
implementation in Ethereum by combining the prosumers’ flexibility orders data and storing it safely
on the chain. We provide an encoding mechanism for orders on the energy market to obfuscate
the amount of energy traded by creating groups of prosumers, by splitting the amount of energy
from bids and offers, and by creating group-level orders. The solution wraps around the smart
contracts-based implementation of an energy flexibility marketplace, assuring privacy features on all
market operations such as order submission, matching bids and offers, and commitment in trading
and settlement. The experimental results show that the proposed solution is effective in supporting
P2P energy flexibility trading, reducing the number of transactions, and gas consumption with a
limited computational time overhead.

Keywords: secure multi-party computation; peer-to-peer energy trading; groups of prosumers;
flexibility orders encoding; lower gas consumption; public blockchain

1. Introduction

Digitization, decentralization, and engagement of small-scale energy prosumers in en-
ergy grid management are key features to ensure successful energy transition in Europe [1].
The participation of household prosumers in energy markets and demand response (DR)
services is limited by both technological and human barriers [2]. With the adoption of the
Internet of Things (IoT) energy meters, citizens have doubts about sharing their data due
to privacy concerns, and in this aspect, consumers are supported, at least in Europe, by
the General Data Protection Regulation (GDPR) [3]. At the same time, relying on a central
platform for energy data management is not always reasonable, because it is exposed
to attacks and data can be unintentionally leaked, which can result in serious security
issues [4].

Blockchain technology is gaining popularity as a promising solution for eliminating
the need for a central energy trading platform, allowing energy transactions to be recorded
as immutable, shared transparently, and secured over a decentralized network. In such
peer-to-peer (P2P) energy trading models, the prosumers can directly trade their energy
surplus with other prosumers without centralized intermediaries to decrease costs and
increase the local usage of renewables [5]. However, data privacy, low scalability, and
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transactional throughput are open challenges that need to be addressed for implementing
blockchain-based decentralized energy markets.

For household prosumers, the mechanisms for privacy in P2P information sharing
are relevant for their active participation in energy markets and effectively valorizing their
flexibility to its full potential [6]. Without them, the attackers might obtain confidential
information about the location of prosumers, personal information, energy consumption
profiles, etc. [7]. Privacy solutions should consider the network and protocol levels for
transactional data exchanges and the smart contracts that define, in lines of code, the
terms of the P2P transactional energy agreement between prosumers [8]. Moreover, on a
public blockchain, data are accessible to anyone who has access to the network and might
violate privacy regulations [9]. In a P2P energy market implemented on top of the public
blockchain, the prosumers submit energy bids and offers, which are stored and shared
on the blockchain, matched in trades that represent commitments for delivery, and finally
settled using the energy-monitored data [10–12]. All these operations are transparent for
all participants, enabling the audit and validation using a standard procedure enforced by
the smart contracts running on the blockchain. Due to their sensitive nature, the European
Union has set clear rules and regulations regarding the privacy of prosumer data in the
energy market [13,14]. However, they are not enough as modern Artificial Intelligence
algorithms can infer energy consumption/production tendencies of household prosumers
from energy trading data stored on the public blockchain and even find their true identities
or behavioral patterns based on these values [15,16]. Moreover, an attack might further
inject false information by generating false statistics from public data [17]. Mechanisms
for privacy-preserving solutions are needed when deploying P2P energy markets using
techniques such as encryption [18,19].

The P2P energy markets implemented on blockchain overlay experience problems
related to scalability with an increasing number of prosumers and energy transactions [20].
A higher number of prosumers also increase the amount of transactional data to be stored
and shared among blockchain network participants. The number of transactions to be
processed and validated closer to real-time increase with the prosumers’ trading energy.
Moreover, the encryption of transaction data usually leads to an increase in the size of the
data leading to larger block sizes, thus more storage and more data sharing time are needed.
However, many of the existing solutions address scalability by trading either security or
decentralization of the blockchain or market implementation [21].

In this paper, we define a privacy-preserving wrapper for a blockchain-based P2P
energy market [22] using the well-established secure multi-party computation (MPC)
technique [23,24] to provide privacy and confidentiality guarantees for prosumers while
trading their energy flexibility. The prosumers’ energy orders data represent a secret
that is divided among different prosumers such that each one only stores one part of
the secret, and no prosumer holds the entire energy order. As a result, the P2P energy
market operations and associated computations can be performed on these shares without
revealing the original energy order data. The technique allows for grouping prosumers
and computing functions over the groups about the order data we are interested in, such as
energy flexibility quantity and price. The groups of prosumers then participate in the P2P
energy trading without revealing the group members’ identity, increasing the scalability
of the energy flexibility market. As the energy transactions are carried out among groups,
the number of transactions and blockchain gas consumption is reduced. Moreover, all the
sensitive information is inferred or decoded from order shares and used for energy and
financial settlement, so privacy is achieved in a decentralized energy market running on
the blockchain. The advantage of the proposed solution is the intrinsic integration of secure
MPC with the energy flexibility market described in [22], such that no changes are needed
to the core market operation logic implemented in smart contracts. The encodings are
performed off-chain while the transactional overhead is decreased by reducing the number
of participants operating on the market. Moreover, compared with other cryptographic
methods, such as homomorphic encryption [25], secure MPC uses less computing power
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as no encrypted numbers are used inside the smart contracts. The overhead regarding the
secret sharing and function computation over them is limited, not affecting the market
operation.

The rest of the paper is organized as follows: Section 2 presents the related work,
Section 3 describes our approach for integrating MPC with P2P energy markets and en-
abling privacy and group-based flexibility trading, Sections 4 and 5 show evaluation results
and discuss benefits of our solution such as lower time and gas overhead, while Section 6
concludes the paper.

2. Related Work

We organized the state-of-the-art analysis into two main areas. The first direction
focuses on solutions for ensuring privacy in P2P energy trading, while the second direction
deals with solutions to enhance market scalability and transactional throughput.

The most encountered approach to ensure privacy in P2P energy trading is to encrypt
the transactional data that is made public and shared on the blockchain. In [26], each user’s
smart meter encrypts their data using changeable private keys, one for every other user
it communicates with. The quantity of energy in each transaction is hashed to protect
against statistical inference, and a method of authenticity verification without identifying
it is proposed using a certificate of endorsement. Yahaya et al. proposed a two-layer,
P2P energy, private trading system [27]. The first layer is an authentication layer, which
prevents impersonation attacks. Two random numbers are used to generate public/private
keys for buyers and sellers and to create and publish encrypted transactions. Using these
parameters and a rule of regenerating new secret keys for each transaction, each entity can
use them to verify the authenticity of the entity it trades energy with. If an authentication
between two entities fails, the whole energy trading process is terminated. Electric Vehicles
(EVs) are becoming an integral part of P2P energy trading and privacy is necessary. In [28]
the authors tackled privacy issues in charging station-to-vehicle energy trading, as well as
in vehicle-to-vehicle energy trading by encrypting information about both charging and
discharging EVs, such as location, time, and amount of power transferred. To prevent
Sybil attacks, a complex payment system is used which blocks attackers from linking EVs
to their drivers. Radi et al. proposed a system where energy traders make bids to EVs
owners, who can reserve their preferred charging station for a specific period [29]. Privacy
is ensured by an anonymous payment system in which the payments are encrypted using
blind signatures [30] and decrypted using the Schnorr protocol [31]. Similarly, in [32] a
technique was proposed which utilizes higher degree polynomials that enable the execution
of multiple Schnorr protocol instances at a close cost to a single instance. Umer et al. defined
a coloring-based, fully decentralized communication algorithm, where an entity shares
data only with its neighbors, significantly reducing required communications and thus,
enhancing privacy and scalability [33]. In P2P energy trading the price and energy quantity
must be shared, and by doing it only with each prosumer’s neighbors, greater privacy
is ensured.

Zero-Knowledge Proofs (ZKPs) allow to prove that a statement is true without con-
veying any other information about that statement [19]. In [34] the authors leveraged this
technique in a double auction market to increase privacy. The double auction technique
consists of a closed bidding stage, and then an energy exchange stage. During the first
stage, all users submit their bids on the blockchain, with the quantity hidden, together
with a commitment, which is an encryption method. After matching, these commitments
are verified based on ZKPs without revealing the bid quantities. Other authors use ring
signatures to assure privacy in P2P energy trading [35]. Each transaction between parties
must be signed by a minimum number of participants which can form up a public key.
Then there is a minimum number of participants who can team up and redeem a signed
transaction. Moreover, each entity broadcasts messages to all other participants, and each
receiver tries to decrypt the message using its private key, thus the others do not know who
exactly sent the message in the first place. To send a message, a proof-of-work algorithm
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must be executed to prevent spam. The linkable ring signature technique [36] allows to
check if two signatures were generated for a message under the same public/private key
pair and if yes, it proves dishonesty. In [37], this method is used to enable energy buyers to
generate a one-time address and can only send one message with that address. With their
public/private key, buyers encrypt a message only once, which should include a price list
and energy quantities. If the same key pair is used for more than one message, the seller
can check this by reconstructing the private key of the buyer and re-signing the message,
but without revealing the buyer’s identity.

In [18,38], Function Hiding Inner Product Encryption technique [39] was used to
encrypt order quantities and prices. First, order quantities are represented as vectors whose
product tells us which vector is greater than the other. Then using this technique, encrypted
quantities and prices can be ordered and matched, without revealing their values. In [40],
Attribute-Based Encryption technique was used to perform encryption and allow users to
decrypt energy data without the need of any third party. The secret keys are generated by a
certificate authority and handed to all participants. Predicted values of production, together
with price range and other data such as location of identity, are encrypted with this key.
The buyer then searches for specific attributes and by using the above certificate, decrypts
only the values which match their requirements, thus generating P2P energy trading in a
secure manner. Finally, homomorphic encryption is used for P2P energy trading because it
allows us to perform operations on encrypted data, the result is identical to performing
these computations on raw data [41]. Computations can be performed without access to
the secret key, which is necessary only if we want to see the result in raw format. In [42]
the authors use this technique to ensure privacy of energy orders. Order prices are sorted
by applying a sorting algorithm that uses homomorphic encryption and operations on
encrypted data. After sorting the bid orders decreasingly and offers increasingly by price,
members verify all transactions by checking the correctness using the public key.

The scalability in a P2P energy market implemented over blockchain overlays is
challenging due to the tradeoffs that need to be made among decentralization, security, and
scalability [20,43]. Moreover, decoupling between energy players and system-level markets
might generate conflicts that need to be tackled. The scalability of the blockchain-based P2P
energy market was analyzed in [44] using 37 household prosumers. Using Proof-of-Stake
and varying the number of validators, the transaction throughput decreases significantly,
while the mean latency is 10 s for the highest transactional throughput. Decentralized
P2P energy markets can be developed using various blockchain technologies, such as a
permissioned blockchain which uses another type of Byzantine fault tolerance. Abdella et al.
unified three types of energy markets with a single payment system for a lower transaction
amount [45]. By increasing the number of transactions, the latency also increases, the
peak latency being met during market clearance and settlement phases. The scalability of
structured and unstructured models for P2P energy trading were analyzed in [46]. The
structured model organizes peers, and every peer has a list of its neighbors while for the
unstructured model, the peers establish connections with others without any rules. Both
models feature a linear increase in messages exchanges with the number of prosumers.
Local Electricity Markets were virtually created in [47] by mixing complementary loads
and renewable profiles and clustering the prosumers orders based on prices. Moreover, the
bigger the community and renewable sources are, the higher the potential of cost saving is.
There are trade-offs for EVs participation below a certain price threshold. Providing EVs
with incentives based on their self-interest is a suitable technique for achieving balance
between demand and response [48]. A double auction mechanism between EVs acting as
buyers of energy, and service providers, who sell energy, preserves privacy, and maximizes
social welfare, and is implemented through smart contracts. Nodes of the blockchain
network act as energy brokers which manage local EVs. Scalability issues of the blockchain
regarding P2P energy markets are addressed by implementing off-chain channels [49,50].
This model proposes four layers: a marketplace; off-chain channels for negotiation, main
scalability influence; communication layer for entity grouping; and an electrical grid.
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Negotiation results between prosumers yield public transactions on the blockchain, so
privacy is achieved by temporary unique identifiers which are encrypted. Scalability is
increased due to lower blockchain transactions. Small-scale P2P energy trading can cause
physical congestion during trading, and we need to avoid such cases [51]. A two-step
process is implemented where, if a safety check fails, a second step kicks in and represents
the network congestion management procedure. The method shows the same promising
results in both 11-bus and IEEE 33-bus distribution systems.

The number of trading prosumers is the main factor in considering scalability, so
reducing the number of players in a trading group can increase it and at the same time
address the market entry barrier [52]. Segmentation time increases exponentially with the
number of prosumers, but bilateral trading can be used for reducing the computational
time in community-based markets. Adaptive segmentation is proposed as a P2P market
clearing mechanism in [53]. The goal is to clear the market bids and offers with minimum
data exchanged, also considering privacy and minimization of costs. Market segmentation
uses similarities among players to group them using clustering to reduce the number of
data shared outside the group. A similar model is proposed in [54] to enhance scalability.
Prosumers are coupled in groups such that the profit value of groups is equal or has a slight
difference. The profit value is computed based on the energy committed by prosumers as
well as their location and energy type, renewable or not. The average response time and
transaction time increase exponentially by the number of prosumers.

3. Materials and Methods

In this section, we start with a short outline of the P2P energy flexibility market used
as support for the integration of the proposed privacy-preserving methods (Section 3.1),
and then we focus on the novel contribution of this paper related to the grouping and
encoding the prosumers’ energy orders using secure MPC and their integration with the
smart contracts facilitating the P2P trading and market operation (Sections 3.2 and 3.3).

3.1. P2P Energy Flexibility Market

In previous papers, we designed a local energy flexibility market for prosumers to
trade their energy in a P2P manner [22]. We formalized two types of prosumers that can
interact with the market. Energy consumers can be any energy asset with higher energy
demand than production. Energy producers can be small households owning green energy
devices and having a surplus of renewable energy.

The market is developed on top of a public blockchain (i.e., Ethereum) and smart
contracts are defined to deal with the market session management. Upon initial registration
with the market, the prosumers can submit offers for selling their surplus of energy or bids
to buy the energy to cover their deficit. An energy forecasting service uses historical energy
data and weather data to predict energy consumption/production of each prosumer for
the next day. The information is used by prosumers to put orders for the next day of the
market’s session. A module takes all these market orders to match the flexibility bids with
flexibility offers and generates transactions that are inserted into the blockchain. The last
step is the settlement of the transaction using the commitments registered in the trade
placement phase and energy meters’ periodic measurements. These hourly measurements
are compared with the committed values, and the energy and financial settlement of
prosumers’ wallets via tokens distribution is performed.

All the above operations are made possible by smart contracts running on the Ethereum
(see Figure 1). We have multiple types of smart contracts, each fulfilling a specific role.
A market manager contract is responsible for registering prosumers in a market session
and energy certificates are used for replacing the physical energy before the actual transfer.
Furthermore, it launches the market sessions using a specific energy certificate previously
registered. The market session smart contract enlists orders for each specific session and
registers trades. Flexible entity smart contracts represent a flexible entity of a prosumer.
They are the medium through which orders are placed for prosumers, and monitored
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values are stored on the chain. The smart contracts have rules for tracing prosumers energy
consumption, generating energy flexibility orders, and saving commitments which can be
later verified in the settlement phase using energy can be monitored by the smart meters.
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We use a blockchain network to store the hourly energy data collected using smart
meter devices installed in prosumers’ homes. Two types of tokens are used to digitize the
energy as tokens ERC721 to make the assets traceable and ownable, and a Lockable ERC20
token for transferring fungible assets between prosumers.

In this paper, we go beyond our previous work on P2P energy trading by defining
and integrating privacy-preserving mechanisms based on secure MPC. In previous work,
all the prosumers’ energy orders are stored on the public blockchain to be verified and
audited. However, this generates privacy concerns as the transactional data are transparent.
Our solution leverages on secure MPC to group prosumers and encodes the energy orders
on the market to make them private, and to allow to compare, match, and settle bids and
offers in transactions. We obfuscate the amount of energy traded by the participants while
all the needed operations, such as addition, multiplication with a constant, and comparison,
are performed on encrypted values, using an implementation of Function-Hiding Inner
Product Encryption [39]. As a result, the P2P energy market operations and associated
computations are performed on these obfuscate data without revealing the original energy
order data. The groups of prosumers participate in the P2P energy trading leveraging
on smart contracts to submit orders in the market session and transaction settlement
without revealing the group members’ identity, increasing the scalability of the energy
flexibility market.

3.2. MPC-Based Flexibility Order Encoding

To encode the orders on the market, we use secure MPC. We want to hide the amount
of energy that each market participant is trading by integrating the technique proposed [48].
Our goal is to obtain all the prosumers that want to submit energy flexibility orders on a
market session and create random groups while mixing their submitted energy values. The
prosumers are grouped considering the type of order either in groups of offers or groups
of bids.

We represent a day ahead flexibility order using an array of 24 quantities of energy,
one for each hour and a price for the entire order:

Pbid,i = (Ebid(T), PriceGwei), where Ebid(T) = {ebid(t) : tεT = {1, . . . 24}} (1)
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Po f f er,i =
(

Eo f f er(T), PriceGwei

)
, where Eo f f er(T) =

{
eo f f er(t) : tεT = {1, . . . 24}

}
(2)

To encode orders on the energy market, we consider the total number of prosumers
that want to place orders on the market session (N) and split into random groups of r
members considering the order type (i.e., bids and offers). These groups can have any
number of members r, if r is divisible with the total number of prosumers. In this way we
assure that the groups created have an equal number of participants:

Pros = {Pk|k ∈ {1 . . . N}, Pbid,k ∨ Po f f er,k ./ Market Session
}

(3)

(G,a R) =
{(

gj,type, R
)
,
∣∣R = random(N), j = 1 . . . k, type = bid ∨ o f f er

}
(4)

where
(

gj, r
)

is a group having r prosumers that submitted only bids or only offers on the
market session. By joining all created groups, the initial set of prosumers on the market
session should be obtained:

Pros =
⋃k

j=1

(
gj, R

)
(5)

Inside a group, the bids and orders are spilt in random numbers R and the new values
are distributed among the prosumers of the group. By splitting we mean that the sum
of these random values is equal to the initial order value. We split the energy values
considering each time slot t ε T as well as the order’s price:

ebid(t) =
{

er
bid(t)

∣∣∣∑r
n=1 er

bid(t) = ebid(t)} (6)

eo f f er(t) =
{

er
o f f er(t)

∣∣∣∑r
n=1 er

o f f er(t) = eo f f er(t)
}

(7)

PriceGwei =
{

Pricer
Gwei

∣∣∣∑R
r=1 Pricer

Gwei = PriceGwei

}
(8)

Each member of the group splits its energy order, then it keeps only one of those
random values and sends the rest to the other group members (i.e., one value is assigned
to one member). As a result, each member of the group creates a new energy order by
aggregating all the individual order values received form the other peer members of the
group including its own random value:

Porders,k =
{

ePj ,r

∣∣∣r ∈ 1 . . . R, Pj ∈ (g,a R), ePj ,rtype = bid ∨ o f f er
}

(9)

Pbid,k = ∑R
r=1 ePj ,r

∣∣∣r ∈ 1 . . . R, Pj ∈ (G,a R), type = bid
}

(10)

Po f f er,k = ∑R
r=1 ePj ,r

∣∣∣r ∈ 1 . . . R, Pj ∈ (G,a R), type = o f f er
}

(11)

A similar approach on splitting, distributing, and aggregating among the group
participants is used the price:

Pprice,k = ∑R
r Pricer

Gwei
(

Pj
)
,∈ 1 . . . R, Pj ∈ (G,a R) (12)

As a result, each prosumer has a new order comprised of an energy amount and price.
The goal is to hide the energy values of each entity while operating on the market, so after
executing the above mixing process, we have a single group operator G who acts on the
market on behalf of the group. It can be viewed similarly as an energy aggregator who
is assigned a random group, splits each participant’s order values, then operates on the
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energy market, and in the end, after the trading settlement phase is completed, distributes
the rewards or penalties for each member according to their original promised values and
actual delivery. The amount of energy of the group order is calculated as:(

gj,type, R
)

order =< ∑ Porder,k,avg
(

Pprice,k

)
>, ∀ Pk ∈

(
gj,type, R

)
(13)

The energy tokens distribution needs to be performed per actual energy delivery to
keep the market competitive and fair for participants. As the prosumers are clustered in
groups and the initial energy orders are mixed by splitting, distribution, and aggregation,
the new orders generated can be very different from the original ones. The prosumers with
higher energy amounts have a higher contribution to the group, and the tokens during
settlement need to be allocated accordingly. Thus, we privately associated the percentage
from the group’s sum of each prosumer member. The process is formally described in
Algorithm 1.

Algorithm 1: Formal description of the algorithm used for energy orders encoding.

Inputs: Pros—the list of prosumers participating to the market session

Outputs:
(

gj,order, R
)

order
—the prosumers groups bids and offers determined

Begin

1. for each prosumer P in Pros do
2. determine de sets of energy offers Poffer and energy bids Pbid
3. end for each
4. R = random(N), order
5. for each type of order = {offer, bid} do
6. construct groups of prosumers (Gorder,a R)
7. for each (Gorder,a R) do
8. split Porder in R parts Poffer,R
9. distribute Porder,R to group (Gorder,a R) prosumers
10. destroy initial offer Porder
11. end for each

12. construct
(

gj,order, R
)

order
using Porder,R

13. end for each

End

To formalize the settlement process, we need to compute the percentage of each
prosumer’s initial order from the order of the group and store it securely. We use the values
monitored from each prosumer smart meter to compute the settlement of the group as
its sum. Each prosumer’s individual monitored values are private. After knowing the
settlement value of a group, for all 24 h of the day, we just need to compute each initial
prosumer’s percentage from the value and use it as the payment of each initial prosumer.
Finally, each group places the orders on the flexibility market using smart contracts.

3.3. Integration with P2P Trading Smart Contracts

To use the secure MPC implementation described above for P2P energy trading we
modified the flexibility orders registration process to consider the creation of prosumer
groups while leveraging on the functionality provided by the smart contracts in Figure 1.
We capture the initial sets of bids and offers the prosumers are submitting to the market
session and use the algorithm from Algorithm 2 to create groups based on the order type.
Furthermore, for the created groups, new market participants are registered to the flexibility
market and the aggregated orders are stored on the blockchain.
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Algorithm 2: Encoding and placing flexibility orders with MPC.

Inputs: P—the list of prosumers placing either bids OR offers Pbid or Po f f er
Outputs: −
Begin

1. r ← generate Random Number (1, Psize/2))
2. number O f Groups = Psize/r
3. List.shu f f le(P)
4. List < List <� Groups← P.group By (i→ i% number O f Groups).

map (list→ list.stream()).collect(toList));
5. for each group ∈ Groups do
6. new Group SmartC ← FlexibleEntitySC.deploy()
7. new Orders← COMPUTE_ORDER_VALUES(group)

8. price←
SUM

(
groupprices

)
groupsize

9. for each member ∈ group do
10. LERC20SC.transfer(member, new Group SmartC)
11. end for
12. Market Manager SC.registerFlexibleEntity(new Group SmartCaddress)
13. for each order ∈ new Orders do
14. (new Group SmartCaddress).placeOrder(order, price)
15. end for
16. end for

End

We obtain the lists of prosumers who are placing either flexibility bids or offers in the
current market session. We create separate groups for each category. A random number is
generated for the group size between 1 and half of the number of prosumers (line 1). We
divide the prosumers into equal groups by randomly shuffling the prosumers (lines 3–4).
We are instantiating and deploying a new smart contract for the group to deal with the
market interaction on behalf of the group such as placing orders (line 6). We use the P2P
market contracts to register the new group as a Flexible Entity to be able to act on the market
and place orders, because our energy market is private, and access needs to be granted
by the Manager. The group order energy amount is computed by combining the order
values of each prosumer member in the group and computing the median price for the
flexibility using relations 10–12 (lines 7–8). This step is detailed in Algorithm 3. We transfer
Lockable ERC20 tokens from each smart contract of the prosumers belonging to the group,
to the smart contract owned by the group, such that it can submit the flexibility order in the
market (9–14). Algorithm 3 shows the algorithm for generating new flexibility orders on
behalf of the group (COMPUTE_ORDER_VALUES) after randomizing each energy amount
value of prosumers.

The algorithm takes as input the list of prosumers who form the group while the
output value is the list of the newly generated group order values for each hour. We start
by creating a list of the flexibility order values for each prosumer in the group (lines 2–5).
We proceed by splitting the flexibility order values and then recombining them into new
orders, whose sum represents the group’s orders (lines 8–9). For each hour of the day, we
take each initial (i.e., before split and shuffle) flexibility order of all prosumers in the group
and we split the energy values into r random parts such that their total remains equal the
initial value (lines 13–19). We create a new data structure containing the list of randomly
split values of each order value for the current hour, then we sum all values from this new
data structure by obtaining the values from the lists at index 0. r to obtain the split order
values of prosumers (lines 20–24). In the end, we sum these new split order values and
obtain the group’s flexibility order values for each hour (line 26).
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Algorithm 3: Computing the flexibility order values for a group of prosumers.

Inputs: G - group of prosumers,
Outputs: G f lex−order list of newly generated hourly flexibility orders
Begin

1. E f lex ← CREATE_EMPTY_LIST_OF_LISTS(Gsize)

2. for each p ∈ G do
3. ordersp ← getOrders(p)
4. Eflex.add

(
ordersp

)
5. end for
6. G f lex−order ← CREATE_EMPTY_LIST()
7. for each hour ∈ {0, . . . , 23} do
8. ordersnew ← CREATE_EMPTY_LIST_OF_LISTS()
9. splitValues← CREATE_EMPTY_LIST_OF_LISTS()
10. for each listl : Eestimated do
11. currentValues← CREATE_EMPTY_LIST()
12. value← lhour
13. for each i ∈ {0, . . . , r} do
14. if value 6= 0 do
15. numrandom ← GENERATE_RANDOM(0, value)
16. currentValues.add(numrandom)
17. value← value− numrandom
18. end if
19. end for
20. currentValues.add(value)
21. splitValues.add(currentValues)
22. end for
23. for each i ∈ {0 . . . r} do
24. ordersnew.add(SUM(splitValues[i]))
25. end for
26. G f lex−order.add(SUM(ordersnew))

27. end for
28. return G f lex−order

End

When the session ends, the matching and commitment phases begin using the flexibil-
ity orders submitted by the groups of prosumers created. We used the matching algorithm
we defined in [22]. Two orders matched together result in an energy flexibility trade which
is saved in the blockchain for each group of prosumers such that it can be verified later in
the settlement phase. Each group should own and lock the flexibility they are trading in
transactions using tokens.

Finally, prosumers’ energy monitored from the smart meters is used to perform market
settlement. We define a smart contract method to register a monitored energy value hourly
for each prosumer. We compare the monitored value to the promised one in the stored
trades to make the tokens distribution accordingly. To ensure this market functionality we
need to decode from the group flexibility orders the original percentual contribution of
each prosumer (see Algorithm 4).

This computes the order values for a group such that we know each participant’s
energy quantities. We compute the sum of the prosumer’s flexibility orders and then the
percentage of each one of them from the total (lines 2–10). We leverage on a smart contract
method to throw events inside methods, events which we can query and see the values
they exposed. During the settlement process, it is called each hour when energy monitoring
is registered on the blockchain to determine the compensation payment.
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Algorithm 4: Computing the percentages of each order from the group total.

Inputs: G – group of prosumers
G.ordervalues – the order values of each prosumer in the group

Outputs: percentages – the percentage contribution of each prosumer to the
group flexibility order

Begin

1. percentages← CREATE_EMPTY_OF_LISTS()
2. for each i ∈ {0 . . . r}do
3. sum← 0
4. for each hour ∈ {0 . . . 23} do
5. sum← sum + G.ordervalue[hour]
6. end for
7. currentPercentList← CREATE_EMPTY_OF_LISTS()
8. for each hour ∈ {0 . . . 23} do

9. percent← G.ordervalue [hour]
sum ∗ 100

10. currentPercentList.add(percent)
11. end for
12. percentages.add(currentPercentList)
13. end for
14. return percentages

End

4. Evaluation Results

In this section, we evaluate the above solution in the context of the decentralized
P2P energy flexibility market aiming to assess if it can successfully support and assure
privacy across all market operations from prosumers orders placement, token minting,
trades matching, and settlement.

We considered the monitored infrastructure described in [22] to acquire energy data
from several household prosumers: (i) three prosumers act as flexibility buyers who have
more renewable energy and need supplementary demand to cover their surplus; and
(ii) nine prosumers act as flexibility sellers, meaning that they can shift their flexible loads
for limited intervals on request. For registering monitored energy values, we process smart
meters’ data, aggregate them hourly, and insert them into the blockchain.

We set up a scenario in which the prosumers and their data are used to transact
flexibility and transfer the tokens using the group structures defined using the secure MPC
technique. Figure 2 shows the energy profiles of the buyers and sellers taking part in
the scenario.
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On the orders submitted by the prosumers we use the MPC-based encoding technique
to aggregate them in groups of three and new group orders are placed into the market
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session such that sensitive information is not available regarding the identities of the
prosumer’s participants. Table 1 shows the group orders created by shuffling all the
prosumers and their original order flexibility amounts.

Table 1. Group order total flexibility amounts for 24 h.

Prosumers ID Order Amount
(kWh)

Group ID/
Order Type

Order Amount
(kWh)

Prosumer1 68
G100/

Flexibility Buy 367Prosumer15 169

Prosumer13 130

Prosumer9 21
G106/

Flexibility Sell 268Prosumer18 199

Prosumer11 48

Prosumer17 85
G107/

Flexibility Sell 282Prosumer12 52

Prosumer19 145

Prosumer14 21
G108/

Flexibility Sell 96Prosumer10 44

Prosumer16 31

The initial energy order amount is split into three random values and shuffled between
each group member. New order values are obtained for each prosumer and the prosumers
join together in a group with the energy order value as the sum of the three initial prosumers
(see Table 2).

Table 2. Prosumers orders splitting in group G100 for hour 4:00.

Prosumer 1 Prosumer 15 Prosumer 13 New Energy
Orders

Initial Order
(kWh) 14 3 5 G100 = 22

Order Split
(kWh prosumer

destination)

7 (Prosumer1) 0 (Prosumer1) 1 (Prosumer1) Prosumer1 = 8

3 (Prosumer15) 2 Prosumer15) 1 (Prosumer15) Prosumer15 = 6

4 (Prosumer13) 1 (Prosumer13) 3 (Prosumer13) Prosumer13 = 8

Before submitting the new orders to the market, each member of the group transfers the
token amounts associated to the group smart contract. The tokens are locked in transactions
until the settlement is performed. The orders are placed directly on the blockchain since
the MPC-based obfuscation algorithm does not disclose information related to members
of the groups created. It returns a set of buyer and seller prosumers who operate on the
market. Figure 3 shows the blockchain transaction representing the group energy flexibility
order and the events thrown.
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After placing the energy flexibility orders for the next 24 h, the prosumers’ groups
are matched in pairs of bids and offers. Figure 4 shows the result of the matching process
for the defined scenario where the intersection of the bids and offers curves provides the
reference price for energy flexibility trading.
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These trades are inserted into the blockchain using one transaction to save gas by
calling the method only once. The settlement price is determined as an average of the
prices of the groups at the intersection of the bids and offers curves (Figure 5).
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The blockchain smart contracts execute the commitment phase, saving on-chain, the
energy each prosumer must deliver the next day. Each seller transfers their ERC721 tokens
associated with the offer type orders to the buyers while the buyers transfer the locked
ERC20 tokens associated with the quantity and price. In Table 3 we show the commitment
values for groups of one buyer and three sellers, for the next day, as well as the token
minted in the flexibility order placement phase.

Table 3. Commitment values for matched groups.

Hour Flexibility
Amount

L-ERC 20
Tokens

Group
Buyer ID

Group
Seller ID

Flexibility
Amount

Group
Seller ID

Flexibility
Amount

Group
Seller ID

Flexibility
Amount

1 5 350

G100 G106

0

G107

5

G108

0
2 7 490 1 6 0
3 9 630 0 9 0
4 9 630 0 9 0
5 22 1540 2 20 0
6 24 1680 8 16 0
7 21 1470 12 9 0
8 17 1190 7 10 0
9 19 1330 3 16 0

10 12 840 0 8 4
11 32 2240 16 12 4
12 23 1610 9 12 2
13 10 700 0 10 0
14 16 1120 0 11 5
15 17 1190 0 17 0
16 14 980 0 13 1
17 17 1190 0 17 0
18 16 1120 0 15 1
19 12 840 0 11 1
20 15 1050 0 12 3
21 7 490 0 7 0
22 16 1120 3 8 5
23 15 1050 0 10 5
24 12 840 0 7 5

For the settlement process, we register the hourly monitored values from energy
meters and check if each group fulfills its trading commitment. The monitored energy
values are compared with the committed ones in trades and the group’s payment amounts
are computed. Afterward, the original percentage-based contribution of each prosumer of
the group is decoded, and the payments are distributed accordingly (see Figure 6).
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Figure 6. Group information and percentages contribution of prosumers to the total order amount.

Table 4 shows the hourly monitored energy values for the group and their prosumers
as well as the settlement payment of the group and distribution to member prosumers. As
can be seen, the payment distribution from the group to prosumers is being performed
considering the group-level settlement price and considers the penalties for prosumers
that are not delivering as promised in the initial flexibility orders. In this case, we consider
relevant only the deviations with more than 10% between the energy amount of the
prosumer initial value and the actual monitored values.

Table 4. Monitoring and settlement values for G100 and distribution to prosumer members.

Monitored Values Penalty Settlement Payment

Hour Prosumer1 Prosumer15 Prosumer13 G100 Prosumer1 Prosumer15 Prosumer13 Prosumer100 Prosumer1 Prosumer15 Prosumer13 G100

1 1 3 1 5 0 0 0 0 71 213 71 355
2 1 3 2 6 0 71 0 71 71 213 142 426
3 3 4 3 10 0 0 71 71 213 284 71 568
4 1 9 3 13 0 142 142 284 71 355 −71 355
5 14 10 3 27 0 355 0 355 994 0 213 1207
6 7 8 11 26 142 355 0 497 497 −142 852 1207
7 2 5 16 23 71 0 0 71 0 355 1065 1420
8 4 2 11 17 71 284 213 568 142 142 355 639
9 9 14 5 28 0 568 71 639 639 −142 213 710
10 3 0 6 9 71 142 0 213 213 0 426 639
11 3 0 19 22 0 639 0 639 213 0 1420 1633
12 5 0 9 14 213 497 355 1065 −71 0 639 568
13 2 0 2 4 0 426 0 426 142 0 142 284
14 2 0 9 11 0 355 0 355 142 0 639 781
15 1 4 9 14 0 213 0 213 71 284 639 994
16 1 4 7 12 142 0 0 142 −71 426 497 852
17 3 0 8 11 0 426 0 426 213 0 568 781
18 3 2 10 15 142 213 0 355 −71 142 710 781
19 0 4 8 12 71 0 71 142 0 284 426 710
20 0 3 7 10 71 274 0 345 0 223 497 720
21 0 0 0 0 71 355 71 497 0 0 0 0
22 0 0 8 8 71 497 0 568 0 0 568 568
23 0 0 7 7 0 497 0 497 71 0 497 568
24 0 0 7 7 142 142 71 355 0 142 355 497

5. Discussion

The proposed solution has clear benefits, not only for allowing us to obfuscate the en-
ergy profiles of prosumers on the public blockchain assuring the privacy of the confidential
data but also for the energy market scalability, due to the reduced number of transactions
on-chain. Our implementation adds two more wrapper layers, before and after the energy
market, to fetch and process the data until the end of the market session. However, it
generates groups acting on the market on behalf of a set of prosumers, thus resulting in a
lower number of transactions stored on the chain.

To compare our solution to an energy flexibility market with no MPC integration,
we ran the same energy market but with all the prosumers acting directly on the market
and going through all the market phases. Figure 7 shows the number of P2P transactions
evolution in our scenario with and without the MPC-based technique. The number of
transactions during a day in our scenario decreases from 132 transactions without MPC to
44 transactions with MPC, and on average from 6 to 2.
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The number of market operations also decreases, the MPC-based implementation
requiring three times fewer operations on-chain, which increases the performance overhead
in regard to the blockchain network interaction. We compare these solutions both in terms
of gas consumption on-chain, as well as time elapsed in each phase (see Table 5).

Table 5. Gas consumption comparison.

Gas Consumption—Gwei

Market Phases Market without MPC MPC-Based Market

Order Placing 243,919,476 85,572,688
Trade Registration 123,665,425 44,042,230
Monitoring Stage 27,130,506 6,607,817

The market implementation without MPC consumes more gas in all the market
phases. When considering the MPC solution, in the order placing phase, we also added
the gas required for transferring the ERC20 tokens from the initial prosumers to the new,
aggregating prosumer. However, we can see that the gas consumption is significantly lower
in this solution compared with the classical solution, because we are performing the same
operations, just for fewer orders. The same explanation goes for the trade registration phase
too. We can see that gas consumption is much lower than in the classic market solution.
The monitoring stage is the same, we have much fewer operations. The only difference in
the monitoring phase between the MPC market and the classic solution, is that we perform
the ERC transfer associated with rewards/payments after the monitoring phase in the
smart contracts, but the gas consumption displayed above is computed from both stages
and the result is much less than in the normal market.

Table 6 compares both energy markets implementation solutions in terms of processing
time overhead in each phase. Both order placing phase and monitoring stage take three
times less time to execute in the MPC market compared with the classic market. Although
we have computational time overhead to group prosumers and compute their orders, these
operations are executed relatively fast in any programming language.

Table 6. Processing time comparison.

Time Elapsed—Millis

Market Phases Market without MPC MPC-Based Market

Order Placing 1,440,256 541,109
Trade Registration 5967 4644
Monitoring Stage 1,497,439 538,901
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The most time-consuming operation is the blockchain transaction registration, which
takes up to 15 s to be executed and confirmed in a new block. Because all trades are
registered in one transaction, the trade registration time is similar for the two solutions
compared. So, no matter how many orders are submitted, we perform it in one transaction,
though it takes the same amount of time to execute it. Regarding the other two phases, the
processing time in the case of our proposed solution is less than a third of the time required
in the market without MPC leading to scalability improvement.

6. Conclusions

In this paper, we proposed a secure MPC solution to provide privacy and confiden-
tiality for prosumers during P2P energy trading while considering scalability issues. We
provide privacy-preserving wrappers around an energy flexibility market core business
logic enabling prosumers to create coalitions and trade flexibility as a group. Functions are
defined and used to split prosumers’ order, encode the group flexibility order, and to trade
on the market without revealing the identity of the group members. In this way, privacy
is assured, no prosumer stores the entire order, and potentially sensitive information is
inferred from order shares.

In the evaluation process, we obtained promising results. The proposed solution can
be easily integrated with existing P2P markets with limited modification of the business
logic implemented in smart contracts. Moreover, the matching of buy and sell orders in
transactions and their energy and financial settlement was successful for both groups and
prosumers. Our solution has a positive impact on energy market scalability by decreasing
the number of transactions, gas consumption, and processing time in all market phases.

In the future, we plan to investigate the practicality of implementing our solution for
multi-energy markets designed for integrated energy systems by exploring the possibility
of trading not only electrical energy but also other forms of energy carriers such as heat
or gas. Furthermore, we will consider other criteria for P2P energy trading, such as
physical network limitations and the effects of randomly grouping prosumers on the level
of flexibility.
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