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Preface

Topology occupies a central position in the mathematics of today. One of the
most useful ideas to be introduced in the past sixty years is the concept of fibre
bundle, which provides an appropriate framework for studying differential
geometry and much else. Fibre bundles are examples of the kind of structures
studied in fibrewise topology.

Just as homotopy theory arises from topology, so fibrewise homotopy the-
ory arises from fibrewise topology. In this monograph we provide an overview
of fibrewise homotopy theory as it stands at present. It is hoped that this
may stimulate further research. The literature on the subject is already quite
extensive but clearly there is a great deal more to be done.

Efforts have been made to develop general theories of which ordinary
homotopy theory, equivariant homotopy theory, fibrewise homotopy theory
and so forth will be special cases. For example, Baues [7] and, more recently,
Dwyer and Spalinski [53], have presented such general theories, derived from
an earlier theory of Quillen, but none of these seem to provide quite the
right framework for our purposes. We have preferred, in this monograph, to
develop fibrewise homotopy theory more or less ab initio, assuming only a
basic knowledge of ordinary homotopy theory, at least in the early sections,
but our aim has been to keep the exposition reasonably self-contained.

Fibrewise homotopy theory has attracted a good deal of research interest
in recent years, and it seemed to us that the time was ripe for an expository
survey. The subject is at a less mature stage than equivariant homotopy
theory, to which it is closely related, but even so the wealth of material
available makes it impossible to cover everything. For example, we do not deal
with the recent work [51] of Dror Farjoun on the localization of fibrations.

This monograph is divided into two parts. The first provides a survey of
fibrewise homotopy theory, beginning with an outline of the basic theory and
proceeding to a selection of applications and more specialized topics. The
second part is concerned with the stable theory; the emphasis is on theory
appropriate for geometric applications, and it is hoped that the account will
be accessible to readers who may not already be experts in the classical stable
theory. Part II does assume a certain familiarity with the basic ideas from
Part I, but is written in such a way that the reader interested mainly in
the stable theory should be able to begin with Part II and refer back to
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Part I as necessary. More details on the contents of specific sections can be
found in the Introductions to the two parts. Cross-referencing within each
part is by section number. We have not attempted a complete bibliography
of publications related to fibrewise homotopy theory; those which are cited
in either Part I or Part II are listed at the end of Part II. Similarly, the index
at the end of the book covers both parts.

Certain sections are based on previously published work, and where ap-
propriate this is mentioned in the text. We are grateful to the publishers in
question for permission to include this material.

Our thinking on fibrewise homotopy theory has been influenced by the
work of many colleagues, but we owe a special debt to those with whom we
have collaborated on joint papers (both published and unpublished). We are
grateful to our co-authors for sharing their insight with us. MCC would like
to record, in particular, his thanks to Andrew Cook, Karlheinz Knapp and
Wilson Sutherland.
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Part I. A Survey of Fibrewise Homotopy
Theory

Introduction

The basic ideas of fibrewise homotopy theory seem to have occurred in the late
1960s to several people independently. Thus J.C. Becker [8], J.F. McClendon
[106], L. Smith [125] and I.M. James [78] all made use of the theory in work
published in 1969 or 1970, while several others, such as L. Hodgkin and
J.-P. Meyer, were also well aware of its possibilities. I. M. James first published
a systematic account of the basic theory in 1985 [85] but this was largely
based on much earlier work [78] put aside when he became aware that so
many others were thinking on the same lines. Five years later, after further
research, he returned to the subject in [86]. Although the present exposition
is to some extent based on these earlier accounts it mainly consists of new
material.

There is some truth in the observation that once the correct definitions
have been formulated any well-organized and methodical account of the rele-
vant homotopy theory, such as [44], can be converted to fibrewise homotopy
theory by writing in the word ‘fibrewise’ wherever it makes sense and adjust-
ing formulae accordingly. Yet even at the most elementary level it is necessary
to exercise care and not jump to conclusions, just as it is in the case of equi-
variant homotopy theory. One might hope that some completely routine way
may be found of producing fibrewise versions of results in ordinary homotopy
theory but it would be an exaggeration to say that this is possible at present,
although Heller [74] suggests that a way may be found.

On the question of terminology, we find it best on the whole to try and
use the term fibrewise throughout. For example we now prefer the term fibre-
wise pointed space to the alternatives such as sectioned space, ez-space, etc.
One reason is that fibrewise corresponds closely to the French fibré and the
German faserweise. However, excessive repetition of the term fibrewise may
seem monotonous and so we make the convention that it governs the words
which come after it so that the expression fibrewise compact Hausdorff space,
for example, means fibrewise compact, fibrewise Hausdorff, fibrewise space.
Of course, the time may come when it will be possible to leave out the term
fibrewise, just as one does in vector bundle theory, and to simplify the nota-
tions accordingly. However, experience suggests that to do so at the present
time is liable to cause confusion.
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In the exposition which follows we assume that the reader is familiar with
the basic notions of ordinary homotopy theory, as set out in [44], for example.
Routine fibrewise versions of proofs of well-known results in the ordinary
theory are generally omitted. Otherwise, and except for certain examples,
the exposition is fairly self-contained.

The text is divided into three chapters, each consisting of a number of
sections. Chapter 1 is concerned with the category of fibrewise spaces and
fibrewise maps, classified by fibrewise homotopy. As we shall see, it is not
always obvious what is the most appropriate fibrewise version of a concept
in ordinary homotopy theory. Chapter 2 is concerned with the category of
fibrewise pointed spaces and fibrewise pointed maps, classified by fibrewise
pointed homotopy. In the ordinary theory not a great deal of attention is
usually paid to the difference between the pointed theory and the non-pointed
theory but in the fibrewise version the difference is vital. More specialized
topics are considered in Chapter 3. Several of the sections are closely modelled
on material which has appeared elsewhere: Sections 17 and 20 are edited
versions of [92] and [63], respectively; Sections 19 and 21 are based on [90]
and [89], respectively, and Sections 22 and 23 have been extracted from [31].



Chapter 1. An Introduction to Fibrewise
Homotopy Theory

1 Fibrewise spaces

Basic notions

Let us work over a (topological) base space B. A fibrewise space over B
consists of a space X together with a map p : X — B, called the projection.
Usually X alone is sufficient notation. We regard any subspace of X as a
fibrewise space over B by restricting the projection. When p is a fibration we
describe X as fibrant.

We regard B as a fibrewise space over itself using the identity as the
projection. We regard the topological product B x T, for any space T', as a
fibrewise space over B using the second projection.

Let X be a fibrewise space over B. For each point b of B the fibre over b
is the subset X, = p~!b of X; fibres may be empty since we do not require p
to be surjective. Also for each subspace B’ of B we regard Xp = p~1B' as
a fibrewise space over B’ with projection p’ determined by p.

Fibrewise spaces over B constitute a category with the following definition
of morphism. Let X and Y be fibrewise spaces over B with projections p and
g, respectively. A fibrewise map ¢ : X — Y is a map in the ordinary sense
such that go@ = p, in other words such that ¢X; C Y, for each point b of B. If
¢ : X = Y is a fibrewise map over B then the restriction ¢p: : Xg: = Yp' is
a fibrewise map over B' for each subspace B’ of B. Thus a functor is defined
from the category of fibrewise spaces over B to the category of fibrewise
spaces over B'.

Equivalences in the category of fibrewise spaces over B are called fibrewise
topological equivalences or fibrewise homeomorphisms. If ¢, as above, is a
fibrewise topological equivalence over B then ¢p' is a fibrewise topological
equivalence over B' for each subspace B’ of B. In particular ¢ is a topological
equivalence for each point b of B. However, this necessary condition for a
fibrewise topological equivalence is obviously not sufficient. To see this take
Y = B to be a non-discrete space and take X to be the same set with the
discrete topology and the identity as projection; the identity function has no
continuous inverse.

A fibrewise map ¢ : X — Y is said to be fibrewise constant if § = top
for some section ¢t : B — Y. The same example as in the previous paragraph

M. C. Crabb et al., Fibrewise Homotopy Theory
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4 A Survey of Fibrewise Homotopy Theory

shows that a fibrewise map may be constant on each fibre but not fibrewise
constant.

Fibrewise product and coproduct

Given an indexed family {X} of fibrewise spaces over B the fibrewise product
[Ig X; is defined as a fibrewise space over B, and comes equipped with a
family of fibrewise projections

mj HBXj - X]‘.

The fibres of the fibrewise product are just the products of the corresponding
fibres of the factors. The fibrewise product is characterized by the following
Cartesian property: for each fibrewise space X over B the fibrewise maps

¢: X = [[pX;
correspond precisely to the families of fibrewise maps {¢;}, where
pj=mjop: X = X;.
For example if X; = X for each index j the diagonal
A: X > [lgX

is defined so that m; o A = 1x for each j.

If {X,} is as before the fibrewise coproduct [[z X; is also defined, as
a fibrewise space over B, and comes equipped with a family of fibrewise
insertions

gj: X i I_[ BX j*

The fibres of the fibrewise coproduct are just the coproducts of the corre-
sponding fibres of the summands. The fibrewise coproduct is characterized
by the following cocartesian property: for each fibrewise space X over B the
fibrewise maps

’(ﬁ : H BX j— X
correspond precisely to the families of fibrewise maps {4}, where
1/)]' =’l/)00'j IXj -+ X.
For example if X; = X for each index j the codiagonal

V:[gX =X

is defined so that V o o; = 1x for each j.

The notations X xgY and X LigY are used for the fibrewise product and
fibrewise coproduct in the case of a family {X,Y} of two fibrewise spaces,
and similarly for finite families generally. When X =Y the switching maps
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XxgX > XxpX, Xup X ->XugX

are defined with components (72, m) and (02,01), respectively.

Given a map a : B’ — B, for any space B’, we can regard B’ as a
fibrewise space over B. For each fibrewise space X over B we denote by a* X
the fibrewise product X x g B', regarded as a fibrewise space over B’ using
the second projection, and similarly for fibrewise maps. Thus a* constitutes
a functor from the category of fibrewise spaces over B to the category of
fibrewise spaces over B'. When B’ is a subspace of B and « the inclusion this
is equivalent to the restriction functor described earlier.

By a fibrewise topology, on a fibrewise set X over B, we mean any topology
on X such that the projection p is continuous. By a fibrewise basis, for a
fibrewise topology, we mean a collection U of subsets of X which forms a
basis for a topology after augmentation by the topology induced by p. In
other words, the open sets of X are the unions of intersections of members
of U and sets of the form Xy, where W is open in B. For example, consider
the product B x T, where T is a space. A fibrewise basis for the fibrewise
topology is given by the collection of products B x U, where U runs through
the open sets of T.

The term fibrewise sub-basis is used in a similar sense or we may, on
occasion, say that the fibrewise topology is generated by a family of subsets,
meaning that finite intersections of members of the family form a fibrewise
basis.

Note that in checking the continuity of fibrewise functions, where the
fibrewise topology of the codomain is generated in this way, it is sufficient to
verify that the preimages of fibrewise subbasic open sets are open.

Fibre bundles

A fibrewise space X over B is said to be trivial if X is fibrewise homeo-
morphic to B x T for some space T, and then a fibrewise homeomorphism
¢: X — B xTis called a trivialization of X. A fibrewise space X over B is
said to be locally trivial if there exists an open covering of B such that Xy is
trivial over V for each member V' of the covering. A locally trivial fibrewise
space is the simplest form of fibre bundle or bundle of spaces. As Dold [45]
has shown, the theory of fibre bundles is improved if it is confined to the
class of numerable bundles, i.e. bundles which are trivial over every member
of some numerable covering of the base. Derwent [40] and tom Dieck [42]
have pointed out that such a covering may be taken to be countable, thus
facilitating inductive arguments.

A more sophisticated form of the notion of fibre bundle involves a topo-
logical group G, the structural group. A principal G-bundle over the base
space B is a locally trivial fibrewise space P over B on which G acts freely.
Moreover, the action is fibre-preserving, so that each of the fibres is home-
omorphic to G. Such a principal G-bundle P over B determines a functor
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P4 from the category of G-spaces to the category of fibre bundles over B.
Specifically Py transforms each G-space A into the associated bundle P xg A
with fibre A, and similarly with G-maps. We refer to Py as the associated
bundle functor.

The theory of fibre bundles is dealt with in the standard textbooks such as
Steenrod [128] or Bredon [19], where a large variety of examples are discussed.
Some of these will be appearing in the course of our work.

From our point of view it is only natural to proceed a stage further and
develop a fibrewise version of the theory of fibre bundles, as in [95]. Thus
let X and T be fibrewise spaces over B. By a fibrewise fibre bundle over X,
with fibrewise fibre T', we mean a fibrewise space E together with a fibrewise
map p : E — X which is locally fibrewise trivial, in the sense that there
exists a covering of X such that Ey is fibrewise homeomorphic to V xg T,
over B, for each member V of the covering. This is the simplest form of
the definition, but of course there is a more sophisticated form, involving a
fibrewise structural group. Details are given in Section 8 below.

Classes of fibrewise spaces

There are various classes of fibrewise spaces which will appear in the work we
shall be doing later, for example, the class of fibrewise open spaces, where the
projection is open. To be of any interest to us such a class must be invariant,
so that a fibrewise space which is fibrewise homeomorphic to a member of the
class is also a member of the class. It must also be natural, in the sense that
pull-backs of a member are also members. Furthermore, fibrewise products of
members are also members, at least finite fibrewise products. Fibre bundles
are such a class.

In fibrewise topology the existence of local sections is a condition of some
importance, but more usually it is the existence of local slices which is re-
quired.

Definition 1.1 The fibrewise space X over B is locally sliceable if for each
point b of B and each point z of X} there exists a neighbourhood W of b and
a section s : W — Xw such that s(b) = z.

The condition implies that p is open since if U is a neighbourhood of z
in X then s~!(Xw NU) C pU is a neighbourhood of b in W. In other words,
locally sliceable fibrewise spaces are fibrewise open.

There are fibrewise versions of all the usual separation conditions of topol-
ogy, in fact the number of different fibrewise separation conditions which can
reasonably be defined is quite large. For our purposes, however, only two or
three are of real significance.

Definition 1.2 The fibrewise space X over B is fibrewise Hausdorff if the
diagonal embedding
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A: X >XxpX

is closed.

Equivalently, for each point b of B and each pair z,z' of distinct points
of X, there exist disjoint neighbourhoods of z,z' in X.

Subspaces of fibrewise Hausdorff spaces are fibrewise Hausdorff. The fol-
lowing two properties of fibrewise Hausdorff spaces are worth mentioning.

Proposition 1.3 Let ¢ : X — Y be a fibrewise map, where X and Y are
fibrewise spaces over B. If Y is fibrewise Hausdorff the fibrewise graph of ¢
is closed in X xgY.

Proposition 1.4 Let ¢, : X = Y be fibrewise maps, where X and Y
are fibrewise spaces over B. If Y is fibrewise Hausdorff the coincidence set
K(¢,¢) of ¢ and ¢ is closed in X .

These results follow easily from the definition.
From the viewpoint of fibrewise topology it seems natural to revise some
of the terminology of ordinary topology. For example

Definition 1.5 The fibrewise space X over B is fibrewise discrete if the
projection p is a local homeomorphism.

Clearly, fibrewise discrete spaces are locally sliceable and hence fibrewise
open. An attractive characterization of this class of fibrewise spaces is given
by

Proposition 1.6 Let X be a fibrewise space over B. Then X is fibrewise
discrete if and only if (i) X is fibrewise open and (ii) the diagonal embedding

A:X—)XXBX

s open.

Corollary 1.7 Let ¢ : X = Y be a fibrewise map, where X is fibrewise open
and Y is fibrewise discrete over B. Then the fibrewise graph

F:X—-)XXBY

of ¢ is an open embedding.

Corollary 1.8 Let ¢, ¢ : X — Y be fibrewise maps, where X and Y are
fibrewise spaces over B. If Y is fibrewise discrete the coincidence set K (¢, )
of ¢ and ¢ is open in X.

Another fibrewise separation condition we shall need is as follows.
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Definition 1.9 The fibrewise space X over B is fibrewise regular if for each
point b of B, each point z of X; and each neighbourhood V of = in X there
exists a neighbourhood W of b in B and a neighbourhood U of z in Xw such
that the closure Xw NU of U in Xw is contained in V.

When the fibrewise topology of X is given in terms of a fibrewise sub-basis
it is sufficient if the condition for fibrewise regularity is satisfied for fibrewise
subbasic neighbourhoods V. Subspaces of fibrewise regular spaces are also
fibrewise regular, as can easily be shown.

Fibrewise open means that the projection is open, fibrewise closed that
the projection is closed. Because fibrewise products of fibrewise closed spaces
are not, in general, fibrewise closed, the class of fibrewise closed spaces is only
of minor importance. A stronger condition is needed, as in

Definition 1.10 The fibrewise space X over B is fibrewise compact if the
projection is proper.

In other words X is fibrewise compact if X is fibrewise closed and every
fibre of X is compact. One can also characterize the condition in terms of
coverings, as follows.

Proposition 1.11 The fibrewise space X over B is fibrewise compact if and
only if for each point b of B and each covering U of Xy by open sets of X
there exists a neighbourhood W of b in B such that a finite subfamily of U
covers Xw .

Proposition 1.12 Let X be fibrewise compact over B. Suppose that X is
fibrewise discrete. Then X — B is a finite covering space.

For consider a point b € B. Choose for each z € X, an open neighbour-
hood U, in X such that p(U;) is open in B and the restriction of p is a
homeomorphism U, — p(U,). Since the intersection of U, with the fibre X}
is precisely {z}, it follows from Proposition 1.11 that Xj is finite and that
there is an open neighbourhood W of b in B such that Xw C |J, Uz. Let V
be the open subset

V=wnNpU;) CB.
T

Then Xy — V is trivial.

The images of fibrewise compact spaces under fibrewise maps are also
fibrewise compact. This follows at once from the definition; with a little more
effort we obtain the useful

Proposition 1.13 Let ¢ : X = Y be a fibrewise map, where X is fibrewise
compact and Y is fibrewise Hausdorff. Then ¢ is proper.
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Proposition 1.14 Let X be fibrewise regular over B and let K be a fibrewise
compact subset of X. Let b be a point of B and let V be a neighbourhood of
K, in X. Then there ezists a neighbourhood W of b in B and a neighbourhood
U of Kw in Xw such that the closure Xw NU of U in Xw is contained in
V.

There is just one more class of fibrewise spaces we need to consider here.

Definition 1.15 The fibrewise space X over B is fibrewise locally compact if
for each point b of B and each point z of X, there exists a neighbourhood W
of bin B and a neighbourhood U of z in Xy such that the closure Xy NTU
of U in Xw is fibrewise compact over W.

It is easy to see that fibrewise compact spaces are fibrewise locally com-
pact, also that closed subspaces of fibrewise locally compact spaces are fibre-
wise locally compact. We conclude with two results which are not quite so
obvious; proofs may be found in Section 3 of [86]. Recall that we make the
convention that the term ‘fibrewise’ governs everything that follows it. For
example ‘fibrewise locally compact Hausdorff space’ means a fibrewise space
which is both fibrewise locally compact and fibrewise Hausdorf.

Proposition 1.16 Let X be fibrewise locally compact Hausdorff over B.
Then X 1is fibrewise regular.

Proposition 1.17 Let X be fibrewise locally compact regular over B. Then
for each point b of B, each compact subset C of X;, and each neighbourhood
V of C in X, there exists a neighbourhood W of b in B and a neighbourhood
U of C in Xw such that the closure Xy NU of U in Xw is fibrewise compact
over W and contained in V.

Fibrewise quotients

By a fibrewise quotient map we mean a fibrewise map which is a quotient
map in the ordinary sense. Fibrewise products of fibrewise quotient maps are
not necessarily fibrewise quotient maps. We prove

Proposition 1.18 Let ¢ : X = Y be a fibrewise quotient map, where X and
Y are fibrewise spaces over B. Then the fibrewise product

¢x1: XxgT Y xgT

is a fibrewise quotient map, for all fibrewise locally compact regular T.

Forlet U C X xpT be open and saturated with respect to 1/ = ¢ x 1. We
have to show that 9U is open in Y xp T. So let (y,t) € YU, where y € Y5,
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t € Ty, b € B, and pick z € ¢~ 1(y) C X;. We have (z,t) € U, since U is
saturated. Consider the subset N of T} given by

{z}x N=({z} xTp)nU.

Now N is open in T3, since U is open in X xgT, and so N = MNT}, where M
is open in T'. Since T is fibrewise locally compact there exists, by Proposition
1.17, a neighbourhood K C M of t in Tw such that K is fibrewise compact
over W. Consider the subset

V={¢eXw|{€} xwK CU}

of Xw. We have (y,t) € ¢V xw K C U. So to prove that 4U is a neighbour-
hood of (y,t) in Y xp T it is sufficient to prove that ¢V is a neighbourhood
ofyinY.

In fact V is open in X. For let £ € V so that {¢} xw Kg C U, where
B =p(€) and p: X — B. Since K is fibrewise compact over W the projection

Xw xw K = Xw xwW = Xw

is closed. Since U is a neighbourhood of the inverse image {¢} x Kz of ¢
under the projection there exists a neighbourhood W' C W of 8 and a
neighbourhood V' of £ in Xy such that V' xy+ Ky C U. This implies that
V! C V, by the definition of V', and so V is open.

Moreover, V is saturated. For V C ¢~1¢V, as always. Also

¢V xw K =479V xw K) Cy~'yU = U.

Therefore ¢~1¢V C V, by the definition of V, and so ¢~1¢V = V. Thus V
is saturated, as well as open, and so ¢V is open. Since y € ¢V this completes
the proof.

Given a fibrewise space X over B a fibrewise equivalence relation on X is
given by a subset R of the fibrewise product X x g X. We refer to the fibrewise
set X/R of equivalence classes, with the quotient topology, as the fibrewise
quotient space. Of course, fibrewise maps X/R — Z, for any fibrewise space
Z, correspond precisely to invariant fibrewise maps X — Z.

We describe a fibrewise map ¢ : (X, A) = (X', A’) as a fibrewise relative
homeomorphism if (i) A is closed in X, (ii) ¢ maps X — A bijectively onto
X' — A, and (iii) X' is a fibrewise quotient space of X under ¢.

In general there is no simple condition at the level of X which implies
that X/R is fibrewise Hausdorff. Suppose, however, that R = (¢ x ¢)"1AZ
for some fibrewise map ¢ : X — Z, where Z is fibrewise Hausdorff. Then
the induced fibrewise map X/R — Z is injective and so X/R is fibrewise

HausdorfL.
Consider a space D and a closed subspace E of D. For any fibrewise space

X over B let $5(X) denote the push-out of the cotriad

X xD+2- X x E-"3E,
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and similarly for fibrewise maps. Thus an endofunctor g of our category is
defined. It can be shown, as in [86], that $p(X) is fibrewise Hausdorff when-
ever X is fibrewise Hausdorff. For (D, E) = (I,{0}), where I =[0,1] C R,
the endofunctor is known as the fibrewise cone and denoted by Cp. When
(D,E) = (1,{0,1}) the endofunctor is known as the fibrewise suspension
and denoted by X'p. For example Yg(X) = B x I when X = B, and
Zp(X) = B x I when X = 0. Note that the associated bundle functor
Py discussed earlier, from the category of G-spaces to the category of fibre-
wise spaces, transforms the equivariant cone into the fibrewise cone and the
equivariant suspension into the fibrewise suspension. For example, taking G
to be the orthogonal group O(n), the fibrewise cone of an (n — 1)-sphere
bundle is the associated n-ball bundle, and the fibrewise suspension is the
associated n-sphere-bundle.

More generally let X; (i = 0, 1) be a fibrewise space. Consider the fibrewise
equivalence relation on the coproduct

XoU(XoXIXX])UXl

which identifies (zg,t,z,), with z; whenever ¢t = 0 or 1. The fibrewise set
Xo *g X1 of equivalence classes, with the quotient topology, is called the
fibrewise join of Xy and X;. For example, if X, is the sphere-bundle associated
with Ey, where E; is a euclidean bundle over B, then X *g X is the sphere-
bundle associated with the Whitney sum Ey ® E,. When Xy = S* ! x B
and X; = X we may identify X, *xg X; with the n-fold fibrewise suspension
XB(X) of the fibrewise space X.

It should be noted that the fibrewise join is not in general associative,
with the quotient topology. However if, following Milnor [113], we replace
this by the coarsest topology which makes the coordinate functions

t:Xg*BXl—)BXI,
To : t—l(B X [O, 1)) = Xo,
s} Zt_l(B X (O, 1]) - X,

continuous then associativity holds without restriction. Furthermore, the
topologies coincide when X and X; are fibrewise compact Hausdorff.

Fibrewise mapping-spaces

Finally, let us turn to the problem of constructing a right adjoint to the
fibrewise product. One has to impose a topology with the necessary properties
on the fibrewise set

mapg(X, Z) = [] map(X,, Zs),
beB

where X and Z are fibrewise spaces over B. Although this can be done in
general, as we shall see later, the case when X = B x T, for some space T,
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admits of simpler treatment. In fact maps of {b} x T into Z; can be regarded
as maps of T into Z, in the obvious way, and so mapg(B x T, Z) can be
topologized as a subspace of map(T, Z), with the compact-open topology. It
is easy to check that for any fibrewise space Y over B a fibrewise map

YxT=(BxT)xgY =>2Z
determines a fibrewise map
Y = mapg(B x T, Z),

through the standard formula, and that the converse holds when T is compact
Hausdorff. In fact this special case is sufficient for the great majority of
situations where fibrewise mapping-spaces are used in what follows.

Some examples

The reader may wish to treat the following examples, related to the text of
this section, as exercises.

Ezample 1.19. Let ¢ : X — Y be an open and closed fibrewise surjection
where X and Y are fibrewise spaces over B. Let A : X — R be a continuous
real-valued function which is fibrewise bounded above, in the sense that A is
bounded above on each fibre of X. Then 4 : Y — R is continuous, where

p(m) = sup A(§).
€9~ (n)

Ezample 1.20. Let ¢ : X — Y be a fibrewise function, where X and Y
are fibrewise spaces over B. Suppose that X is fibrewise open and that the
product

idx¢p: X xpX 52X xgY

is open. Then ¢ itself is open.

Ezample 1.21. Let X be a closed subspace of B x R", (n > 0), regarded
as a fibrewise space over B under the first projection. Then X is fibrewise
compact if X is fibrewise bounded, in the sense that there exists a continuous
real-valuzd function A : B — R such that X, is bounded by A(b) for each
point b of B.

Ezample 1.22. Let ¢ : X = Y be a fibrewise function, where X and Y are
fibrewise spaces over B. Then, if X is fibrewise compact and the product

dx¢g: X xgX >+XxpgY

is proper, ¢ is proper.
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Ezample 1.23. Let ¢ : X = Y be an open fibrewise surjection, where X and
Y are fibrewise spaces over B. Suppose that the preimage of the diagonal of
Y with respect to ¢ X ¢ is closed in X xg X. Then Y is fibrewise Hausdorff.

Ezample 1.24. Let ¢ : X — Y be a fibrewise function, where X and Y are
fibrewise spaces over B. Suppose that X is fibrewise Hausdorff and that the
fibrewise graph of ¢ in X x g Y is fibrewise compact. Then ¢ is continuous.

Ezample 1.25. Let ¢ : X — Y be a fibrewise map, where X and Y are
fibrewise discrete over B. Then ¢ is a local homeomorphism.

Ezample 1.26. Let X be a fibrewise space over B and let A be an open
subspace of X. If A is fibrewise open, then the projection 7 : X — X/gA is
open.

Ezample 1.27. Let ¢ : X — Y be a proper fibrewise function, where X and Y
are fibrewise spaces over B. If X is fibrewise Hausdorff and fibrewise regular
then so is ¢ X .

Ezample 1.28. If B = CX is the cone on the non-empty space X, there is no
fibrewise map from X, regarded as a fibrewise space with the constant map
to the apex of the cone as projection, into X, regarded as a fibrewise space
with the inclusion as projection.

2 Fibrewise transformation groups

Fibrewise topological groups

Let us continue to work over a base space B. We describe a fibrewise space G
as a fibrewise topological group or fibrewise group-space over B if G is equipped
with fibrewise maps

m:GxpG— G, e: B @G, u:G—- G
such that the following three conditions are satisfied.

mo(mx1l)=mo(lxm):GxgGxpG =G,
mo(cx1l)oA=1=mo(l1xc)oA:G =G,
mo(uxl)oA=c=mo(lxu)oA:G=G.

Here, as usual, ¢ denotes the fibrewise constant determined by e. We refer

to m as the fibrewise multiplication, to e as the neutral section and to u as
the fibrewise inversion. The three conditions imply, and are implied by, the
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statement that the fibre G, is a topological group, with multiplication m;,
neutral element e(b), and inversion u(b), for all points b of B.

For example, B itself is a fibrewise topological group, with the identity as
fibrewise multiplication, neutral section and fibrewise inversion. More gener-
ally, B x T is a fibrewise topological group for each topological group T'.

For a more interesting example consider the cylinder I x T, where
I =1[0,1] C R and T is a (discrete, additive) Abelian group. The fibrewise
topological group structure on I x T, as a fibrewise space over I, induces a
fibrewise topological group structure on the quotient fibrewise space (IxT)/R
over the circle I/I, where R identifies (t,0) with (—t,1) for all t € T.

For another example, let Gy be a compact Hausdorff topological group.
Then the unreduced suspension X (Gg) of Go forms a fibrewise topological
group over X (pt) = I. More generally, the join Go* X is a fibrewise topological
group over the cone (pt) * X for all spaces X.

For another type of example, consider a vector bundle E over B, and take
G = Autg(F), the bundle formed by automorphisms of the fibres. More
generally, let P be a principal I'-bundle over B, where I' is a topological
group. Then the associated adjoint bundle P x p I" with fibre I" is a fibrewise
topological group, where I" acts on itself by conjugation. See [4] for some
applications.

Returning to the general case, let G be a fibrewise topological group over
B. We describe a subspace H of G as a subgroup if m(H xp H) C H and
uH C H, in other words if H) is a subgroup of G, for each point b of B.
The term normal subgroup is defined similarly. For example, the image of the
neutral section is always a normal subgroup, the fibrewise trivial subgroup.

Of course a subgroup of a fibrewise topological group is itself a fibrewise
topological group, with the induced fibrewise multiplication, neutral section
and fibrewise inversion.

A subgroup H of the fibrewise topological group G determines a pair of
fibrewise equivalence relations on G. In one case the relation is the preimage

of the division function
d:GxpG -G,

where d(g,9') = g(g')~!. Then we refer to the fibrewise quotient space G/H
as the fibrewise right factor space. In the other case we use the division func-
tion u o d instead of d and obtain the fibrewise left factor space H\G. Of
course u induces a fibrewise homeomorphism between G/H and H\G. When
H is normal we have G/H = H\G. Note that if H is a subgroup of G the
neutral section of G induces a section of G/H which may also be referred to
as the neutral section. Also the neutral section of G/H is closed (respectively
open) if and only if H is closed (respectively open) in G. Similarly in the case
of H\G.

Let G and G’ be fibrewise topological groups with fibrewise multiplica-

tions
m:GxBG—>G, m':G'XBGl—)Gl.
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By a fibrewise homomorphism of G into G’ we mean a fibrewise map ¢ : G —
G' such that
m' o (¢ X §) = pom.

The condition implies that ¢oe = €' and ¢ ou = u' o ¢, where e’ denotes the
neutral section and u' the fibrewise inversion in the structure of G’. The terms
fibrewise isomorphism and fibrewise automorphism are defined similarly.

By the fibrewise kernel of a fibrewise homomorphism ¢ : G - G' we mean
the preimage of the neutral section of G'. Note that the fibrewise kernel is
always a normal subgroup of G. More generally, the preimage of a normal
subgroup is always a normal subgroup.

Given a section s : B — G of the fibrewise topological group G, a fibre-
wise automorphism of G is defined which is given on G by conjugation with
respect to s(b) for each point b of B. We may refer to this operation as fibre-
wise conjugation with respect to s. Subgroups K and L of G are said to be
fibrewise conjugate if L is the image of K under fibrewise conjugation with
respect to some section s of G. Fibrewise conjugacy constitutes an equiva-
lence relation between the subgroups of G. The fibrewise conjugacy class of
a subgroup H of G is denoted by [H].

Fibrewise transformation groups

We continue to work over the base space B. Let G be a fibrewise topological
group and let E be a fibrewise space. By a fibrewise action of G on the right
of E we mean a fibrewise map r : E xg G — E such that the following two
conditions are satisfied.

ro(rx1l)=ro(lxm): ExgGxpG — E,
ro(lxc)oA=1:E— E;

here ¢ : E — G denotes the fibrewise constant given by the neutral section.
These conditions imply, and are implied by, the statement that Ej is a right
Gp-space for each point b of B. We describe E, with this structure, as a
fibrewise right G-space. Fibrewise left G-spaces are defined similarly.

For example, we can regard G itself as a fibrewise right G-space by taking r
to be the fibrewise multiplication. More generally, we can regard any fibrewise
topological group containing G' as a subgroup as a fibrewise right G-space,
or equally well as a fibrewise left G-space.

Given a fibrewise action r of G on the right of E we usually denote r(¢, g)
by £.g, where { € Ey, g € Gy, and b € B. Also when E' C E and G' C G we
denote r(E' xg G') by E'.G'.

If E is a fibrewise right G-space the fibrewise action determines a fibrewise
equivalence relation on E. The resulting fibrewise quotient space E/G is
called the fibrewise right orbit space. If E is a fibrewise left G-space the
fibrewise left orbit space G\E is defined similarly.
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Fibrewise (right or left) G-spaces over a base form a category in which the
morphisms are fibrewise G-maps, i.e. fibrewise maps which are equivariant
with respect to the fibrewise action. The equivalences of the category are
called fibrewise G-equivalences. Note that if a fibrewise G-map is a homeo-
morphism then it is necessarily a fibrewise G-equivalence.

Let E be a fibrewise right G-space and let F' be a fibrewise left G-space.
A fibrewise action of G on the right of E x g F' is defined by

&n).g= (9,97 ).

We denote the fibrewise orbit space (E xp F)/G by E x¢g F, for simplicity,
and refer to it as the fibrewise mized product of E and F.
Let E be a fibrewise right G-space. Consider the fibrewise map

HZEXBG—-)EXBE

given by 6(£,g9) = (£,£.9). We describe the fibrewise action as proper if 6 is
proper. If the fibrewise action of G on E is proper then so is the fibrewise
action of G on each invariant subspace of F and so is the fibrewise action of
each subgroup of G on E.

Proposition 2.1 Let E be a proper fibrewise right G-space, where G is fibre-
wise Hausdorff. Then E is fibrewise Hausdorff.

For since G is fibrewise Hausdorff the fibrewise graph E — E x g G of the
fibrewise constant ¢ : E — G is closed, by Proposition 1.3. Postcomposing
with the proper fibrewise map 8 yields the diagonal A : E — E x g E, which
is therefore closed. Hence E is fibrewise Hausdorff, as asserted.

Note that for any fibrewise G-space E the fibrewise graph

F:EXBG—)EXE/GEXBG
of the action is an embedding. If E is fibrewise Hausdorff over E/G the
fibrewise graph is closed and so I' is proper. If in addition G is fibrewise
compact then the projection
’n‘:EXE-/GEXBE—)EXE/GE
is proper, hence 8 = nI" is proper. Thus we have

Proposition 2.2 Let E be a fibrewise G-space, where G is fibrewise compact.
If E is fibrewise Hausdorff then E is a proper fibrewise G-space.

Let s : B — E be a section of the fibrewise right G-space E. We may
compare the fibrewise constant map ¢ = sop: G — E with the composition
a=ro(cx1)oA, where

G2,6x3G 2L ExpgG—>E.
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The coincidence set K(a,c) = K is a subgroup of G, called the fibrewise
stabilizer of s. Note that a induces an injective fibrewise map of G/K into
E, with image (sB).G.

If the fibrewise action is proper the fibrewise map a : G — FE is proper,
since it can be identified with the restriction

SBXBG-)BXBE

of 6 to sB, and so a induces a fibrewise homeomorphism between G/K and
(sB.G).

Let us say that the fibrewise action of G on the right of E is free if Gy
acts freely on Ej for each point b of B. In that case a fibrewise function
d: R — G is defined, where R C E x g E is the image of § and where d(&, n),
for (¢,n) € R, is the unique element g € G such that n = £.9. We may refer
to d as the division function. Of course d is continuous if E = I', a fibrewise
topological group containing G as a subgroup, and the fibrewise action is
given by fibrewise multiplication.

Proposition 2.3 Let E be a fibrewise G-space, where the fibrewise action is
free. The fibrewise action is proper if and only if (i) R is closed in E xg E
and (ii) the division function d: R — G is continuous.

For if d is continuous a fibrewise map R — E xg G is given by m; in
the first factor, by d in the second. Postcomposing with 8 gives the inclusion
R C E xg E. Hence 6§ is homeomorphic when R is closed. For the converse
just reverse the argument.

Note that R is closed in E x g E if E/G is fibrewise Hausdorff since R is
just the preimage of the diagonal of E/G with respect to

WXW:EXBE—)E/GXBE/G.

Fibrewise open groups

If we are to develop the theory of fibrewise topological transformation groups
beyond this very elementary level some restrictions need to be imposed, so
from now on we concentrate our attention on the family of fibrewise open
groups. The family includes, for example, fibrewise topological groups of the
form B x T, where T is a topological group. It also includes fibrewise dis-
crete groups, where the projection is open. Obviously, an open subgroup of
a fibrewise open group is also fibrewise open.

Proposition 2.4 Let G be a fibrewise topological group and let H be a fibre-
wise open subgroup of G. Then the projection = : G — G/H is open.



18 A Survey of Fibrewise Homotopy Theory
For consider the fibrewise homeomorphism

V:GxgH—GxgH

given by (g, h) = (g.h, h). The first projection m; : G xgp H — G is open,
since H is fibrewise open, and so the restriction m’' = 1 o m; of the fibrewise
multiplication m to G x g H is open. In particular, if V' C G is open then so
is 7~ 1n(V) =m/(V xpg H). Hence 7 is open, as asserted.

It is an important consequence of Proposition 2.4 that G/H is a fibrewise
left G-space, with the fibrewise action induced by fibrewise multiplication,
whenever H is fibrewise open. Furthermore, when H is normal, as well as
fibrewise open, a fibrewise topological group structure on G/H is defined so
that the natural projection = : G — G/H is an open fibrewise homomorphism
of G onto G/H with fibrewise kernel H. Conversely, suppose that G’ is the
image of G under an open fibrewise homomorphism ¢ : G — G'. Then
¢ induces a fibrewise isomorphism between G/H and G', where H is the
fibrewise kernel of ¢.

Proposition 2.5 Let G be a fibrewise topological group and let H be a fibre-
wise open subgroup of G. Then G/H is fibrewise Hausdorff if and only if H
is closed in G.

For the division map d induces a fibrewise map

d=drx=n)"':G/H xgG/H - G,
by Proposition 2.4. Since the preimage of G — H under d' is the complement

(G/H) xp (G/H) - A(G/H)

of the diagonal the assertion follows at once.

Also recall from Proposition 1.6 that a fibrewise open space is fibrewise
discrete if and only if the diagonal is open in the fibrewise square. So by a
similar argument to that used to prove Proposition 2.5 we obtain

Proposition 2.6 Let G be a fibrewise open topological group and let H be a
fibrewise open subgroup of G. Then G/H 1is fibrewise discrete if and only if
H is open in G.

Proposition 2.7 Let E be a fibrewise right G-space, where G is fibrewise
open. Then the natural projection = : E — E/G is open.

For the fibrewise action r can be expressed as the composition

ExpG—ExgG—E,
o m
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where a(£,g) = (€.9,9). Now 7, is open, since G is fibrewise open, and « is
a fibrewise homeomorphism. Thus r is open, in particular if U C F is open
then so is m~'7(U) = U.G. Hence = is open, as asserted.

Let H be a fibrewise open normal subgroup of the fibrewise topological
group G, and let E be a fibrewise G-space. Then E/H is a fibrewise G-space,
with the induced fibrewise action, and hence is a fibrewise (G/H)-space. By
transitivity of fibrewise quotient topologies the canonical bijection

(E/H)/(G/H) » E/G

is a fibrewise homeomorphism.
Another straightforward consequence of Proposition 2.7 is the associative
law for fibrewise mixed products, as follows.

Proposition 2.8 Let D,E,F be fibrewise spaces and let G,H be fibrewise
open groups. Suppose that G acts fibrewise on the right of D and on the left
of E, while H acts fibrewise on the right of E and on the left of F. Also
suppose that the action of G on the left of E commutes with the action of H
on the right of E. Then G acts fibrewise on the left of E xg F, and H acts
fibrewise on the right of D xg E, so that the identity on D x g E x g F' induces
a fibrewise homeomorphism between (D xg E) xg F and D xg (E xg F).

Proposition 2.9 Let E be a fibrewise space. Let G and H be fibrewise open
groups. Suppose that G acts fibrewise on the left of E while H acts fibrewise
on the right of E, and that the actions commute. Then there are induced
fibrewise actions of G on the left of E/H and of H on the right of G\E such
that the identity on E induces a fibrewise homeomorphism between G\(E/H)
and (G\E)/H.

Again the proof is straightforward and will be omitted. For the same
reason we omit the proof of

Proposition 2.10 Let E,F be fibrewise spaces, and let G,H be fibrewise
open topological groups. Suppose that G acts fibrewise on the right of E and
on the left of F. Also suppose that H acts fibrewise on the right of F and
that the actions of G and H on F commute with each other. Then there is an
induced action of H on the right of E xg F such that the identity on E xg F
induces a fibrewise homeomorphism between (E Xg F)/H and E x¢ (F/H).

It follows, in particular, that if E is any fibrewise right G-space then
E x¢ (G/H) is fibrewise homeomorphic to (E xg G)/H and hence to E/H.

After this point in the exposition we make the convention that fibrewise
actions are always on the right, unless otherwise stated, and similarly with
fibrewise orbit spaces.
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Proposition 2.11 Let E be a fibrewise G-space, where G is fibrewise dis-
crete. Then the natural projection n : E — E/G is a local homeomorphism.

The proof is very similar to that of Proposition 2.4. Among the fibrewise
G-spaces where G is fibrewise discrete a special role is played by those where
the fibrewise action is both free and proper. Such fibrewise actions will be
called fibrewise properly discontinuous.

Fibrewise open groups which are also fibrewise compact enjoy further
properties which are of considerable importance.

Proposition 2.12 Let E be a fibrewise G-space, where G is fibrewise com-
pact. Then the natural projection 7 : E — E/G 1is proper.

To show that « is closed we use a similar argument to that used to prove
Proposition 2.4. To complete the proof, let T' be a fibrewise space, regarded
as a fibrewise G-space with trivial action. Then the natural projection from
ExpgT to (ExpgT)/G is closed. However, the latter is equivalent to E/Gx T,
as a fibrewise space, and the natural projection is equivalent to 7 x 1, which
is therefore closed. Since this is true for all T we conclude that = is proper,
as asserted.

Corollary 2.13 Let G be a fibrewise topological group and let H be a fibrewise
open compact subgroup of G. Then the projection w : G — G /H is proper.

Proposition 2.14 Let E be a fibrewise G-space, where E is fibrewise Haus-
dorff and G is fibrewise compact. Then the fibrewise action is proper.

To see this we express 6 as the composition
ExpG—.3ExpExpG-=%ExpE,

where I is the fibrewise graph of the fibrewise action and ;2 is the canonical
projection. Now ;5 is proper, since G is fibrewise compact, and I is clésed,
since E is fibrewise Hausdorff, and so proper also. Therefore § is proper, as
asserted.

Lemma 2.15 Let E be a fibrewise G-space, where G is fibrewise compact.
Let A be a subspace of E and let s be a section of G such that A C (sB).A.
Then A = (sB).A.

To see this observe that A, C g.Ay, for each point b of B, where g = s(b).
Since G} is compact it follows from a standard result (see (4.25) of {85}, for
example) that Ay, = g.As. Therefore A = (sB).A, as asserted. This implies

Proposition 2.16 Let H be a subgroup of the fibrewise compact group G.
Suppose that H.(sB) C (sB).H for some section s of G. Then H.(sB) =
(sB).H.
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Given subgroups K, L of the fibrewise compact group G, let us say that
[K] < [L] if K is fibrewise conjugate in G to a subgroup of L. Then Propo-
sition 2.16 implies that the relation < is a partial ordering of fibrewise con-
jugacy classes of subgroups.

Still assuming that G is fibrewise compact, let E be a fibrewise Hausdorff
fibrewise G-space. Given a section s of E consider the corresponding fibrewise
map of G/ K onto (sB).G, where K denotes the fibrewise stabilizer of s. Now
G/K is fibrewise compact and (sB).G is fibrewise Hausdorff, hence the fibre-
wise map is a homeomorphism. In this case, therefore, the partial ordering of
classes of fibrewise stabilizers described above leads to a corresponding order-
ing of classes of ‘fibrewise orbits’ (sB).G, where s runs through the sections
of E, and hence to a notion of ‘fibrewise orbit type’.

Some illustrations of the way fibrewise transformation groups can be in-
vestigated will be found in Part II, Section 13.

3 Fibrewise homotopy

Basic notions

Fibrewise homotopy is an equivalence relation between fibrewise maps.
Specifically, consider fibrewise maps 6,¢ : X — Y, where X and Y are
fibrewise spaces over B. A fibrewise homotopy of 6 into ¢ is a homotopy
ft : X = Y in the ordinary sense which is a fibrewise map at each stage. If
there exists a fibrewise homotopy of § into ¢ we say that 6 is fibrewise homo-
topic to ¢ and write § ~p ¢. In this way an equivalence relation is defined
on the set of fibrewise maps from X to Y, and the set of equivalence classes
is denoted by mp[X; Y]. Formally, g constitutes a binary functor from the
category of fibrewise spaces to the category of sets, contravariant in the first
entry and covariant in the second.

We say that two sections s and s; of a fibrewise space X — B are
vertically homotopic if they are homotopic through sections, that is, if there
is a homotopy s;, 0 < t < 1, where each map s; is a section. The fibrewise
space X is said to be vertically connected if it has just one vertical homotopy
class of sections.

Recall from Section 1 that for each principal G-bundle P over B the
associated bundle functor Py is defined, from the category of G-spaces to the
category of fibrewise spaces over B. This not only transforms G-maps into
fibrewise maps but also transforms G-homotopies into fibrewise homotopies.

The operation of composition for fibrewise maps induces a function

nglY; Z] x np[X; Y] = ng[X; Z],

for any fibrewise spaces X,Y, Z over B. Moreover, there are natural equiv-
alences between 7p[X Up Y; Z] and ng[X; Z] x m[Y; Z], and between
7p|X; Y xp Z] and 7g[X; Y] x 7p[X; Z].
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Postcomposition with a fibrewise map 9 : Y — Z induces a function
¥u 1 mp[X; Y] = mp[X; 2],
while precomposition with a fibrewise map ¢ : X — Y induces a function
¢* : wglY; Z] - nB[X; Z).

Similar notation is used in the case of fibrewise homotopy classes rather than
fibrewise maps.

Note that fibrewise maps ¢ : X — Y, where X and Y are fibrewise spaces
over B, correspond precisely to sections of the fibrewise product X xg VY,
regarded as a fibrewise space over X. Similarly, fibrewise homotopy classes of
fibrewise maps correspond precisely to vertical homotopy classes of sections.
Now if Y is a fibre space over B then X xpY is the induced fibre space over
X and so the classification of sections by vertical homotopy coincides with
their classification as maps by ordinary homotopy. This is a useful little trick.

The fibrewise map ¢ : X — Y is called a fibrewise homotopy equivalence
if there exists a fibrewise map 1 : Y — X such that

Yoo ~plx, $poyp ~ply.

Thus an equivalence relation between fibrewise spaces is defined; the equiva-
lence classes are called fibrewise homotopy types.

A fibrewise homotopy into a fibrewise constant is called a fibrewise null-
homotopy. A fibrewise space is said to be fibrewise contractible if it has the
same fibrewise homotopy type as the base space, in other words, if the identity
is fibrewise null-homotopic. A subset U of a fibrewise space X is said to be
fibrewise categorical if the inclusion U — X is fibrewise null-homotopic.

There is a point which should be made here about fibrewise quotient
spaces. As we saw in Section 1, if X is a fibrewise space with fibrewise equiv-
alence relation R the fibrewise maps of X/R into Z correspond precisely to
the invariant fibrewise maps of X to Z. Since I = [0, 1] is compact we can
regard (X/R) x I as a fibrewise quotient space of X x I, in the obvious way,
and so the correspondence extends to fibrewise homotopies.

For example, consider the fibrewise cone Cg(X) on the fibrewise space
X. A fibrewise null-homotopy of the identity on Cp(X) is induced by the
fibrewise homotopy

fi:XxIo>XxI (tel),

where fi(z,s) = (z,st) (z € X, s € I). Therefore Cg(X) is fibrewise con-
tractible.

Let ¢ : X > Y and ¢ : Y — X be fibrewise maps such ¢o¢ ~p 1x. Then
1 is said to be a left inverse of ¢, up to fibrewise homotopy, and ¢ to be a
right inverse of ¥, up to fibrewise homotopy. Note that if ¢ admits both a
left inverse v and a right inverse 9’, up to fibrewise homotopy, then ¥ ~p ¢’
and so ¢ is a fibrewise homotopy equivalence.
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Examples can easily be given to show that fibrewise maps may be ho-
motopic, as ordinary maps, but not fibrewise homotopic. Thus take B = I
and X = (I x {0,1}) U ({0} x I), with the first projection. Although X is
contractible, as an ordinary space, it is not fibrewise contractible since the
fibres over points of (0,1] are not contractible.

It can be shown, however, that for a large class of fibrewise spaces X there
exists an integer m such that for each fibrewise map ¢ : X — X which is
null-homotopic on each fibre the m-fold composition ¢o. ..o ¢ is fibrewise null-
homotopic. Details are given in [82] and [108]. Another result which might
be mentioned here concerns the group G(X) of fibrewise homotopy classes of
fibrewise homotopy equivalences of X with itself. Under the same conditions
it is shown, in [83] and [108], that G1(X) is nilpotent of class less than m,
where G1(X) denotes the normal subgroup of G(X) consisting of classes of
fibrewise homotopy equivalences which are homotopic to the identity on each
fibre.

Later we shall be discussing a variety of different problems which have
attracted research interest. At this stage, however, we mention just two more.
Take X to be an orthogonal (n — 1)-sphere bundle over a finite connected
complex B, for some n > 1. Since the centre of the orthogonal group O(n)
contains the scalar —1 we have a fibrewise map ¢ : X — X given by the
antipodal transformation in each fibre. The antipodal transformation has
degree (—1)™ and so is homotopic to the identity when n is even. Under what
conditions is it true that the fibrewise map c is fibrewise homotopic to the
identity? Questions of this type are investigated in [82] and [84]. Another
problem in the same area is considered by Noakes [118], as follows. Each
fibrewise self-map ¢ of X has a certain degree d(¢) on the fibres. When n is
even, Noakes shows that the degrees which can be so realized are precisely

the integers which are congruent to one modulo some number which depends
on X.

Some examples

Ezample 3.1. Take B =[0,1] C R and
E=[0,1] x {0,1}U {0} x[0,1]] C R x R,

regarded as a fibrewise space using the first projection. The section s : B — E
given by s(t) = (¢, 0) is a homotopy equivalence but not a fibrewise homotopy
equivalence.

Ezample 3.2. Suppose that the subspace X of B x R" is fibrewise star-like in
the sense that for some section s : B — X the line segment

(b, (1 —¢t)s(b) + tz) 0<t<1)
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is entirely contained within the fibre X, for each point z € X, b € B. Then
X is fibrewise contractible.

4 Fibrewise cofibrations

Basic notions

Let A be a fibrewise space over the base space B. By a fibrewise cofibre
space under A we mean a fibrewise space X together with a fibrewise map
u : A = X having the following fibrewise homotopy extension property. Let
E be a fibrewise space, let f : X — E be a fibrewise map, and let g, : 4 - E
be a fibrewise homotopy of f o u. Then there exists a fibrewise homotopy
h; : X = E of f such that g; = h; o u. For example, the push-out T'Vg 4 is
a fibrewise cofibre space under A for each fibrewise space T.

Instead of describing X as a fibrewise cofibre space under A we may
describe u as a fibrewise cofibration. An important special case is when A is
a subspace of X and wu is the inclusion. In that case we describe (X, A) as a
fibrewise cofibred pair when the condition is satisfied. Note that (X,#) and
(X, X) are fibrewise cofibred pairs.

By taking E in the condition to be the product B x T, for any space T,
we see that a fibrewise cofibration u : A — X is a cofibration in the ordinary
sense, in particular u is necessarily injective.

It is easy to check that the fibrewise coproduct of fibrewise cofibred spaces
under A is also a fibrewise cofibred space under A.

Proposition 4.1 Let (X, A) be a closed fibrewise pair. Then (X, A) is fibre-
wise cofibred if and only if (X x {0})U(A x I) is a fibrewise retract of X x I.

For suppose that u is a fibrewise cofibration. In the fibrewise homotopy
extension condition take E to be (X x {0})U (A x I), take f : X = E to be
the obvious fibrewise map and take g : A x I = E to be the obvious fibrewise
homotopy. Then the extension h : X x I — E is a fibrewise retraction.

To prove the converse, suppose that there exists a fibrewise retraction
r: X xI— (X x{0})U (A xI). Given a fibrewise space E, fibrewise map
f : X = E and fibrewise homotopy ¢ : A x I — E, as in the fibrewise
homotopy extension property, we combine f and g to obtain a fibrewise map
of (X x {0})U (A x I) into E. Then precomposition with r gives the desired
extension.

In fact a similar result to Proposition 4.1 holds even when A is not closed
in X, with the mapping cylinder of the inclusion replacing the subspace of
X x 1.

For example, consider the associated bundle functor Py, as in Section
1, from the category of G-spaces to the category of fibrewise spaces. From
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Proposition 4.1 we see that Py transforms closed cofibred pairs in the equi-
variant sense into closed cofibred pairs in the fibrewise sense. In particular,
taking G to be the orthogonal group O(n), we see that the pair consisting of
an n-ball bundle over B and the associated (n — 1)-sphere bundle is fibrewise
cofibred.

Corollary 4.2 Let (X, A) be a closed fibrewise cofibred pair over B. Then
the pair
(X,A) xpT=(XxpT,AxpT)

is also fibrewise cofibred, for all fibrewise spaces T'.

Fibrewise Strom structures

We now come to an important characterization of closed fibrewise cofibred
pairs. It is a fibrewise version of the corresponding characterization in the
ordinary theory. There are several variants of the condition, of which we
prefer the one due to Strgm, as follows.

Let (X, A) be a closed fibrewise pair. A fibrewise Strgm structureon (X, A)
is a pair (a, h) consisting of a map a : X — I which is zero throughout A
together with a fibrewise homotopy h : X x I — Xrel A of 1x such that
h(z,t) € A whenever t > a(z).

Proposition 4.3 Let (X, A) be a closed fibrewise pair. Then (X, A) is fibre-
wise cofibred if and only if (X, A) admits a fibrewise Strgm structure.

For suppose that (X, A) is fibrewise cofibred, so that there exists a fibre-

wise retraction
r: X xI—- (X x{0}H)u((A4xI),

as in Proposition 4.1. Since I is compact a map a : X — I is given by

a(z) = sup |mer(z,t) — | (z € X).
tel
Then (a, m;7) constitutes a fibrewise Strgm structure on (X, 4).
Conversely, let (a,h) be a fibrewise Strgm structure on (X, A). Then a
fibrewise retraction

r: X xI - (Xx{0}HU(AxI)

is given by
ond) = { (h(z,1),0) t< a(a),
e (h((L‘,t),t - a(z)) t> a(z)

Hence (X, A) is fibrewise cofibred, by Proposition 4.1.
One of the main applications of the above characterization is to prove the
fibrewise product theorem, as follows.



26 A Survey of Fibrewise Homotopy Theory

Theorem 4.4 Let (X,X') and (Y,Y') be closed fibrewise cofibred pairs over
B. Then the closed fibrewise pair

(X,X') XB (Y,Y') =(X xB Y,X' xpYUX xp Y')
is also fibrewise cofibred.

To see this choose fibrewise Strgm structures (a, h) on (X, X') and (8, k)
on (Y,Y'). Define v: X xg Y — I by v(z,y) = min(a(z), 8(y)), and define
Z:(XXBY)XI—)XXBYby

t(z,y,t) = (h(z, min(t, B(y))), k(y, min(t, a(z)))).

Then (7,£) constitutes a fibrewise Strgm structure for the closed fibrewise
pair (X, X') xg (Y,Y'), as required.

For example, consider the endofunctor 5 of our category determined by
a closed cofibred pair (D, E). We see from Theorem 4.4 that if the closed
fibrewise pair (X, A) is fibrewise cofibred then so is the closed fibrewise pair
(¢B(X),PB(A)). In particular, this is true for the fibrewise cone Cp and the
fibrewise suspension X'p.

There is a weaker form of the concept of fibrewise cofibration which is
also important, as follows. Let A be a fibrewise space over the base space
B. By a weak fibrewise cofibre space under A we mean a fibrewise space X
together with a fibrewise map u : A — X such that X has the same fibrewise
homotopy type under A as a fibrewise cofibration u' : A — X'. This implies,
and is implied by, a weak form of the fibrewise homotopy extension property:
for each fibrewise space E, fibrewise map f : X — E, and fibrewise homotopy
gt : A = E of fou, there exists a fibrewise homotopy h; : X — E such that
g¢ = hou and such that kg is fibrewise homotopic to f over B. The properties
of weak fibrewise cofibrations are similar to those of fibrewise cofibrations.

5 Fibrewise fibrations

Basic notions

At this stage we change our point of view somewhat. Although we continue to
work over the base space B we not only consider fibrewise spaces over B but
also fibrewise spaces over those fibrewise spaces. Thus let X be a fibrewise
space over B. By a fibrewise fibre space over X we mean a fibrewise space
E together with a fibrewise map p : E — X with the following fibrewise
homotopy lifting property. Let A be a fibrewise space, let f : A — E be
a fibrewise map, and let g : A — X be a fibrewise homotopy such that
go = po f. Then there exists a fibrewise homotopy h; : A — E of f such that
g¢ = po hy. We emphasize that fibrewise here means over B, not over X. For
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example, the fibrewise product T' x g X is a fibrewise fibre space over X for
each fibrewise space T'.

Instead of describing E as a fibrewise fibre space over X we may describe
the projection p: E — X as a fibrewise fibration. We also describe the pull-
back 7*E as a fibrewise fibre, for each section 7 of X over B.

Note that if p is a fibration, in the ordinary sense of the term, then p
is a fibrewise fibration. This is in contrast to the situation in the case of
cofibrations. However, fibrewise maps exist which are fibrewise fibrations but
not fibrations in the ordinary sense. For example take X = B; then every
fibrewise space over B is a fibrewise fibre space.

Consider the fibrewise free path-space

Pp(X) = mapg(B x I,X),
which comes equipped with a family of projections
pe :Pe(X) > X (0<t<1),

given by evaluation at ¢. It is a formal exercise in the use of adjoints to
show that p; is a fibrewise fibration for ¢t = 0, 1. Let us regard Pp(X) as a
fibrewise space over X using po as projection. Then for any fibrewise space
E and fibrewise map p : E — X the fibrewise mapping path-space Wg(p)
is defined as the pull-back p*Pp(X). Since Pg(X) is a fibrewise fibre space
over X it follows quite formally that Wg(p) is a fibrewise fibre space over E.
By the cartesian property we have a fibrewise map

k: 'PB(E) - WB(p),

with components Pg(p) and pg. The following characterization of fibrewise
fibrations is fundamental.

Proposition 5.1 The fibrewise map p: E — X is a fibrewise fibration if and
only if the fibrewise map k : Pg(E) — Wp(p) admits a right inverse.

For suppose that p is a fibrewise fibration. Take W = Wpg(p) as the
domain, in the fibrewise homotopy lifting condition, take pg to be f and take
gt = pt o Pe(p). The condition implies the existence of a fibrewise homotopy
h: : W — E of pg such that g; = po h;. The right adjoint W — Pg(E) of the
fibrewise homotopy is a right inverse of k£ as required.

Conversely, suppose that k admits a right inverse. By taking the left
adjoint we obtain a fibrewise homotopy h; : W — E, as above. Let A be a
fibrewise space, let f : A =& E be a fibrewise map, and let g; : A = X be a
fibrewise homotopy such that go = po f. Then g; determines a fibrewise map
g : A > Pp(X) which combines with f to give a fibrewise map £: A - W.
Now h;o£: A = E is a fibrewise homotopy of f over g;, as required.

We have already seen, in Section 4, that the associated bundle functor
Py transforms cofibrations in the equivariant sense into cofibrations in the
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fibrewise sense. Now we can see, using Proposition 5.1, that the functor also
transforms fibrations in the equivariant sense into fibrations in the fibrewise
sense. The proof is a straightforward exercise in the use of adjoints.

Proposition 5.2 Let p: E — X be a fibrewise map, where E is a fibrewise
space: Then the evaluation map

Pl WB(p) - X

is a fibrewise fibration.

To see this let us express fibrewise maps into W = Wg(p) in the usual
way by giving their components in Pg(X) and E; the former we regard
as fibrewise homotopies. Let A be a fibrewise space, let f : A - W be a
fibrewise map, and let g; : A — E be a fibrewise homotopy of p; o f. Consider
the fibrewise map

H:AxIxI—> X

given by
f'(a,252-)7") (s<1-31)

H(a’s’t)z{g(a,2s—2+t) (s>1-1¢)

where f' is the fibrewise homotopy given by the first component of f. Take
H as the first component of a fibrewise deformation of f in which the first
component remains stationary. Then we obtain a fibrewise homotopy of f
over g;, as required.

The fibrewise homotopy lifting property has a number of useful conse-
quences. For example, let E and F be fibrewise spaces over X with projec-
tions p and g, respectively. Let ¢ : E — F be a fibrewise map such that go ¢
is fibrewise homotopic to p. If ¢ is a fibrewise fibration then it follows from
the fibrewise homotopy lifting property that ¢ is fibrewise homotopic to a
fibrewise map v such that go 1y = p.

The fibrewise Dold theorem

One of the most important results of the classical theory is due to Dold. This
provides a bridge between ordinary homotopy theory and fibrewise homotopy
theory. The fibrewise version of Dold’s theorem provides a bridge between
fibrewise homotopy theory over B and fibrewise homotopy theory over X,
where X is a fibrewise space over B. In the literature, Dold’s original proof can
be found in [45] while Hardie and Kamps have given a more conceptual proof
in [73]. It is a routine exercise to write out a fibrewise version of the original
proof, as in [45], and the more conceptual proof may also be generalized
without difficulty. In this survey let us be content with the statement of the
fibrewise version of Dold’s theorem preceded by that of the auxiliary result
which leads up to it.
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Proposition 5.3 Let p : E — X be a fibrewise fibration, where E and X
are fibrewise spaces over B. Let 8 : E — E be a fibrewise map over X,
and suppose that 0, as a fibrewise map over B, is fibrewise homotopic to the
identity. Then there exists a fibrewise map 6’ : E — E over X such that 6.6’
is fibrewise homotopic to the identity over X.

Theorem 5.4 Let X be a fibrewise space over B, and let E and F be fibrewise
fibre spaces over X. Let ¢ : E = F be a fibrewise map over X. Suppose that
¢, as a fibrewise map over B, is a fibrewise homotopy equivalence. Then ¢ is
a fibrewise homotopy equivalence over X.

Corollary 5.5 Let p: E — X be a fibrewise fibration, where E and X are
fibrewise spaces over B. If p is a fibrewise homotopy equivalence over B then
the fibrewise mapping path-space Wg(p) is fibrewise contractible over X .

Here we regard W = Wpg(p) as a fibrewise space over X with projection
the fibrewise fibration p;, as in Proposition 5.2. Now p = p; o 0, where
o : E = W is the standard embedding. Since p and ¢ are fibrewise homotopy
equivalences over B, so is p;. Also p and p; are fibrewise fibrations and so p;
is a fibrewise homotopy equivalence over X, by Theorem 5.4. In other words,
Wg(p) is fibrewise contractible over X, as asserted.

Corollary 5.6 Let p: E — X be a fibrewise fibration, where E and X are
fibrewise spaces over B. Then the fibrewise path-space Pp(X) is fibrewise
contractible over the fibrewise mapping path-space Wg(p).

Here we regard Pg(X) as a fibrewise space over Wg(p) using the projec-
tion k as in Proposition 5.1. Now k admits a right inverse, since p is a fibrewise
fibration. Hence k is itself a fibrewise fibration (to verify the fibrewise homo-
topy lifting property one observes that the pairs (I x I, (I x {0}) U ({0} x I))
and (I x I, I x {0}) are homeomorphic). Moreover, k is a fibrewise homotopy
equivalence over B and so, by Theorem 5.4, a fibrewise homotopy equivalence
over Wg(p). This completes the proof.

Sections of a fibrewise fibration can be classified by fibrewise homotopy
or, more strictly, by vertical homotopy. In fact there is no difference, as shown
in

Proposition 5.7 Let p : E — X be a fibrewise fibration, where E and X
are fibrewise spaces over B. Let s and s' be fibrewise homotopic sections of
E over X. Then s and s’ are vertically homotopic.

We have to show that s and s’ are homotopic over X, rather than just over
B. So let hy : X — E be a fibrewise homotopy of s into s'. Let k; : X — E
be given by
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_ ) ha(=) (©
kt(z) - { hlph2—2t(l') (%

Since po kt = po k14 the fibrewise map pok : X x I = X is fibrewise
homotopic, rel X x I, to the projection 2. Therefore & is fibrewise homotopic,
rel X x I, to a fibrewise map £ which constitutes a vertical homotopy of s
into s'.

The fibrewise homotopy theorem for fibrewise fibrations

We now come to the fibrewise homotopy theorem for fibrewise fibrations,
a result which has no obvious counterpart for fibrewise cofibrations. Again
one has a choice between a fibrewise version of the standard proof of the
corresponding result in the ordinary theory, as given for example in [44], or
a more conceptual proof as given by Hardie and Kamps [73]. Again let us
be content with the statement of the theorem itself preceded by that of the
auxiliary result from which it follows.

Let X be a fibrewise space over B, and let the cylinder X x I be regarded
as a fibrewise space over B by precomposing with the second projection.
Consider a fibrewise space D over X x I. We regard

D;=D|(Xx{t}) (0<t<1)

as a fibrewise space over X in the obvious way. The main step in the proof of
the fibrewise homotopy theorem is the demonstration that if D is a fibrewise
fibre space over X x I then Dy is a fibrewise deformation retract of D over
X. Similarly, D, is a fibrewise deformation retract of D. Hence it follows that
Dy and D; have the same fibrewise homotopy type over X.

Theorem 5.8 Let X be a fibrewise space over B, and let E be a fibrewise
fibre space over X. Let 8,¢ : X' — X be fibrewise homotopic fibrewise maps,
where X' is a fibrewise space over B. Then 8*E and ¢*E have the same
fibrewise homotopy type over X'.

To obtain Theorem 5.8 we apply the auxiliary result with D = f*E, where
f:X'xI— X is a fibrewise homotopy of 6 into ¢.

Corollary 5.9 Let X be a fibrewise space over B and let E be a fibrewise
fibre space over X. If X is fibrewise contractible over B then E has the same
fibrewise homotopy type over B as the fibrewise product X xp T, for some
fibrewise space T over B.

There is a weaker form of the concept of fibrewise fibration which is also
important, as follows. Let X be a fibrewise space over B. By a weak fibrewise
fibre space over X we mean a fibrewise space E together with a fibrewise
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map p: E — X such that E has the same fibrewise homotopy type over X
as a fibrewise fibration p’ : E' — X. This implies, and is implied by, a weak
form of the fibrewise homotopy lifting property: for each fibrewise space A,
fibrewise map f : A = E and fibrewise homotopy ¢; : A — X such that
go = po f, there exists a fibrewise homotopy h; : A — E such that g; = poh;
and such that hg is fibrewise homotopic to f over B. The properties of weak
fibrewise fibrations are similar to those of fibrewise fibrations.

An example
The verification of the following result is left as an exercise.

Ezample 5.10. Let ¢ : (X;,A4;) = (X2,A;) be a fibrewise map of pairs,
where (X;, A;) is a fibrewise cofibred pair over B (i = 1, 2). Suppose that
the fibrewise maps X; — X; and 4; — A, determined by ¢ are fibrewise
homotopy equivalences. Then ¢ is a fibrewise homotopy equivalence of pairs.

6 Numerable coverings

Let us now turn our attention to a series of important theorems due to Dold
[45] and tom Dieck [42]. First recall that a halo of a subset X’ of a space X
is a subset V' of X, containing X', for which there exists amap a: X — I
with a = 1 throughout X’ and o = 0 away from V. Thus X itself is a halo
for every X', since we can take the function to be constant at 1.

Following Dold we say that the fibrewise space X over B has the section
extension property (SEP) if for each subset B’ of B every section of X over
B’, which can be extended to a halo of B’, can be extended to a section of X
over B. This condition implies, in particular, that X admits a section, since
we can take B’ and V to be empty.

Unlike fibrewise contractibility, the section extension property is not nat-
ural, in our sense. However, if X has the property then so does any fibrewise
space which is fibrewise dominated by X. In particular, X has the property
if X is fibrewise contractible.

If the fibrewise space X over B has the section extension property then
so does the restriction Xp' of X to any numerically defined open set B’ of
B. By numerically defined, here, we mean that B’ is the cozero set B871(0,1]
for some map 8: X — I.

The theorems of Dold

The main theorem of Dold mentioned earlier is similar in spirit to results in
the theory of sheaves. We give the statement as follows, but refer to [45] for
the proof.
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Theorem 6.1 Let X be a fibrewise space over B. Suppose that there exists a
numerable covering of B such that Xv has the SEP over V for each member
V' of the covering. Then X has the SEP over B.

Dold uses Theorem 6.1 to prove the following, which is one of the basic
results of fibrewise homotopy theory.

Theorem 6.2 Let ¢ : X — Y be a fibrewise map, where X and Y are fibre-
wise spaces over B. Suppose that B admits a numerable covering such that
the restriction ¢y : Xy — Yy is a fibrewise homotopy equivalence over V for
each member V of the covering. Then ¢ is a fibrewise homotopy equivalence
over B.

For consider the fibrewise mapping path-space W = Wg(¢) of ¢. Observe
that if ¢ is restricted to ¢y : Xy — Yy, for any subset V of B, then the fibre-
wise mapping path-space of ¢y is just the restriction to V of the fibrewise
mapping path-space W of ¢ itself. By hypothesis ¢y is a fibrewise homotopy
equivalence over V' for each member V of the covering. Therefore Wy (¢v),
the restriction of W to V, is fibrewise contractible over Yy, by Corollary 5.5.
Hence Wy has the SEP over Yy. As V runs through the members of the
numerable covering of B so Yy runs through the members of a numerable
covering of Y. By Theorem 6.1, therefore, W has the SEP over Y. In partic-
ular W admits a section over Y and hence ¢ admits a right inverse ¢', up to
fibrewise homotopy.

Repeating the argument with ¢’ in place of ¢ we obtain a right inverse ¢
of ¢, up to fibrewise homotopy. So ¢’ admits both the left inverse ¢ and the
right inverse ¢”, up to fibrewise homotopy. Hence ¢’ is a fibrewise homotopy
equivalence and so ¢ is a fibrewise homotopy equivalence, as asserted.

Returning to the situation where X is a fibrewise space over B, we deduce

Corollary 6.3 Let p: E — X and q: F — X be fibrewise fibrations, where
E,F and X are fibrewise spaces over B. Let ¢ : E — F be a fibrewise map
such that q o ¢ = p. Suppose that the pull-back

s*¢p:s*E - s*F

is a fibrewise homotopy equivalence over B for each section s of X over B.
Also suppose that X admits a numerable fibrewise categorical covering. Then
¢ 1s a fibrewise homotopy equivalence over X.

For since each member V of the numerable covering is fibrewise categorical
it follows from Proposition 5.7 that Ey and Fy are fibrewise trivial over
V. Hence ¢y is a fibrewise homotopy equivalence over V, taking s in the
hypothesis to be given by the fibrewise constant map to which the inclusion
is fibrewise homotopic. Now Corollary 6.3 follows at once from Theorem 6.2.
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Note that the assumption in Corollary 6.3 is satisfied for all s if it is satisfied
for one s in each vertical homotopy class.
Another important application of Theorem 6.2 is

Theorem 6.4 Let p : E — X be a fibrewise map, where E and X are
fibrewise spaces over B. Suppose that the restriction p~'V — V of p is a
fibrewise fibration for each member V of a numerable covering of X. Then p
is a fibrewise fibration.

This implies, of course, that numerable fibrewise fibre bundles are fibre-
wise fibrations. The proof of Theorem 6.4 is a straightforward fibrewise ver-
sion of the proof of the classical result to which it reduces when B is a point
(cf. (9.4) of [44], for example, or the globalization theorem of [55]).

A similar result holds for weak fibrewise fibrations.

The theorems of tom Dieck

Some other important results of a similar type are due to tom Dieck [42]. For
these it seems necessary that the numerable coverings concerned are closed
under finite intersections. In contrast to the results of Dold we have been
discussing these are already fully fibrewise homotopy theoretic in character,
and so we simply quote them from [42], where proofs are given.

Theorem 6.5 Let ¢ : E — F be a fibrewise map, where E and F are fibrewise
spaces over B. Let {U;} and {V;} be similarly indexed numerable coverings
of E and F, respectively, which are closed under finite intersections. Assume
that ¢U; C V; for each index j, and that each of the fibrewise maps U; = V;
determined by ¢ is a fibrewise homotopy equivalence. Then ¢ is a fibrewise
homotopy equivalence.

Theorem 6.6 Letp: E — X be a fibrewise map, where E and X are fibre-
wise spaces over X. Let {B;} be a numerable covering of B and let {E;} be
a similarly indexed family of subsets of E, both families being closed under fi-
nite intersections. Assume that pE; C B; and that E; is fibrewise contractible
over B;, for each index j. Then E admits a section over X.

Note that {E;} is not required to be a covering of E. We can deduce
another result about fibrewise fibrations, which it is interesting to compare
with Theorem 6.4.

Theorem 6.7 Let p : E — X be a fibrewise map, where E and X are
fibrewise spaces over B. Let {E;} be a numerable covering of E which is
closed under finite intersections. Assume that the restriction p; : E; — X is
a fibrewise fibration for each index j. Then p is a fibrewise fibration.
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For let W = Wg(p) denote the fibrewise mapping path-space of p. We
regard the fibrewise free path-space Pg(FE) of E as a fibrewise space over
W, as in Theorem 6.6. Recall that the second projection r : W — E is a
fibrewise homotopy equivalence and that por : W — X is a fibrewise fibration,
as shown in Proposition 5.2. Now the fibrewise mapping path-spaces W; of
the projections p; form a numerable covering of W, which is closed under
finite intersections. Moreover, rW; C E; for each index j. If p; is a fibrewise
fibration then Pg(E);) is fibrewise contractible over W; for each index j, by
Corollary 5.5. Therefore Pg(F) admits a section over W, by Theorem 6.6,
and so p itself is a fibrewise fibration, by Proposition 5.1. The proof we have
given is just a fibrewise version of the proof that tom Dieck gives in [42] of
the special case when B is a point. A similar result holds for weak fibrewise
fibrations.

7 Fibrewise fibre bundles

Principal fibrewise G-spaces

Although we continue to work over the base space B we not only consider
fibrewise spaces over B but also fibrewise spaces over those fibrewise spaces,
as in Section 6.

For example, let E be a fibrewise G-space, where G is a fibrewise topolog-
ical group. We may regard F as a fibrewise space over E /G, using the natural
projection. Some of the results proved earlier can then be reformulated in a
simpler fashion. For example, Proposition 2.4 shows that F is fibrewise open
over E/G if G is fibrewise open over B.

In the same spirit, consider a fibrewise map p : E — X, where E and
X are fibrewise spaces over B. We may regard E as a fibrewise space over
X, as well as over B. Among the fibrewise actions of G on E we single out
for attention those where the action of Gy on Ej, for each point b of B, is
through fibrewise homeomorphisms of E over X;. This means that p induces
a fibrewise map p : E/G — X. We describe FE as a principal fibrewise G -space
over X if p is a fibrewise homeomorphism. In that case we use p to identify
E/G with X, as a fibrewise space.

For p to be a fibrewise homeomorphism it is necessary, in the first place,
that the projection p is surjective. Also when G is fibrewise open it is neces-
sary for p to be open, and when G is also fibrewise compact it is necessary for
p to be proper. Sufficient conditions for p to be a fibrewise homeomorphism
are that the fibrewise action is free and that p is both surjective and either
open or closed.

Let us describe a principal fibrewise G-space E over X as trivial if E
is equivalent to X xp G, as a fibrewise G-space over X. Local triviality in
the same sense is defined similarly. Specifically, a triviality covering of X



7 Fibrewise fibre bundles 35

is an open covering such that Ey is trivial over V for each member V of
the covering. For some purposes, a numerable triviality covering is necessary.
When X is Hausdorff and paracompact this is true automatically.

Proposition 7.1 Let G be a fibrewise topological group and let X be a fibre-
wise space over B. Let E be a principal fibrewise G-space over X. Suppose
that the division function d : R — G is continuous. If E is sectionable (re-
spectively locally sectionable) over X then E is trivial (respectively locally
trivial) as a principal fibrewise G-space over X .

For let s : X — E be a section. A fibrewise G-map ¢ : X xg G — E over
X is given by ¢(z,g) = s(z).g9. A fibrewise G-map 9 : E — R is given by
Y(€) = (&, sp(€)). Postcomposing with d yields an inverse of ¢, as required.
Similarly in the local case.

Fibrewise G-bundles

Let G be a fibrewise topological group and let X be a fibrewise space over
B. By a principal fibrewise G-bundle over X we mean a principal fibrewise
G-space over X which is locally trivial and for which the division function is
continuous. We refer to G, in this situation, as the fibrewise structural group.
Note that G itself is a (trivial) principal fibrewise G-bundle over B.

For example, let I" be a fibrewise topological group over B and let G be
a subgroup of I". Suppose that I is locally sectionable over I'/G. Then I,
by Proposition 7.1, is a principal fibrewise G-bundle over I'/G.

Returning to the general case, observe that if F is a trivial principal fibre-
wise G-bundle over X then the fibrewise mixed product E x¢ T is equivalent
to X xg T, for each fibrewise left G-space T over B. Without the triviality
condition this is still true locally and we describe E xg T as the associated
fibrewise G-bundle with fibrewise fibre T. When T = G, with G acting on
itself by fibrewise multiplication, the associated fibrewise G-bundle can be
identified with E. When T = G with G acting on itself by fibrewise conju-
gation the associated fibrewise G-bundle is not in general principal. In fact,
fibrewise conjugation leaves the neutral section of G fixed and so E x¢ T has
a section over X in this case.

As before, let E be a principal fibrewise G-bundle over X. For each fibre-
wise open subgroup H of G we may, as in Proposition 2.10, identify the
fibrewise orbit space E/H with the associated fibrewise G-bundle with fibre
G/H. In particular, suppose that G is itself a subgroup of a fibrewise topo-
logical group I'. Assuming the existence of local sections, we regard I as a
principal fibrewise G-bundle over I'/G. Then I'/H may be identified with
the associated fibrewise G-bundle with fibrewise fibre G/H.

Note that if E is a principal fibrewise G-bundle over X then the pull-back
A*E is a principal fibrewise G-bundle over X' for each fibrewise space X’ and
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fibrewise map A : X' — X. Moreover, if E xg T is the associated fibrewise
G-bundle over X with fibrewise fibre the fibrewise G-space T then

AN(E xgT)=MNExgT

is the associated fibrewise G-bundle over X’ with fibrewise fibre T'.

Now suppose that we have a fibrewise homomorphism a : G' - G of
fibrewise topological groups. Let E' be a principal fibrewise G'-bundle over
the fibrewise space X. Regarding G as a fibrewise G'-space via a, we obtain
the principal fibrewise G-bundle a,E' = E' xg' G over X, together with a
fibrewise G'-map ¢ : E' = a,E' over X, induced by

E'T)E’ XB EII—)E/ XB G'.
xc!
We describe a,E' as the principal fibrewise G-bundle over X obtained from
E' via a.
Conversely, suppose that E is a principal fibrewise G-bundle over X and

let ¢ : E' = E be a fibrewise G'-map over X, where G’ acts on E via a.
Then a fibrewise G-equivalence a.E' — E over X is induced by

E’xBGﬁExBG—>E.
X T

If G’ is a subgroup of G and a the inclusion we describe E as the principal
fibrewise G-bundle over X obtained from E' by extending the fibrewise struc-
tural group from G’ to G. Although the fibrewise structural group can always
be extended in this way, as we have seen, the opposite process of reduction
of the fibrewise structural group to a given subgroup is not always possible
(for example, reduction to the trivial subgroup is equivalent to trivialization).
Moreover, different reductions to a given subgroup G’ for the same princi-
pal fibrewise G-bundle are not necessarily equivalent, as principal fibrewise
G'-bundles.

Proposition 7.2 Let G be a fibrewise topological group and let X be a fibre-
wise space over B. Let G' be a subgroup of G such that G is locally sectionable
over G/G'. Let E be a principal fibrewise G-bundle over X. Then the fibre-
wise structural group G of E can be reduced to G' if and only if the associated
fibrewise G-bundle E/G' with fibrewise fibre G/G' admits a section.

In one direction this is almost obvious. Thus if E' is a principal fibrewise
G'-bundle over X and ¢ : E' — E is a fibrewise G'-map over X then

¢/G' :E'/G' - E|G'

constitutes a section of the associated fibrewise G-bundle. Conversely, let
s : E/G — E/G' be a section. Regarding E as a principal fibrewise G'-
bundle over E/G’, consider the induced fibrewise G'-bundle s*E over E/G.
This comes equipped with a fibrewise G'-map s*E — E over s, and hence
over E/G = X as required.
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The Milnor construction

Let G be a fibrewise open group, over a base space B. Following Milnor [113],

in the ordinary theory, a countably numerable fibrewise G-bundle can be

constructed as follows. We regard the cylinder A = B x I as a fibrewise space

under the first projection, and denote the second projection by a: 4 — I.
For each point b of B consider sequences

(a1,91,0a2,92,...), where aj,as,... € Ay and g1,92,... € Gs.

Restrict attention to those sequences such that a(a,) = 0 for all but a finite
number of indices n and such that }_ a(a,) = 1. Impose on this fibrewise set
the fibrewise equivalence relation in which two such sequences

(a1,91,-..) and (ai,gi,...)

are equivalent if a, = a;, for all n and either g, = g/, or a(a,) = 0 for
each n. The equivalence class of the sequence (a1, g1, ...) will be written as
[@1,91,...). The fibrewise set of equivalence classes will be denoted by Eg.

Fibrewise functions a, : Eg = A and g, : (@ca,)~1(0,1] = G are defined
in the obvious way for n = 1,2,... Let us give Eg the coarsest topology for
which all these functions are continuous. Then Eg becomes a fibrewise space,
such that for each fibrewise space K a fibrewise function f : K — Eg is
continuous if and only if each function an o f and gn o (f | (@oan o f)71(0,1])
is continuous.

Now consider the fibrewise action r¢ : Eg xg G = Eg of G on Eg given
by r¢([a1,91,a2,92,...],h) = [a1,91h,a2,92h,...]. We denote the fibrewise
orbit space Eg/G by X and the natural projection by pg. The fibrewise
map a, is invariant and so induces a fibrewise map a, o (pg)~! : Xg = A.
The open sets {an o pg' o a~1(0,1]} form a countably numerable covering of
X, and Eg is fibrewise G-trivial over each member of the covering. Thus
EG obtains the structure of a countably numerable fibrewise G-bundle over
Xg. Note that X admits sections, for example the section induced by the
fibrewise G-map G — Eg which sends g into [1,¢,0,.. ).

The classification theorem

Our aim is to show that the fibrewise G-bundle thus constructed enjoys the
universal property for numerable fibrewise G-bundles, classified as above.
Specifically, given a fibrewise space X we associate with each fibrewise map
A : X = Xg the induced numerable fibrewise G-bundle A*Eg over X. It
follows by a straightforward fibrewise version of the argument used in the
ordinary theory, for example that given by Milnor in [114], that fibrewise
homotopic maps induce equivalent fibrewise G-bundles. What remains to
be established is first that every numerable fibrewise G-bundle over X is
equivalent to A\*Eg for some fibrewise map A, and second that if \*Eg is
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equivalent to u* Eg for some fibrewise maps A, 4 : X = X then ) is fibrewise
homotopic to .

So let E be a numerable fibrewise G-bundle over X with projection p.
We can choose a countable family of open subsets V,, (n = 1,2,...) of X and
fibrewise maps 8, : X — A such that E is fibrewise G-trivial over V,, and
(a o Br)~1(0,1] C V, for each n. Given a local fibrewise G-trivialization

¢n:EVn_)anBG

we define a fibrewise function g, : £ = G by gn = m2¢, on Ey, and by g, = ¢
on E — Ey,_. Here c, as usual, denotes the fibrewise constant. Although the
fibrewise functions g, may not themselves be continuous they nevertheless
define a fibrewise map f : E = Eg, where

f=1[Bop,g,Ba0p,g2,.. ]

(Here and elsewhere in what follows variables are omitted to ease the not-
ation.) Since f is equivariant, with respect to the fibrewise actions of G on
E and Eg, we obtain an induced fibrewise map A : X = X¢, such that E is
equivalent to A* Eg. This proves the first assertion.

To prove the second let 6,0’ : E — Eg be fibrewise G-maps, expressed in

the form
0= [alaglaa2ag27 . ']a

¢ = [a1, 91,02, 9, - - -
We start by showing that # and 8’ are fibrewise G-homotopic to the fibrewise
G-maps ¢ and ¢’ given by
¢ = {a'lvglvoy c, a2yg2)0ac) v ']a
¢I = [07 c7 a'l’g;,, 07 c, aIZagI2’ .. ']'

In fact a fibrewise G-homotopy H; : E — Eg of 6 into ¢ is given by the
expression
[(1 - t)ahgla talagla (1 - t)a2ag2a ta2a927 . ']a

and a fibrewise G-homotopy of @' into ¢’ is given similarly. The next stage
is to construct, in infinitely many steps, a fibrewise G-homotopy of ¢ into 6.
The first step, indicated by the expression

[alagl) ta?agZa (1 - t)a2$g2a ta3a93a (1 - t)a’37 .. ']a
ends with the fibrewise G-map indicated by the expression
[al,gla 0,2,92,0, ¢, a3ag370a C .- ]

The second step is defined similarly, and so on, until after the nth step we
reach the fibrewise G-map indicated by the expression

[01791,02,92, ren ,an+1,gn+1,0,0,an+2,gn+2,07 c .. ']'
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By juxtaposing the steps in this series of fibrewise G-homotopies we obtain
a fibrewise G-homotopy since at each coordinate place in E¢ all but a finite
number of the steps are stationary. Thus a fibrewise G-homotopy of ¢ into
0 is obtained, and similarly, a fibrewise G-homotopy of ¢' into #'. Since we
have already seen that ¢ is fibrewise G-homotopic to ¢' we conclude that
0 is fibrewise G-homotopic to @', as required. This completes the proof of
the classification theorem. In view of this result we may refer to X¢g as the
classifying fibrewise space of G. Very much the same argument, applied to the
non-equivariant case, may be used to show that Eg is fibrewise contractible,
and hence that X¢ is vertically connected.

In particular, take X = B x T, for some space T'. Suppose that B is locally
compact regular. Then the set of fibrewise homotopy classes of fibrewise maps
of X into X is equivalent to the set of homotopy classes of maps of T into
I'(X¢), the space of sections of Xg.

To illustrate these ideas consider a topological group K. In the category of
K-spaces let Ey be a space and let G be a topological transformation group
of Ey. Thus Eg and G are both K-spaces, the multiplication of Gy and the
action of Gop on Ey are equivariant, and the neutral element of Gy is fixed.
Let P be a principal K-bundle over B. Then the associated bundle PxGg
with fibre G is a fibrewise open group. Also the associated bundle Py Ey with
fibre Ey is a fibrewise Py Go-space, more precisely a principal fibrewise PxGo-
bundle over the associated bundle Px(Ey/Go) with fibre Eg/Gp. In fact the
classifying fibrewise space of P4Go defined as above can be identified with
the associated bundle with fibre the classifying space of Gy, in the ordinary
sense.

An ezample

Ezample 7.3. For example take K = Z/2. Take Gy to be an Abelian dis-
crete group with Z/2 acting by inversion. The classifying space of Gy is
the Eilenberg-MacLane space K(Go,1). For the principal Z/2-bundle P
take the sphere S™, with Z/2 acting by the antipodal transformation and
B = 8"/(Z/2) the real projective n-space. Then the classifying fibrewise
space of the fibrewise topological group

S™ xz/2 Go
with fibre Gy can be identified with the associated bundle
S" xz/2 K(Go, 1)
with fibre K(Go,1).
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8 Fibrewise mapping-spaces

In this section we consider the problem, first discussed by Thom [131], of
constructing an explicit right adjoint to the fibrewise product. Various pro-
cedures for doing this have been discussed in the literature, for example Booth
and Brown [16, 17] use partial maps while Min and Lee [115] use convergence
spaces. However, the method adopted in Section 9 of [81] seems at least as
satisfactory as any and so what we give here follows that account quite closely.

The problem is to assign a suitable fibrewise topology to the fibrewise set

mapg(X,Y) = [[ map(X;,Ys),
beB

where X and Y are fibrewise spaces over B. Although we shall give a fairly
full outline of the theory in the general case, for certain technicalities we
shall refer the reader to Section 9 of [86], where full details are given. Before
dealing with the general case let us consider again the case when X is trivial,
which admits of simpler treatment. We begin by describing a variant of the
treatment given in Section 1.

The fibrewise compact-open topology

The version of compact-open topology we are going to generalize here is
a refinement of the standard one, as follows. Given spaces X and Y, let
map(X,Y) denote the set of maps ¢ : X = Y. For U C Y open, C compact
Hausdorff, and A : C — X a map, let (C,\,U) denote the subset of map
(X,Y) consisting of maps ¢ such that ¢AC C U. We describe such subsets
as compact-open, and we describe the topology which they generate as the
compact-open topology. This is a modification of the usual theory, in which
C is required to be a subset of X and A is the inclusion, but it has all the
expected properties, as can easily be checked.

Consider first the fibrewise set mapg(B x T, Z), where T is a space and Z
is a fibrewise space over B. Maps of {b} x T into Z, can be regarded as maps
of T into Z, in the obvious way, and so mapg(B x T, Z) can be topologized
as a subspace of map(T, Z), with the compact-open topology. Then for any
fibrewise space Y over B a fibrewise map

YxT=(BxT)xgY =2
determines a fibrewise map
Y - mapg(B x T, Z),

through the standard formula, and the converse holds when T is locally com-
pact and regular. All we need for this is the standard theory of the compact-
open topology.
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Now let us turn to the general case, where X and Y are fibrewise spaces
over B. Given an open set W C B, an open set U C Yy, a fibrewise compact
Hausdorff space K over W, and a fibrewise map A : K = Xw, we denote
by (K,\U;W) the set of maps ¢ : X, — Y, where b € W, for which
oMK, CU. If K C Xw and A is the inclusion then we write (K, \,U; W) as
(K,U; W). We describe such a subset (K, A, U; W) of mapg(X,Y) as fibrewise
compact-open, and describe the fibrewise topology generated by the fibrewise
compact-open subsets as the fibrewise compact-open topology. From now on,
when we use the term fibrewise mapping-space, this is the fibrewise topology
with which it is equipped.

Some caution is necessary when taking pull-backs or even restricting to
subspaces of the base. For example, the fibres of the fibrewise mapping-space
do not necessarily inherit the compact-open topology. Of courseif a : B' —» B
is a map, where B’ is a space, then a fibrewise bijection

mapg (a*X,a'Y) - a*mapg(X,Y)

is defined, in the obvious way. The bijection is continuous, since the pull-back
(e*K,a*X,a*U;a"'W) of a fibrewise compact-open subset (K, \,U; W) of
mapg(X,Y) is a fibrewise compact-open subset of mapg: (a*X,a*Y). Later
in this section we will show that this continuous bijection is an equivalence
of fibrewise spaces over B’ under certain conditions.

It is not difficult to see, however, that when X = B x T, for some space
T, the special method of topologizing the fibrewise mapping-space which can
be used in this case agrees with the general method. Specifically, consider the
injection

o : mapg(B x T,Y) = map(T,Y)

given, as before, by transforming each map {b} x T — Y}, where b € B, into
the corresponding map T' — Y. We assert that o constitutes an embedding
of the domain with fibrewise compact-open topology in the codomain with
compact-open topology.

For let (C,A,U) be a compact-open subset of map(T,Y), where U C Y
is open, C is compact Hausdorff and A : C — U is a map. Then

o~ 1(C,U) = (C x B,Aom,U;B),

where C' x B is fibrewise compact Hausdorff over B.

In the other direction, let (K, A, U; W) be a fibrewise compact-open sub-
set of mapg(B x T,Y), so that W C B is open, U C Yy is open, K is
fibrewise compact Hausdorff over W and A : K - W x T is a fibrewise
map. Then (K, A,U; W) is the union of the preimages =1(Cy, Ay, U), where
b runs through the points of W, Cy x {b} = K}, and ), is the first component
of A | Cy. Since each subset (Cy, Ay, U) of map(T,Y) is compact-open we
conclude that o is an embedding, as stated.
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Proposition 8.1 Let X andY be fibrewise spaces over B. Then mapg(X, B)
is equivalent to B, as a fibrewise space, and mapg(B,Y) is equivalent to Y.

To prove the first assertion we show that the projection mapg(X,B) —+ B
is a homeomorphism. Since it is obviously a continuous bijection we only have
to show that it is open, and for this it is sufficient to show that the projection
of a fibrewise compact-open subset is open. So let (K, A, U; W) be a fibrewise
compact-open subset of mapg(X, B), where W C B is open, U C W is open,
K is fibrewise compact Hausdorff over W, and A : K = Xw is a fibrewise
map. Then the projection is just U U (W — pAK), which is open in B since
pAK is closed in W. This proves the first assertion; the proof of the second
is equally straightforward.

Clearly if B' C B then mapg(X,Y)|p is equivalent to mapg (X',Y’),
as a fibrewise set over B', where X' = Xp/, Y = Yp.. Now the restriction
(XpNK,YgNV; WNB') to B’ of a fibrewise compact-open set (K,V; W)
of mapg(X,Y) is a fibrewise compact-open set of mapg,(X’,Y"), hence the
identity function

mapg (X',Y') » mapp(X,Y)|s

is a continuous bijection. When B’ is open in B the function is an equivalence,
but this is not true generally.

In particular, the induced topology on the fibre map(X,,Y;) of mapg(X,Y)
may be coarser than the compact-open topology. An exception is when X is
fibrewise discrete since in that case a compact subset C of the discrete X
is necessarily finite, say C = {z1,...,Z,}. So we can find a neighbourhood
W of b and, by using local slices through zi,...,z,, a family K;,..., K, of
subsets of Xw which are fibrewise compact over W and whose union K meets
X, in C. Since K is fibrewise compact over W it follows that the topologies
on map(Xp,Y;) coincide in this case.

Among the fibrewise compact-open sets of mapg(X,Y) a special réle is
played by those of the form

(S, V) = (sW,V; W),

where W is open in B, where s is a section of X over W and where V is
open in Y. In the case in which X is fibrewise discrete these special fibrewise
compact-open sets form a sub-basis for the fibrewise compact-open topology,
for a fibrewise topological Y. For let (K,V; W) be a fibrewise compact-open
set, where W is open in B, where K C Xw is fibrewise compact over W,
and where V is open in Y. Let b € W be a given point and assume, to avoid
trivialities, that K} is non-empty. Let ¢ : X3 = Y} be a continuous function
such that ¢Kp C Vs, i.e. Ky C ¢~ 'V;. We have K = {z1,...,2Zn}, say, since
K is discrete and compact, therefore finite. Choose a neighbourhood W; of
b, where W; C W, and a section s; : W; — X such that s;(b) = z;, for
i =1,...,n. Note that U; = s;W; is open in X, since X is fibrewise discrete.
Since K is fibrewise compact over W the subset
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Wo = {u € W | {si(u),...,sn(w)} 2 Ky}

is open in B. Now W/ = WonWyNn...NW, C W, is a neighbourhood of b
and (s}, V) is a neighbourhood of ¢ for i = 1,...,n, where s; = s;|W'. Since

(s, Vyn...n(s,, V) C(K,V; W)

this shows that the special fibrewise compact-open sets form a fibrewise sub-
basis.

The above observation is due to Lever [98] who uses it to establish a
generalization of the fibrewise Tychonoff theorem including, as a special case

Theorem 8.2 Let X be fibrewise discrete over B. Then mapg(X,Y) is fibre-
wise compact whenever Y is fibrewise compact.

The proof, which is not easy, can be found in [98] or in Section 9 of [86].
Although the result is obviously of great importance no use of it is made in
what follows.

Examples can be given where Y is fibrewise Hausdorff but mapg(X,Y)
is not. We prove

Proposition 8.3 Let X and Y be fibrewise spaces over B, with X locally
sliceable and Y fibrewise Hausdorff. Then mapg(X,Y) is fibrewise Haus-

dorff.

For consider distinct maps ¢,¢¥ : X — Y3, where b € B. We have
@(z) # ¥(z) for some point z of Xj. Since X is locally sliceable there exists
a neighbourhood W of b and a section s : W — X, such that s(b) = z. Since
Y is fibrewise Hausdorff there exist disjoint neighbourhoods U,V of ¢(z),
Y(x), respectively in Y. Then (W,s,U; W), (W,s,V;W) are disjoint fibre-
wise compact-open neighbourhoods of ¢,1, respectively, in mapg(X,Y).

Functoriality

After these preliminaries we turn to the general theory of fibrewise mapping-
spaces, beginning with functoriality. Consider fibrewise spaces X, Y and Z
over B. Precomposition with a fibrewise map 8 : X = Y determines a fibre-
wise map

6* : ma'pB(Y’ Z) - ma'pB(X) Z)a

while postcomposition with a fibrewise map ¢ : Y — Z determines a fibrewise
map
¢« : mapg(X,Y) - mapg(X, Z).
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We prove two results about these induced fibrewise maps, as follows.

Proposition 8.4 Let § : X — Y be a proper fibrewise surjection, where X
and Y are fibrewise spaces over B. Then the fibrewise map

0" : mapg(Y,Z) - mapg(X, 2)

is an embedding for all fibrewise spaces Z.

For let W C B be open, let V C Zw be open, let K be fibrewise compact
Hausdorff over W, and let p : K — Yw be a fibrewise map. The fibrewise
product K xy,, Xw is also fibrewise compact Hausdorff over W, since the
first projection K xy,, Xw — K is proper; we denote the second projection
K xy,, Xw — Xw by A. Since 6* is injective, because 6 is surjective, we
have

(K,p, V; W) = 0*"H(K xy,, Xw,\,V; W).

Therefore 8* is an embedding, as asserted.

Proposition 8.5 Let ¢ : Y — Z be a fibrewise embedding, where Y and Z
are fibrewise spaces over B. Then the fibrewise map

#s : mapg(X,Y) - mapg(X, 2)

is an embedding, for all fibrewise spaces Z. If ¢ is closed, furthermore, then
¢. is closed provided X is locally sliceable.

For let (K,\,U; W) be a fibrewise compact-open subset of mapg(X,Y),
so that W C B is open, U C Yw is open, K is fibrewise compact Hausdorff
over W, and X : K = Xw is a fibrewise map. Then U = ¢!V for some open
set V of Zw and so

(Ky)"va) = ¢:1(Ka ¢W o )‘yV)W)

This proves the first assertion.

To prove the second, let o : X; — Z; (b € B) belong to the comple-
ment of ¢.mapg(X,Y) in mapg(X, Z). Then a(z) € U, for some z € Xp,
where U = Z — ¢Y is open. If X is locally sliceable then for some neighbour-
hood W of b there exists a section s : W — Xw such that s(b) = z. Thus
(W,s,U; W) is a fibrewise compact-open neighbourhood of A which does not
meet ¢.mapg(X,Y). This completes the proof.

Proposition 8.6 Let {X;} be a family of fibrewise spaces over B. Then the
natural fibrewise map

mapg([[X;,Y) = I‘;I mapg(X;,Y)

is an equivalence for all fibrewise spaces Y.
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Here the ith component of the fibrewise map is
o} : mapg([1X;,Y) = mapp(X;,Y),

where 0; : X; — [[ X is the standard insertion. The proof of Proposition 8.6
is straightforward.

Our aim is to show that, subject to certain restrictions, the fibrewise
mapping-space stands in an adjoint relationship to the fibrewise product. We
begin by proving

Proposition 8.7 Let X, Y and Z be fibrewise spaces over B. If the fibrewise
function h : X xgY — Z is continuous then so is the fibrewise function
k: X - mapg(Y, Z), where

k(z)(y) = h(z,y) (z€ X,y €Y, be B).

To establish the continuity of k it is sufficient to show that the preimage of
a fibrewise compact-open subset of mapg(Y, Z) is open in X. So consider the
fibrewise compact-open subset (K, A,V; W), where W C B is open, V C Zw
is open, K is fibrewise compact Hausdorff over W and A : K — Yy is a
fibrewise map. Suppose that k(z) € (K,\,V; W), where z € X3, b € B. The
preimage (1 x A™')h~1V is a neighbourhood of the preimage {z} x K} of =
under the projection

Xwxw K 2> XwxwW = Xw.

Since the projection is closed we have U xw K C (1 x A"1)A~1V for some
neighbourhood U of z in Xy . Then kU is contained in (K, \,V; W). There-
fore k is continuous, as asserted.

Our next result requires a technical lemma, as follows.

Lemma 8.8 Let X and Y be fibrewise spaces over B, with X fibrewise reg-
ular. Suppose that the fibrewise topology of Y is generated by a fibrewise
sub-basis. Then the fibrewise compact-open topology of mapg(X,Y) is gen-
erated by a fibrewise sub-basis consisting of fibrewise compact-open subsets
(K,\,\U;W), where W C B is open, U C Yw is fibrewise subbasic, K is
fibrewise compact Hausdorff over W, and X : K - Xy is a fibrewise map.

We omit the proof since it is a straightforward generalization of the proof
of the corresponding result (9.8) of [86]. From this lemma we at once obtain

Proposition 8.9 Let Y1,Y; be fibrewise spaces over B, and let
VNe—Y I xgYs —Y;
Ty w2

be the standard projections. Then the natural fibrewise map
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mapg(X,Y1 xpY2) & mapg(X,Y;) xp mapg(X,Yz)

is an equivalence for all fibrewise reqular X.

Here the fibrewise map is given by m. in the first factor, and by w3, in
the second. Next we require another technical lemma as follows.

Lemma 8.10 Let X and Y be fibrewise regular spaces over B. Then for all
fibrewise spaces Z the fibrewise compact-open topology of mapg(X xp Y, Z)
is generated by fibrewise compact-open subsets (K xw L, A x u,V; W), where
W C B is open, V C Zw is open, K and L are fibrewise compact Hausdorff
over W, and \: K - Xw, p: L = Yy are fibrewise maps.

Again we omit the proof since it is straightforward generalization of the
corresponding result (9.10) of [86]. From this lemma we at once obtain

Proposition 8.11 Let X;, Y; (i = 1,2) be fibrewise spaces over B, with X;
fibrewise regular. Then the natural fibrewise function

mapg(X1,Y1) xp mapg(Xz,Y2) & mapg(X) xp X3,Y1 xp Y2)

is an embedding.

Here the fibrewise function is given by the fibrewise product functor. Con-
tinuity is obvious, while the lemma shows that the condition for an embedding
is satisfied.

In particular consider the fibrewise function

TB# : mapB(X, Y) - mapB(TBX,TBY),

given by the fibrewise product xp T with a given fibrewise regular space T
over B. The above result shows that Tpy is an embedding for all fibrewise
spaces Y provided X is fibrewise regular. Now let #5(X ) denote the push-out
of the cotriad

XxgT «Toyxg X =Ty

and similarly for fibrewise maps, where Ty is a closed subspace of T. We
assert that the fibrewise function

Sp4 : mapg(X,Y) = mapg($pX,PpY)

is continuous, provided T is fibrewise compact regular and X is fibrewise
regular. For example the fibrewise function given by fibrewise suspension is
continuous, for fibrewise regular X.

To see this consider the diagram shown below, where p : Tg — ®p is the
natural transformation
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mapg(X,Y) Z2%, mapy(TsX,TsY)

sos | [+

mapg(®pX,PpY) 7) mapg(TsX,®8Y)

Here p* is an embedding, by Proposition 8.4, since p : TgX — $pX is
a proper surjection. Also Tgy4 is continuous, by Proposition 8.9, and p, is
continuous, from first principles. Therefore p*®p4 = p.Tpy is continuous
and so #px is an embedding, as asserted.

Fibrewise evaluation

Fibrewise evaluation (i.e. evaluation in each fibre) determines a fibrewise

function
mapg(X,Y)xp X -Y

for all fibrewise spaces X,Y over B. More generally, fibrewise composition
(i.e. composition in each fibre) determines a fibrewise function

mapp(Y,Z) xp mapg(X,Y) = mapp(X,Z)
for all fibrewise spaces X,Y, Z over B. We prove

Proposition 8.12 Let Y be fibrewise locally compact regqular over B. Then
the fibrewise composition function

mapB(Y, Z) XB ma'pB(X’Y) - mapB(X,Z)
is continuous for all fibrewise spaces X and Z.

For let 8 : Xy — Y, and ¢ : Y, — Z, be maps, where b € B.
Let (K,A,V;W) be a fibrewise compact-open neighbourhood of ¢ o § in
mapg(X, Z). Thus W is a neighbourhood of b, V C Zw is open, K is fibre-
wise compact Hausdorff over W, and A : K — X is a fibrewise map. Now

8(Xs NAK) C ¢~ Y(Z,NV) =Y, NU

for some open U C Yy . Since Y is fibrewise locally compact regular there
exists a neighbourhood W' C W of b and a neighbourhood N of §(X; N K)
in Yy such that the closure Y}, N N of N in Yy is fibrewise compact over
W' and contained in U. Fibrewise composition sends the fibrewise product

(XW' nNaVl;WI) Xw’ (KI,AI,N;Wl)

into (K,\,V; W), where K' = Kw, X' = Awr and V' = Zy» NV. Since
6e(K'\N,N;W') and ¢ € (Xw+ N N,V'; W) this proves Proposition 8.12.
As a special case we obtain
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Corollary 8.13 Let X be fibrewise locally compact regular over B. Then the
fibrewise evaluation function

mapg(X,Y)xg X =Y

is continuous for all fibrewise spaces Y.

This leads at once to a converse of Proposition 8.7, subject to the expected
restrictions.

Corollary 8.14 Let X,Y and Z be fibrewise spaces over B, with Y fibrewise
locally compact regular. Let k : X — mapg(Y, Z) be a fibrewise map. Then
the fibrewise function h: X xpY — Z is continuous, where

h(z,y) = k(z)(y) (z € Xp,y €Y, be B).

To see this it is only necessary to observe that A may be expressed as the
composition
X xgpY = mapg(Y,Z) xgY = Z

of k x 1y and the fibrewise evaluation function. When h and k are related
as in Proposition 8.7 or Corollary 8.14 we refer to h as the left adjoint of
k and to k as the right adjoint of h. The relationship is placed on a more
satisfactory formal basis in our next result, which may be described as the
exponential law for our theory.

Proposition 8.15 Let X,Y and Z be fibrewise spaces over B and let
¢ : mapg(X xpY,Z) - mapg(X,mapg(Y,Z))

be the fibrewise injection defined by taking adjoints in each fibre. If X is
fibrewise regular then £ is continuous. If both X and Y are fibrewise regular
then £ is an open embedding. If, in addition, Y is fibrewise locally compact
then £ is an equivalence.

For by Lemma 8.10, when X is fibrewise regular the fibrewise topology of
mapg(X,mapg(Y, Z)) is generated by fibrewise compact-open subsets of the
form (K, A, (L,p, V;W); W), where W C B isopen, V C Zw is open, K and
L are fibrewise compact Hausdorff over W, and A: K - Xw, pu: L = Yy
are fibrewise maps. The inverse image of this fibrewise subbasic set is just
(K xwL, Axpu, V; W), which is also fibrewise subbasic, and so £ is continuous.

By Lemma 8.10 again, when X and Y are fibrewise regular the fibrewise
topology of mapg(X x Y, Z) is generated by fibrewise compact-open subsets
of the form (K xw L, A x p, V; W), where W,V,K, L, \, u are as before.
The direct image of this subset is just (K, A, (L, u, V;W); W), which is also
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fibrewise compact-open, and so £ is an open embedding. The final assertion
follows at once from Corollary 8.14.

Another application of Corollary 8.14 is to obtain conditions under which
fibrewise mapping-spaces behave naturally with respect to pull-backs. We
prove

Proposition 8.16 Let X and Y be fibrewise spaces over B, with X fibrewise
locally compact regular. Then the continuous fibrewise bijection

ag : mapg (a*X,a"Y) - a*mapg(X,Y)
is an equivalence of fibrewise spaces over B' for each space B' and map o :
B' - B.
For since the fibrewise evaluation function
mapg(X,Y)xg X =Y
is continuous so is its pull-back
a*(mapg(X,Y) xg X) = a*Y.

Rewriting this as
a*mapg(X,Y) xp a*X = a*Y

we take the right adjoint and obtain a fibrewise map
o*mapg(X,Y) = mapg (¢*X,a*Y)

over B, which is inverse to ag. This proves Proposition 8.16.

In particular, take B = x and replace B', X,Y by B, X,,Y), respectively,
where Xy, Y, are spaces. We deduce that for any space B there is a natural
equivalence between map g (X x B, Y X B) and map(Xy, Yp) X B, as fibrewise
spaces over B, provided Xy is locally compact regular.

The space of fibrewise maps

Returning to the general case, let us compare the space I'(mapg(X,Y)) of
sections s : B = mapg(X,Y) of the fibrewise mapping-space with the space
MAPpg(X,Y) of fibrewise maps ¢ : X — Y. Here both the space of sections
and the space of fibrewise maps are endowed with the compact-open topology.
Consider the function

o: MAPp(X,Y) - I'(mapg(X,Y))

which transforms the fibrewise map ¢ into the section s given by s(b) = ¢,
(b € B). Clearly o is injective.
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Proposition 8.17 Let X,Y be fibrewise spaces over B, and let
o: MAPg(X,Y) = I'(mapg(X,Y))

be the injection defined above. If X is fibrewise locally compact regular then
o is bijective. If in addition B is regular then o is an equivalence of spaces.

To prove the first assertion, let s : B — mapg(X,Y) be a section. Then
s = o(¢), where ¢ : X = Y is the fibrewise map given by the composition

X =BxpX - mapg(X,Y)xp X = Y;

here the first stage is s x 1 while the second stage is fibrewise evaluation.

To prove the second assertion, where B is regular, observe that the
compact-open topology of I'(mapg(X,Y)) is generated by compact-open
subsets of the form (C,u,(K,A,U;W)), where C is compact Hausdorff,
u:C — Bisamap, W C B is open, U C Yw is open, K is fibrewise
compact Hausdorff over W and A : K — Yy is a fibrewise map. The pre-
image of this subset under o is the compact-open subset (C xpg K, Ama, V).
Therefore o is continuous.

Finally, we need to show that o is open. So let (C,u,U) be a compact-
open subset of MAPg(X,Y), where U CY is open, C is compact Hausdorff
and g : C - X is a map. Then

O'(C,[l,, U) = (C’pﬂa (C X B1 Homy, UaB))a

which is fibrewise compact-open. Thus o is open and therefore an equivalence.
This completes the proof.

We conclude with two results about fibrewise fibrations, of which special
cases have occurred earlier. The proofs are omitted since they are straight-
forward exercises in the use of adjoints.

Proposition 8.18 Let ¢ : E — F be a fibrewise fibration, where E and F
are fibrewise spaces over B. Then the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>