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Preface 

Topology occupies a central position in the mathematics of today. One of the 
most useful ideas to be introduced in the past sixty years is the concept of fibre 
bundle, which provides an appropriate framework for studying differential 
geometry and much else. Fibre bundles are examples of the kind of structures 
studied in fibrewise topology. 

Just as homotopy theory arises from topology, so fibrewise homotopy the­
ory arises from fibrewise topology. In this monograph we provide an overview 
of fibrewise homotopy theory as it stands at present. It is hoped that this 
may stimulate further research. The literature on the subject is already quite 
extensive but clearly there is a great deal more to be done. 

Efforts have been made to develop general theories of which ordinary 
homotopy theory, equivariant homotopy theory, fibrewise homotopy theory 
and so forth will be special cases. For example, Baues [7] and, more recently, 
Dwyer and Spalinski [53], have presented such general theories, derived from 
an earlier theory of Quillen, but none of these seem to provide quite the 
right framework for our purposes. We have preferred, in this monograph, to 
develop fibre wise homotopy theory more or less ab initio, assuming only a 
basic knowledge of ordinary homotopy theory, at least in the early sections, 
but our aim has been to keep the exposition reasonably self-contained. 

Fibrewise homotopy theory has attracted a good deal of research interest 
in recent years, and it seemed to us that the time was ripe for an expository 
survey. The subject is at a less mature stage than equivariant homotopy 
theory, to which it is closely related, but even so the wealth of material 
available makes it impossible to cover everything. For example, we do not deal 
with the recent work [51] of Dror Farjoun on the localization of fibrations. 

This monograph is divided into two parts. The first provides a survey of 
fibrewise homotopy theory, beginning with an outline of the basic theory and 
proceeding to a selection of applications and more specialized topics. The 
second part is concerned with the stable theory; the emphasis is on theory 
appropriate for geometric applications, and it is hoped that the account will 
be accessible to readers who may not already be experts in the classical stable 
theory. Part II does assume a certain familiarity with the basic ideas from 
Part I, but is written in such a way that the reader interested mainly in 
the stable theory should be able to begin with Part II and refer back to 
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Part I as necessary. More details on the contents of specific sections can be 
found in the Introductions to the two parts. Cross-referencing within each 
part is by section number. We have not attempted a complete bibliography 
of publications related to fibrewise homotopy theory; those which are cited 
in either Part I or Part II are listed at the end of Part II. Similarly, the index 
at the end of the book covers both parts. 

Certain sections are based on previously published work, and where ap­
propriate this is mentioned in the text. We are grateful to the publishers in 
question for permission to include this material. 

Our thinking on fibrewise homotopy theory has been influenced by the 
work of many colleagues, but we owe a special debt to those with whom we 
have collaborated on joint papers (both published and unpublished). We are 
grateful to our co-authors for sharing their insight with us. MCC would like 
to record, in particular, his thanks to Andrew Cook, Karlheinz Knapp and 
Wilson Sutherland. 
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Part I. A Survey of Fibrewise Homotopy 
Theory 

Introduction 

The basic ideas of fibrewise homotopy theory seem to have occurred in the late 
1960s to several people independently. Thus J.C. Becker [8], J.F. McClendon 
[106], L. Smith [125] and LM. James [78] all made use of the theory in work 
published in 1969 or 1970, while several others, such as L. Hodgkin and 
J.-P. Meyer, were also well aware ofits possibilities. LM. James first published 
a systematic account of the basic theory in 1985 [85] but this was largely 
based on much earlier work [78] put aside when he became aware that so 
many others were thinking on the same lines. Five years later, after further 
research, he returned to the subject in [86]. Although the present exposition 
is to some extent based on these earlier accounts it mainly consists of new 
material. 

There is some truth in the observation that once the correct definitions 
have been formulated any well-organized and methodical account of the rele­
vant homotopy theory, such as [44], can be converted to fibrewise homotopy 
theory by writing in the word 'fibrewise' wherever it makes sense and adjust­
ing formulae accordingly. Yet even at the most elementary level it is necessary 
to exercise care and not jump to conclusions, just as it is in the case of equi­
variant homotopy theory. One might hope that some completely routine way 
may be found of producing fibrewise versions of results in ordinary homotopy 
theory but it would be an exaggeration to say that this is possible at present, 
although Heller [74] suggests that a way may be found. 

On the question of terminology, we find it best on the whole to try and 
use the term fibrewise throughout. For example we now prefer the term fibre­
wise pointed space to the alternatives such as sectioned space, ex-space, etc. 
One reason is that fibrewise corresponds closely to the French fibre and the 
German faserweise. However, excessive repetition of the term fibrewise may 
seem monotonous and so we make the convention that it governs the words 
which come after it so that the expression fibrewise compact Hausdorff space, 
for example, means fibrewise compact, fibrewise Hausdorff, fibrewise space. 
Of course, the time may come when it will be possible to leave out the term 
fibrewise, just as one does in vector bundle theory, and to simplify the nota­
tions accordingly. However, experience suggests that to do so at the present 
time is liable to cause confusion. 



2 A Survey of Fibrewise Homotopy Theory 

In the exposition which follows we assume that the reader is familiar with 
the basic notions of ordinary homotopy theory, as set out in [44], for example. 
Routine fibrewise versions of proofs of well-known results in the ordinary 
theory are generally omitted. Otherwise, and except for certain examples, 
the exposition is fairly self-contained. 

The text is divided into three chapters, each consisting of a number of 
sections. Chapter 1 is concerned with the category of fibrewise spaces and 
fibrewise maps, classified by fibre wise homotopy. As we shall see, it is not 
always obvious what is the most appropriate fibrewise version of a concept 
in ordinary homotopy theory. Chapter 2 is concerned with the category of 
fibrewise pointed spaces and fibrewise pointed maps, classified by fibrewise 
pointed homotopy. In the ordinary theory not a great deal of attention is 
usually paid to the difference between the pointed theory and the non-pointed 
theory but in the fibrewise version the difference is vital. More specialized 
topics are considered in Chapter 3. Several of the sections are closely modelled 
on material which has appeared elsewhere: Sections 17 and 20 are edited 
versions of [92] and [63], respectively; Sections 19 and 21 are based on [90] 
and [89], respectively, and Sections 22 and 23 have been extracted from [31]. 



Chapter 1. An Introduction to Fibrewise 
Homotopy Theory 

1 Fibrewise spaces 

Basic notions 

Let us work over a (topological) base space B. A fibrewise space over B 
consists of a space X together with a map p : X -t B, called the projection. 
Usually X alone is sufficient notation. We regard any subspace of X as a 
fibrewise space over B by restricting the projection. When p is a fibration we 
describe X as fib rant. 

We regard B as a fibrewise space over itself using the identity as the 
projection. We regard the topological product B x T, for any space T, as a 
fibrewise space over B using the second projection. 

Let X be a fibrewise space over B. For each point b of B the fibre over b 
is the subset Xb = p-Ib of X; fibres may be empty since we do not require p 
to be surjective. Also for each subspace B' of B we regard XB' = p-I B' as 
a fibrewise space over B' with projection p' determined by p. 

Fibrewise spaces over B constitute a category with the following definition 
of morphism. Let X and Y be fibrewise spaces over B with projections p and 
q, respectively. A fibrewise map ¢ : X -t Y is a map in the ordinary sense 
such that qo¢ = p, in other words such that ¢Xb ~ Yb for each point b of B. If 
¢ : X -t Y is a fibrewise map over B then the restriction ¢B' : X B, -t YB' is 
a fibrewise map over B' for each subspace B' of B. Thus a functor is defined 
from the category of fibrewise spaces over B to the category of fibrewise 
spaces over B'. 

Equivalences in the category of fibrewise spaces over B are called fibrewise 
topological equivalences or fibrewise homeomorphisms. If ¢, as above, is a 
fibrewise topological equivalence over B then ¢B' is a fibrewise topological 
equivalence over B' for each subspace B' of B. In particular ¢b is a topological 
equivalence for each point b of B. However, this necessary condition for a 
fibre wise topological equivalence is obviously not sufficient. To see this take 
Y = B to be a non-discrete space and take X to be the same set with the 
discrete topology and the identity as projection; the identity function has no 
continuous inverse. 

A fibrewise map ¢ : X -t Y is said to be fibrewise constant if ¢ = top 
for some section t : B -t Y. The same example as in the previous paragraph 

M. C. Crabb et al., Fibrewise Homotopy Theory
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shows that a fibrewise map may be constant on each fibre but not fibrewise 
constant. 

Fibrewise product and coproduct 

Given an indexed family {Xj} of fibrewise spaces over B the fibrewise product 
TIB Xj is defined as a fibrewise space over B, and comes equipped with a 
family of fibrewise projections 

7rj : TIBXj -t Xj. 

The fibres of the fibrewise product are just the products of the corresponding 
fibres of the factors. The fibrewise product is characterized by the following 
Cartesian property: for each fibrewise space X over B the fibrewise maps 

correspond precisely to the families of fibrewise maps {tPj}, where 

tPj = trj 0 tP: X -t Xj. 

For example if Xj = X for each index j the diagonal 

is defined so that trj 0.1 = Ix for each j. 
If {Xj} is as before the fibrewise coproduct UB Xj is also defined, as 

a fibrewise space over B, and comes equipped with a family of fibrewise 
insertions 

O"j : Xj -t UBXj. 

The fibres of the fibrewise coproduct are just the coproducts of the corre­
sponding fibres of the summands. The fibrewise coproduct is characterized 
by the following cocartesian property: for each fibrewise space X over B the 
fibrewise maps 

1/J : UBXj -t X 

correspond precisely to the families of fibrewise maps {1/Jj}, where 

1/Jj = 1/J 0 O"j : Xj -t X. 

For example if Xj = X for each index j the codiagonal 

is defined so that yo 0 O"j = Ix for each j. 
The notations X XB Y and XUB Yare used for the fibrewise product and 

fibrewise coproduct in the case of a family {X, Y} of two fibrewise spaces, 
and similarly for finite families generally. When X = Y the switching maps 
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X xB X -t X xB X, XUBX-tXUBX 

are defined with components (11"2,11"1) and ((12, (1t), respectively. 
Given a map 0 : B' -t B, for any space B', we can regard B' as a 

fibrewise space over B. For each fibrewise space X over B we denote by 0* X 
the fibrewise product X XB B', regarded as a fibrewise space over B' using 
the second projection, and similarly for fibrewise maps. Thus 0* constitutes 
a functor from the category of fibrewise spaces over B to the category of 
fibrewise spaces over B'. When B' is a subspace of B and 0 the inclusion this 
is equivalent to the restriction functor described earlier. 

By a fibrewise topology, on a fibrewise set X over B, we mean any topology 
on X such that the projection p is continuous. By a fibrewise basis, for a 
fibrewise topology, we mean a collection U of subsets of X which forms a 
basis for a topology after augmentation by the topology induced by p. In 
other words, the open sets of X are the unions of intersections of members 
of U and sets of the form X w, where W is open in B. For example, consider 
the product B x T, where T is a space. A fibrewise basis for the fibrewise 
topology is given by the collection of products B xU, where U runs through 
the open sets of T. 

The term fibrewise sub-basis is used in a similar sense or we may, on 
occasion, say that the fibrewise topology is generated by a family of subsets, 
meaning that finite intersections of members of the family form a fibrewise 
basis. 

Note that in checking the continuity of fibrewise functions, where the 
fibrewise topology of the codomain is generated in this way, it is sufficient to 
verify that the preimages of fibrewise subbasic open sets are open. 

Fibre bundles 

A fibrewise space X over B is said to be trivial if X is fibrewise homeo­
morphic to B x T for some space T, and then a fibrewise homeomorphism 
¢ : X -t B x T is called a trivialization of X. A fibrewise space X over B is 
said to be locally trivial if there exists an open covering of B such that X v is 
trivial over V for each member V of the covering. A locally trivial fibrewise 
space is the simplest form of fibre bundle or bundle of spaces. As Dold [45] 
has shown, the theory of fibre bundles is improved if it is confined to the 
class of numerable bundles, i.e. bundles which are trivial over every member 
of some numerable covering of the base. Derwent [40] and tom Dieck [42] 
have pointed out that such a covering may be taken to be countable, thus 
facilitating inductive arguments. 

A more sophisticated form of the notion of fibre bundle involves a topo­
logical group G, the structural group. A principal G-bundle over the base 
space B is a locally trivial fibrewise space P over B on which G acts freely. 
Moreover, the action is fibre-preserving, so that each of the fibres is home­
omorphic to G. Such a principal G-bundle P over B determines a functor 
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P# from the category of G-spaces to the category of fibre bundles over B. 
Specifically P # transforms each G-space A into the associated bundle P x G A 
with fibre A, and similarly with G-maps. We refer to P# as the associated 
bundle functor. 

The theory of fibre bundles is dealt with in the standard textbooks such as 
Steenrod [128] or Bredon [19], where a large variety of examples are discussed. 
Some of these will be appearing in the course of our work. 

From our point of view it is only natural to proceed a stage further and 
develop a fibrewise version of the theory of fibre bundles, as in [95]. Thus 
let X and T be fibrewise spaces over B. By a fibrewise fibre bundle over X, 
with fibrewise fibre T, we mean a fibrewise space E together with a fibrewise 
map p : E --t X which is locally fibrewise trivial, in the sense that there 
exists a covering of X such that Ev is fibrewise homeomorphic to V x B T, 
over B, for each member V of the covering. This is the simplest form of 
the definition, but of course there is a more sophisticated form, involving a 
fibrewise structural group. Details are given in Section 8 below. 

Classes of fibrewise spaces 

There are various classes of fibrewise spaces which will appear in the work we 
shall be doing later, for example, the class of fibrewise open spaces, where the 
projection is open. To be of any interest to us such a class must be invariant, 
so that a fibrewise space which is fibrewise homeomorphic to a member of the 
class is also a member of the class. It must also be natural, in the sense that 
pull-backs of a member are also members. Furthermore, fibrewise products of 
members are also members, at least finite fibrewise products. Fibre bundles 
are such a class. 

In fibrewise topology the existence of local sections is a condition of some 
importance, but more usually it is the existence of local slices which is re­
quired. 

Definition 1.1 The fibrewise space X over B is locally sliceable if for each 
point b of B and each point x of Xb there exists a neighbourhood W of band 
a section s : W --t Xw such that 8(b) = x. 

The condition implies that p is open since if U is a neighbourhood of x 
in X then 8-1 (X w n U) ~ pU is a neighbourhood of bin W. In other words, 
locally sliceable fibrewise spaces are fibrewise open. 

There are fibrewise versions of all the usual separation conditions of topol­
ogy, in fact the number of different fibrewise separation conditions which can 
reasonably be defined is quite large. For our purposes, however, only two or 
three are of real significance. 

Definition 1.2 The fibrewise space X over B is fibrewise Hausdorff if the 
diagonal embedding 
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L1: X -+ X xB X 

is closed. 

Equivalently, for each point b of B and each pair x, x' of distinct points 
of X b there exist disjoint neighbourhoods of x, x' in X. 

Subspaces of fibrewise Hausdorff spaces are fibrewise Hausdorff. The fol­
lowing two properties of fibrewise Hausdorff spaces are worth mentioning. 

Proposition 1.3 Let </> : X -+ Y be a fibrewise map, where X and Yare 
fibrewise spaces over B. If Y is fibrewise Hausdorff the fibrewise graph of </> 

is closed in X XB Y. 

Proposition 1.4 Let </>, 'l/J : X -+ Y be fibrewise maps, where X and Y 
are fibrewise spaces over B. If Y is fibrewise Hausdorff the coincidence set 
K(</>, 'l/J) of </> and'l/J is closed in X. 

These results follow easily from the definition. 
From the viewpoint of fibrewise topology it seems natural to revise some 

of the terminology of ordinary topology. For example 

Definition 1.5 The fibrewise space X over B is fibrewise discrete if the 
projection p is a local homeomorphism. 

Clearly, fibrewise discrete spaces are locally sliceable and hence fibrewise 
open. An attractive characterization of this class of fibrewise spaces is given 
by 

Proposition 1.6 Let X be a fibrewise space over B. Then X is fibrewise 
discrete if and only if (i) X is fibrewise open and (ii) the diagonal embedding 

L1: X -+ X XB X 

is open. 

Corollary 1.7 Let </> : X -+ Y be a fibrewise map, where X is fibrewise open 
and Y is fibrewise discrete over B. Then the fibrewise graph 

r: X -+ X XB Y 

of </> is an open embedding. 

Corollary 1.8 Let </>, 'l/J : X -+ Y be fibrewise maps, where X and Yare 
fibrewise spaces over B. If Y is fibrewise discrete the coincidence set K (</>, 'l/J) 
of </> and'l/J is open in X. 

Another fibrewise separation condition we shall need is as follows. 
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Definition 1.9 The fibrewise space X over B is fibrewise regular if for each 
point b of B, each point x of Xb and each neighbourhood V of x in X there 
exists a neighbourhood W of b in B and a neighbourhood U of x in X w such 
that the closure X w nO-of U in X w is contained in V. 

When the fibrewise topology of X is given in terms of a fibrewise sub-basis 
it is sufficient if the condition for fibrewise regularity is satisfied for fibrewise 
subbasic neighbourhoods V. Subspaces of fibrewise regular spaces are also 
fibrewise regular, as can easily be shown. 

Fibrewise open means that the projection is open, fibrewise closed that 
the projection is closed. Because fibrewise products of fibrewise closed spaces 
are not, in general, fibrewise closed, the class of fibrewise closed spaces is only 
of minor importance. A stronger condition is needed, as in 

Definition 1.10 The fibrewise space X over B is fibrewise compact if the 
projection is proper. 

In other words X is fibrewise compact if X is fibrewise closed and every 
fibre of X is compact. One can also characterize the condition in terms of 
coverings, as follows. 

Proposition 1.11 The fibrewise space X over B is fibrewise compact if and 
only if for each point b of B and each covering U of Xb by open sets of X 
there exists a neighbourhood W of b in B such that a finite subfamily of U 
covers Xw. 

Proposition 1.12 Let X be fibrewise compact over B. Suppose that X is 
fibrewise discrete. Then X -t B is a finite covering space. 

For consider a point b E B. Choose for each x E Xb an open neighbour­
hood Ux in X such that p(Ux ) is open in B and the restriction of p is a 
homeomorphism Ux -t p(Ux ). Since the intersection of Ux with the fibre Xb 
is precisely {x}, it follows from Proposition 1.11 that Xb is finite and that 
there is an open neighbourhood W of bin B such that Xw ~ Ux Ux . Let V 
be the open subset 

V = Wn np(Ux ) ~ B. 
x 

Then X v -t V is trivial. 
The images of fibrewise compact spaces under fibrewise maps are also 

fibrewise compact. This follows at once from the definition; with a little more 
effort we obtain the useful 

Proposition 1.13 Let ¢ : X -t Y be a fibrewise map, where X is fibrewise 
compact and Y is fibrewise Hausdorff. Then ¢ is proper. 
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Proposition 1.14 Let X be fibrewise regular over B and let K be a fibrewise 
compact subset of X. Let b be a point of B and let V be a neighbourhood of 
Kb in X. Then there exists a neighbourhood W of bin B and a neighbourhood 
U of K w in X w such that the closure X w n (J of U in X w is contained in 
V. 

There is just one more class of fibrewise spaces we need to consider here. 

Definition 1.15 The fibrewise space X over B is fibrewise locally compact if 
for each point b of B and each point x of Xb there exists a neighbourhood W 
of b in B and a neighbourhood U of x in X w such that the closure X w n (J 
of U in X w is fibrewise compact over W. 

It is easy to see that fibrewise compact spaces are fibrewise locally com­
pact, also that closed subspaces of fibrewise locally compact spaces are fibre­
wise locally compact. We conclude with two results which are not quite so 
obvious; proofs may be found in Section 3 of [86]. Recall that we make the 
convention that the term 'fibrewise' governs everything that follows it. For 
example 'fibrewise locally compact Hausdorff space' means a fibrewise space 
which is both fibrewise locally compact and fibrewise Hausdorff. 

Proposition 1.16 Let X be fibrewise locally compact Hausdorff over B. 
Then X is fibrewise regular. 

Proposition 1.17 Let X be fibrewise locally compact regular over B. Then 
for each point b of B, each compact subset C of X b, and each neighbourhood 
V of C in X, there exists a neighbourhood W of b in B and a neighbourhood 
U of C in X w such that the closure X w n (J of U in X w is fibrewise compact 
over Wand contained in V. 

Fibrewise quotients 

By a fibrewise quotient map we mean a fibrewise map which is a quotient 
map in the ordinary sense. Fibrewise products of fibrewise quotient maps are 
not necessarily fibrewise quotient maps. We prove 

Proposition 1.18 Let <p : X --7 Y be a fibrewise quotient map, where X and 
Yare fibrewise spaces over B. Then the fibrewise product 

<p xl: X XB T --7 Y XB T 

is a fibrewise quotient map, for all fibrewise locally compact regular T. 

For let U ~ X X B T be open and saturated with respect to 1/1 = <p x 1. We 
have to show that 1/1U is open in Y XB T. So let (y, t) E 1/1U, where y E JIb, 
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tEn, b E B, and pick x E </J-l(y) ~ Xb' We have (x, t) E U, since U is 
saturated. Consider the subset N of n given by 

{x} x N = ({x} x Tb) n U. 

Now N is open in Tb, since U is open in X xBT, and so N = Mnn, where M 
is open in T. Since T is fibrewise locally compact there exists, by Proposition 
1.17, a neighbourhood K ~ M of t in Tw such that K is fibrewise compact 
over W. Consider the subset 

v = {~ E X w I {n x w K ~ U} 

of X w. We have (y, t) E </J V x w K ~ 1jJU. So to prove that 1jJU is a neighbour­
hood of (y, t) in Y XB T it is sufficient to prove that </JV is a neighbourhood 
of yin Y. 

In fact V is open in X. For let ~ E V so that {~} Xw K{3 ~ U, where 
f3 = p(~) andp: X -+ B. Since K is fibrewise compact over W the projection 

Xw Xw K -+ Xw Xw W -+ Xw 

is closed. Since U is a neighbourhood of the inverse image {~} x K{3 of ~ 
under the projection there exists a neighbourhood W' ~ W of f3 and a 
neighbourhood V' of ~ in X w' such that V' x w' K w' ~ U. This implies that 
V' ~ V, by the definition of V, and so V is open. 

Moreover, V is saturated. For V ~ </J-l</JV, as always. Also 

</J-l</JV Xw K = 1jJ-11jJ(V Xw K) ~ 1jJ-l1jJU = U. 

Therefore </J-l</JV ~ V, by the definition of V, and so </J-l</JV = V. Thus V 
is saturated, as well as open, and so </JV is open. Since y E </JV this completes 
the proof. 

Given a fibrewise space X over B a fibrewise equ.ivalence relation on X is 
given by a subset R of the fibrewise product X x B X. We refer to the fibrewise 
set X / R of equivalence classes, with the quotient topology, as the fibrewise 
qu.otient space. Of course, fibrewise maps X/R -+ Z, for any fibrewise space 
Z, correspond precisely to invariant fibrewise maps X -+ Z. 

We describe a fibrewise map </J : (X, A) -+ (X', A') as a fibrewise relative 
homeomorphism if (i) A is closed in X, (ii) </J maps X - A bijectively onto 
X' - A', and (iii) X' is a fibrewise quotient space of X under </J. 

In general there is no simple condition at the level of X which implies 
that X/R is fibrewise Hausdorff. Suppose, however, that R = (</J x </J)-lLlZ 
for some fibrewise map </J : X -+ Z, where Z is fibrewise Hausdorff. Then 
the induced fibrewise map X/R -+ Z is injective and so X/R is fibrewise 
Hausdorff. 

Consider a space D and a closed subspace E of D. For any fibrewise space 
X over B let !PB(X) denote the push-out of the cotriad 

:J ""2 X x Dt--=-X x E~E, 
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and similarly for fibrewise maps. Thus an endofunctor ~B of our category is 
defined. It can be shown, as in [86], that ~B(X) is fibrewise Hausdorff when­
ever X is fibrewise Hausdorff. For (D, E) = (I, {O}), where 1= [0, 1] ~ JR, 
the endofunctor is known as the fibrewise cone and denoted by C B. When 
(D,E) = (I,{O,I}) the endofunctor is known as the fibrewise suspension 
and denoted by EB. For example EB(X) = B x I when X = B, and 
EB(X) = B x j when X = 0. Note that the associated bundle functor 
P# discussed earlier, from the category of G-spaces to the category of fibre­
wise spaces, transforms the equivariant cone into the fibrewise cone and the 
equivariant suspension into the fibrewise suspension. For example, taking G 
to be the orthogonal group O(n), the fibrewise cone of an (n - I)-sphere 
bundle is the associated n-ball bundle, and the fibrewise suspension is the 
associated n-sphere-bundle. 

More generally let Xi (i = 0,1) be a fibrewise space. Consider the fibrewise 
equivalence relation on the coproduct 

Xo U (Xo x I x Xl) U Xl 

which identifies (xo, t, xd, with Xt whenever t = ° or 1. The fibrewise set 
Xo *B Xl of equivalence classes, with the quotient topology, is called the 
fibrewise join of Xo and Xl' For example, if X t is the sphere-bundle associated 
with Et , where Et is a euclidean bundle over B, then Xo *B Xl is the sphere­
bundle associated with the Whitney sum Eo ED E I . When Xo = sn-l X B 
and Xl = X we may identify Xo *B Xl with the n-fold fibrewise suspension 
EB(X) of the fibrewise space X. 

It should be noted that the fibrewise join is not in general associative, 
with the quotient topology. However if, following Milnor [113J, we replace 
this by the coarsest topology which makes the coordinate functions 

t : Xo *B Xl -+ B x I, 

Xo : CI(B x [0,1)) -+ Xo, 

Xl : CI(B x (0,1]) -+ Xl 

continuous then associativity holds without restriction. Furthermore, the 
topologies coincide when Xo and Xl are fibrewise compact Hausdorff. 

Fibrewise mapping-spaces 

Finally, let us turn to the problem of constructing a right adjoint to the 
fibrewise product. One has to impose a topology with the necessary properties 
on the fibrewise set 

mapB(X, Z) = 11 map(Xb, Zb), 
bEB 

where X and Z are fibrewise spaces over B. Although this can be done in 
general, as we shall see later, the case when X = B x T, for some space T, 
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admits of simpler treatment. In fact maps of {b} x T into Zb can be regarded 
as maps of T into Z, in the obvious way, and so mapB(B x T, Z) can be 
topologized as a subspace of map(T, Z), with the compact-open topology. It 
is easy to check that for any fibrewise space Y over B a fibrewise map 

Y x T = (B x T) XB Y -t Z 

determines a fibrewise map 

Y -t mapB(B x T, Z), 

through the standard formula, and that the converse holds when T is compact 
Hausdorff. In fact this special case is sufficient for the great majority of 
situations where fibrewise mapping-spaces are used in what follows. 

Some examples 

The reader may wish to treat the following examples, related to the text of 
this section, as exercises. 

Example 1.19. Let ¢ : X -t Y be an open and closed fibrewise surjection 
where X and Y are fibrewise spaces over B. Let A : X -t JR be a continuous 
real-valued function which is fibrewise bounded above, in the sense that A is 
bounded above on each fibre of X. Then J.L : Y -t JR is continuous, where 

Example 1.20. Let ¢ : X -t Y be a fibrewise function, where X and Y 
are fibrewise spaces over B. Suppose that X is fibrewise open and that the 
product 

id x ¢ : X x B X -t X X B Y 

is open. Then ¢ itself is open. 

Example 1.21. Let X be a closed subspace of B x JRn, (n ~ 0), regarded 
as a fibrewise space over B under the first projection. Then X is fibrewise 
compact if X is fibrewise bounded, in the sense that there exists a continuous 
real-valu3d function A : B -t JR such that Xb is bounded by A(b) for each 
point b of B. 

Example 1.22. Let ¢ : X -t Y be a fibrewise function, where X and Y are 
fibrewise spaces over B. Then, if X is fibrewise compact and the product 

id x ¢ : X x B X -t X X B Y 

is proper, ¢ is proper. 
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Example 1.23. Let ¢ : X -t Y be an open fibrewise surjection, where X and 
Y are fibrewise spaces over B. Suppose that the preimage of the diagonal of 
Y with respect to ¢ x ¢ is closed in X XB X. Then Y is fibrewise Hausdorff. 

Example 1.24. Let ¢ : X -t Y be a fibrewise function, where X and Y are 
fibrewise spaces over B. Suppose that X is fibrewise Hausdorff and that the 
fibrewise graph of ¢ in X XB Y is fibrewise compact. Then ¢ is continuous. 

Example 1.25. Let ¢ : X -t Y be a fibrewise map, where X and Y are 
fibrewise discrete over B. Then ¢ is a local homeomorphism. 

Example 1.26. Let X be a fibrewise space over B and let A be an open 
subspace of X. If A is fibrewise open, then the projection 7r : X -t X/BA is 
open. 

Example 1.27. Let ¢ : X -t Y be a proper fibrewise function, where X and Y 
are fibrewise spaces over B. If X is fibrewise Hausdorff and fibrewise regular 
then so is ¢X. 

Example 1.28. If B = ex is the cone on the non-empty space X, there is no 
fibrewise map from X, regarded as a fibrewise space with the constant map 
to the apex of the cone as projection, into X, regarded as a fibrewise space 
with the inclusion as projection. 

2 Fibrewise transformation groups 

Fibrewise topological groups 

Let us continue to work over a base space B. We describe a fibrewise space G 
as a fibrewise topological group or fibrewise group-space over B if G is equipped 
with fibrewise maps 

m: G XB G -t G, e: B -t G, u:G-tG 

such that the following three conditions are satisfied. 

m 0 (m x 1) = m 0 (1 x m) : G XB G XB G -t G, 

m 0 (c x 1) 0..1 = 1 = m 0 (1 x c) 0..1 : G -t G, 

m 0 (u x 1) 0..1 = c = m 0 (1 xu) 0..1 : G -t G. 

Here, as usual, c denotes the fibrewise constant determined bye. We refer 
to m as the fibrewise multiplication, to e as the neutral section and to u as 
the fibrewise inversion. The three conditions imply, and are implied by, the 
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statement that the fibre Gb is a topological group, with multiplication mb, 
neutral element e(b), and inversion u(b), for all points b of B. 

For example, B itself is a fibrewise topological group, with the identity as 
fibrewise multiplication, neutral section and fibrewise inversion. More gener­
ally, B x T is a fibrewise topological group for each topological group T. 

For a more interesting example consider the cylinder I x T, where 
I = [0, 1] ~ lR and T is a (discrete, additive) Abelian group. The fibrewise 
topological group structure on I x T, as a fibrewise space over I, induces a 
fibrewise topological group structure on the quotient fibrewise space (I x T) / R 
over the circle 1/ j, where R identifies (t,O) with (-t, 1) for all t E T. 

For another example, let Go be a compact Hausdorff topological group. 
Then the unreduced suspension E(Go) of Go forms a fibrewise topological 
group over E(pt) = I. More generally, the join Go*X is a fibrewise topological 
group over the cone (pt) * X for all spaces X. 

For another type of example, consider a vector bundle E over B, and take 
G = AutB(E), the bundle formed by automorphisms of the fibres. More 
generally, let P be a principal r-bundle over B, where r is a topological 
group. Then the associated adjoint bundle P x r r with fibre r is a fibrewise 
topological group, where r acts on itself by conjugation. See [4] for some 
applications. 

Returning to the general case, let G be a fibrewise topological group over 
B. We describe a subspace H of G as a subgroup if m(H XB H) ~ Hand 
uH ~ H, in other words if Hb is a subgroup of Gb for each point b of B. 
The term normal subgroup is defined similarly. For example, the image of the 
neutral section is always a normal subgroup, the fibrewise trivial subgroup. 

Of course a subgroup of a fibrewise topological group is itself a fibrewise 
topological group, with the induced fibrewise multiplication, neutral section 
and fibrewise inversion. 

A subgroup H of the fibrewise topological group G determines a pair of 
fibrewise equivalence relations on G. In one case the relation is the preimage 
of the division function 

d: G XB G -t G, 

where d(g,g') = g(g')-l. Then we refer to the fibrewise quotient space G/H 
as the fibrewise right factor space. In the other case we use the division func­
tion u 0 d instead of d and obtain the fibrewise left factor space H\ G. Of 
course u induces a fibrewise homeomorphism between G / Hand H\ G. When 
H is normal we have G/H = H\G. Note that if H is a subgroup of G the 
neutral section of G induces a section of G / H which may also be referred to 
as the neutral section. Also the neutral section of G / H is closed (respectively 
open) if and only if H is closed (respectively open) in G. Similarly in the case 
of H\G. 

Let G and G' be fibrewise topological groups with fibrewise multiplica­
tions 

m:GxBG-tG, m' : G' x B G' -t G'. 
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By a fibrewise homomorphism of G into G' we mean a fibrewise map ¢ : G -+ 
G' such that 

m' 0 (¢ x ¢) = ¢ 0 m. 

The condition implies that ¢ 0 e = e' and ¢ 0 u = u' 0 ¢, where e' denotes the 
neutral section and u' the fibrewise inversion in the structure of G'. The terms 
fibrewise isomorphism and fibrewise automorphism are defined similarly. 

By the fibrewise kernel of a fibrewise homomorphism ¢ : G -+ G' we mean 
the preimage of the neutral section of G'. Note that the fibrewise kernel is 
always a normal subgroup of G. More generally, the preimage of a normal 
subgroup is always a normal subgroup. 

Given a section s : B -+ G of the fibrewise topological group G, a fibre­
wise automorphism of G is defined which is given on Gb by conjugation with 
respect to s(b) for each point b of B. We may refer to this operation as fibre­
wise conjugation with respect to s. Subgroups K and L of G are said to be 
fibrewise conjugate if L is the image of K under fibrewise conjugation with 
respect to some section s of G. Fibrewise conjugacy constitutes an equiva­
lence relation between the subgroups of G. The fibrewise conjugacy class of 
a subgroup H of G is denoted by [H]. 

Fibrewise transformation groups 

We continue to work over the base space B. Let G be a fibrewise topological 
group and let E be a fibrewise space. By a fibrewise action of G on the right 
of E we mean a fibrewise map r : E x B G -t E such that the following two 
conditions are satisfied. 

r 0 (r x 1) = r 0 (1 x m) : E XB G XB G -t E, 

r 0 (1 x c) 0 Ll = 1 : E -+ Ej 

here c : E -t G denotes the fibrewise constant given by the neutral section. 
These conditions imply, and are implied by, the statement that Eb is a right 
Gb-space for each point b of B. We describe E, with this structure, as a 
fibrewise right G-space. Fibrewise left G-spaces are defined similarly. 

For example, we can regard G itself as a fibrewise right G-space by taking r 
to be the fibrewise multiplication. More generally, we can regard any fibrewise 
topological group containing G as a subgroup as a fibrewise right G-space, 
or equally well as a fibrewise left G-space. 

Given a fibrewise action r of G on the right of E we usually denote r(€, g) 
by fg, where € E E b , 9 E Gb and bE B. Also when E' ~ E and G' ~ G we 
denote r(E' XB G') by E'.G'. 

If E is a fibrewise right G-space the fibrewise action determines a fibrewise 
equivalence relation on E. The resulting fibrewise quotient space E/G is 
called the fibrewise right orbit space. If E is a fibrewise left G-space the 
fibrewise left orbit space G\E is defined similarly. 
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Fibrewise (right or left) G-spaces over a base form a category in which the 
morphisms are fibrewise G-maps, i.e. fibrewise maps which are equivariant 
with respect to the fibrewise action. The equivalences of the category are 
called fibrewise G-equivalences. Note that if a fibrewise G-map is a homeo­
morphism then it is necessarily a fibrewise G-equivalence. 

Let E be a fibrewise right G-space and let F be a fibrewise left G-space. 
A fibrewise action of G on the right of E x B F is defined by 

(~, 'TJ).g = (~.g, g-l.'TJ). 

We denote the fibrewise orbit space (E XB F)/G by E Xc F, for simplicity, 
and refer to it as the fibrewise mixed product of E and F. 

Let E be a fibrewise right G-space. Consider the fibrewise map 

() : E XB G -t E XB E 

given by (}(~,g) = (~,~.g). We describe the fibrewise action as proper if () is 
proper. If the fibrewise action of G on E is proper then so is the fibrewise 
action of G on each invariant subspace of E and so is the fibrewise action of 
each subgroup of G on E. 

Proposition 2.1 Let E be a proper fibrewise right G-space, where Gis fibre­
wise Hausdorff. Then E is fibrewise Hausdorff. 

For since G is fibrewise Hausdorff the fibrewise graph E -t E x B G of the 
fibrewise constant c : E -t G is closed, by Proposition 1.3. Post composing 
with the proper fibrewise map () yields the diagonal Ll : E -t E XB E, which 
is therefore closed. Hence E is fibrewise Hausdorff, as asserted. 

Note that for any fibrewise G-space E the fibrewise graph 

r: E XB G -t E XE/C E XB G 

of the action is an embedding. If E is fibrewise Hausdorff over E / G the 
fibrewise graph is closed and so r is proper. If in addition G is fibrewise 
compact then the projection 

11": E xE/C E XB E -t E XE/C E 

is proper, hence () = 11" r is proper. Thus we have 

Proposition 2.2 Let E be a fibrewise G-space, where G is fibrewise compact. 
If E is fibrewise Hausdorff then E is a proper fibrewise G-space. 

Let s : B -t E be a section of the fibrewise right G-space E. We may 
compare the fibrewise constant map c = sop: G -t E with the composition 
a = r 0 (c x 1) 0 Ll, where 

G~GxBG~ExBG~E. 
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The coincidence set K(a, c} = K is a subgroup of G, called the fibrewise 
stabilizer of s. Note that a induces an injective fibrewise map of G / K into 
E, with image (sB}.G. 

If the fibrewise action is proper the fibrewise map a : G -+ E is proper, 
since it can be identified with the restriction 

sB XB G -+ B XB E 

of (} to sB, and so a induces a fibrewise homeomorphism between G / K and 
(sB.G). 

Let us say that the fibrewise action of G on the right of E is free if Gb 
acts freely on Eb for each point b of B. In that case a fibrewise function 
d: R -+ G is defined, where R ~ E XB E is the image of (} and where d(~, 1]), 
for (~, 1]) E R, is the unique element 9 E G such that 1] = ~.g. We may refer 
to d as the division function. Of course d is continuous if E = r, a fibrewise 
topological group containing G as a subgroup, and the fibrewise action is 
given by fibrewise multiplication. 

Proposition 2.3 Let E be a fibrewise G-space, where the fibrewise action is 
free. The fibrewise action is proper if and only if (i) R is closed in E XB E 
and (ii) the division function d : R -+ G is continuous. 

For if d is continuous a fibrewise map R -+ E x B G is given by 11"1 in 
the first factor, by d in the second. Postcomposing with (} gives the inclusion 
R ~ E x BE. Hence (} is homeomorphic when R is closed. For the converse 
just reverse the argument. 

Note that R is closed in E x B E if E / G is fibrewise Hausdorff since R is 
just the preimage of the diagonal of E / G with respect to 

11" x 11" : E XB E -+ E/G XB E/G. 

Fibrewise open groups 

If we are to develop the theory of fibrewise topological transformation groups 
beyond this very elementary level some restrictions need to be imposed, so 
from now on we concentrate our attention on the family of fibrewise open 
groups. The family includes, for example, fibrewise topological groups of the 
form B x T, where T is a topological group. It also includes fibrewise dis­
crete groups, where the projection is open. Obviously, an open subgroup of 
a fibrewise open group is also fibrewise open. 

Proposition 2.4 Let G be a fibrewise topological group and let H be a fibre­
wise open subgroup of G. Then the projection 11" : G -+ G / H is open. 
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For consider the fibrewise homeomorphism 

'IjJ:GxBH-+GXBH 

given by 'IjJ(g, h) = (g.h, h). The first projection 11"1 : G XB H --+ G is open, 
since H is fibrewise open, and so the restriction m' = 'IjJ 0 11"1 of the fibrewise 
multiplication m to G x B H is open. In particular, if V ~ G is open then so 
is 1I"-111"(V) = m'(V XB H). Hence 11" is open, as asserted. 

It is an important consequence of Proposition 2.4 that G / H is a fibrewise 
left G-space, with the fibrewise action induced by fibrewise multiplication, 
whenever H is fibrewise open. Furthermore, when H is normal, as well as 
fibrewise open, a fibrewise topological group structure on G / H is defined so 
that the natural projection 11" : G --+ G / H is an open fibrewise homomorphism 
of G onto G / H with fibrewise kernel H. Conversely, suppose that G' is the 
image of G under an open fibrewise homomorphism ¢ : G --+ G'. Then 
¢ induces a fibrewise isomorphism between G / H and G', where H is the 
fibrewise kernel of ¢. 

Proposition 2.5 Let G be a fibrewise topological group and let H be a fibre­
wise open subgroup of G. Then G / H is fibrewise H ausdorJJ if and only if H 
is closed in G. 

For the division map d induces a fibrewise map 

d' = d(1I" X 11")-1 : G/H XB G/H --+ G, 

by Proposition 2.4. Since the preimage of G - H under d' is the complement 

(G/H) XB (G/H) - iJ.(G/H) 

of the diagonal the assertion follows at once. 
Also recall from Proposition 1.6 that a fibrewise open space is fibrewise 

discrete if and only if the diagonal is open in the fibrewise square. So by a 
similar argument to that used to prove Proposition 2.5 we obtain 

Proposition 2.6 Let G be a fibrewise open topological group and let H be a 
fibrewise open subgroup of G. Then G / H is fibrewise discrete if and only if 
H is open in G. 

Proposition 2.7 Let E be a fibrewise right G-space, where G is fibrewise 
open. Then the natural projection 11" : E --+ E / G is open. 

For the fibrewise action r can be expressed as the composition 

E XB G--+E XB G--+E, 
Q 11"1 
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where a(~,g) = (~.g,g). Now 7rl is open, since G is fibrewise open, and a is 
a fibrewise homeomorphism. Thus r is open, in particular if U ~ E is open 
then so is 7r- l 7r(U) = U.G. Hence 7r is open, as asserted. 

Let H be a fibrewise open normal subgroup of the fibrewise topological 
group G, and let E be a fibrewise G-space. Then E j H is a fibrewise G-space, 
with the induced fibrewise action, and hence is a fibrewise (G j H)-space. By 
transitivity of fibrewise quotient topologies the canonical bijection 

(EjH)j(GjH) ~ EjG 

is a fibrewise homeomorphism. 
Another straightforward consequence of Proposition 2.7 is the associative 

law for fibrewise mixed products, as follows. 

Proposition 2.8 Let D, E, F be fibrewise spaces and let G, H be fibrewise 
open groups. Suppose that G acts fibrewise on the right of D and on the left 
of E, while H acts fibrewise on the right of E and on the left of F. Also 
suppose that the action of G on the left of E commutes with the action of H 
on the right of E. Then G acts fibrewise on the left of E x H F, and H acts 
fibrewise on the right of D Xc E, so that the identity on D x B E x B F induces 
a fibrewise homeomorphism between (D Xc E) XH F and D Xc (E XH F). 

Proposition 2.9 Let E be a fibrewise space. Let G and H be fibrewise open 
groups. Suppose that G acts fibrewise on the left of E while H acts fibrewise 
on the right of E, and that the actions commute. Then there are induced 
fibrewise actions of G on the left of E j H and of H on the right of G\E such 
that the identity on E induces a fibrewise homeomorphism between G\ (E j H) 
and (G\E)jH. 

Again the proof is straightforward and will be omitted. For the same 
reason we omit the proof of 

Proposition 2.10 Let E, F be fibrewise spaces, and let G, H be fibrewise 
open topological groups. Suppose that G acts fibrewise on the right of E and 
on the left of F. Also suppose that H acts fibrewise on the right of F and 
that the actions of G and H on F commute with each other. Then there is an 
induced action of H on the right of E Xc F such that the identity on E Xc F 
induces a fibrewise homeomorphism between (E x c F) j Hand E Xc (F j H). 

It follows, in particular, that if E is any fibrewise right G-space then 
E Xc (G j H) is fibrewise homeomorphic to (E x c G) j H and hence to E j H. 

After this point in the exposition we make the convention that fibrewise 
actions are always on the right, unless otherwise stated, and similarly with 
fibrewise orbit spaces. 
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Proposition 2.11 Let E be a fibrewise G-space, where G is fibrewise dis­
crete. Then the natural projection 1f : E ~ EIG is a local homeomorphism. 

The proof is very similar to that of Proposition 2.4. Among the fibrewise 
G-spaces where G is fibrewise discrete a special role is played by those where 
the fibrewise action is both free and proper. Such fibrewise actions will be 
called fibrewise properly discontinuous. 

Fibrewise open groups which are also fibrewise compact enjoy further 
properties which are of considerable importance. 

Proposition 2.12 Let E be a fibrewise G-space, where G is fibrewise com­
pact. Then the natural projection 1f : E ~ EIG is proper. 

To show that 1f is closed we use a similar argument to that used to prove 
Proposition 2.4. To complete the proof, let T be a fibrewise space, regarded 
as a fibrewise G-space with trivial action. Then the natural projection from 
EXBT to (ExBT)/G is closed. However, the latter is equivalent to EIGxBT, 
as a fibrewise space, and the natural projection is equivalent to 1f x 1, which 
is therefore closed. Since this is true for all T we conclude that 1f is proper, 
as asserted. 

Corollary 2.13 Let G be a fibrewise topological group and let H be a fibrewise 
open compact subgroup of G. Then the projection 1f : G ~ G I H is proper. 

Proposition 2.14 Let E be a fibrewise G-space, where E is fibrewise Haus­
dorff and G is fibrewise compact. Then the fibrewise action is proper. 

To see this we express () as the composition 

E xBG~E xBE xBG~E xBE, 

where r is the fibrewise graph of the fibrewise action and 1f12 is the canonical 
projection. Now 11"12 is proper, since G is fibrewise compact, and r is closed, 
since E is fibrewise Hausdorff, and so proper also. Therefore () is proper, as 
asserted. 

Lemma 2.15 Let E be a fibrewise G-space, where G is fibrewise compact. 
Let A be a subspace of E and let s be a section of G such that A ~ (sB).A. 
Then A = (sB).A. 

To see this observe that Ab ~ g.Ab, for each point b of B, where g = s(b). 
Since Gb is compact it follows from a standard result (see (4.25) of [85], for 
example) that Ab = g.Ab. Therefore A = (sB).A, as asserted. This implies 

Proposition 2.16 Let H be a subgroup of the fibrewise compact group G. 
Suppose that H.(sB) ~ (sB).H for some section s of G. Then H.(sB) = 
(sB).H. 
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Given subgroups K, L of the fibrewise compact group G, let us say that 
[K] ::; [L] if K is fibrewise conjugate in G to a subgroup of L. Then Propo­
sition 2.16 implies that the relation::; is a partial ordering of fibrewise con­
jugacy classes of subgroups. 

Still assuming that G is fibrewise compact, let E be a fibrewise Hausdorff 
fibrewise G-space. Given a section s of E consider the corresponding fibrewise 
map of G / K onto (sB).G, where K denotes the fibrewise stabilizer of s. Now 
G / K is fibrewise compact and (sB).G is fibrewise Hausdorff, hence the fibre­
wise map is a homeomorphism. In this case, therefore, the partial ordering of 
classes of fibrewise stabilizers described above leads to a corresponding order­
ing of classes of 'fibrewise orbits' (sB).G, where s runs through the sections 
of E, and hence to a notion of 'fibrewise orbit type'. 

Some illustrations of the way fibrewise transformation groups can be in­
vestigated will be found in Part II, Section 13. 

3 Fibrewise homotopy 

Basic notions 

Fibrewise homotopy is an equivalence relation between fibrewise maps. 
Specifically, consider fibrewise maps (J, </J : X -t Y, where X and Y are 
fibrewise spaces over B. A fibrewise homotopy of (J into </J is a homotopy 
It : X -t Y in the ordinary sense which is a fibrewise map at each stage. If 
there exists a fibrewise homotopy of (J into </J we say that (J is fibrewise homo­
topic to </J and write (J ~B </J. In this wayan equivalence relation is defined 
on the set of fibrewise maps from X to Y, and the set of equivalence classes 
is denoted by '1rB[X; Yl. Formally, '1rB constitutes a binary functor from the 
category of fibrewise spaces to the category of sets, contravariant in the first 
entry and covariant in the second. 

We say that two sections So and S1 of a fibrewise space X -t B are 
vertically homotopic if they are homotopic through sections, that is, if there 
is a homotopy St, 0 ::; t ::; 1, where each map St is a section. The fibrewise 
space X is said to be vertically connected if it has just one vertical homotopy 
class of sections. 

Recall from Section 1 that for each principal G-bundle P over B the 
associated bundle functor P # is defined, from the category of G-spaces to the 
category of fibrewise spaces over B. This not only transforms G-maps into 
fibrewise maps but also transforms G-homotopies into fibrewise homotopies. 

The operation of composition for fibrewise maps induces a function 

'1rB[Y; Zl x '1rB[X; Yl-t '1rB[X; Z], 

for any fibrewise spaces X, Y, Z over B. Moreover, there are natural equiv­
alences between '1rB[X UB Y; Zl and '1rB[X; Zl x '1rB[Y; Z], and between 
'1rB[X; Y XB Zl and '1rB[X; Yl x '1rB[X; Zl. 
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Postcomposition with a fibrewise map 1/J : Y -+ Z induces a function 

while precomposition with a fibrewise map 4> : X -+ Y induces a function 

4>* : 1l"B[Y; Z]-+ 1l"B[X; Z]. 

Similar notation is used in the case of fibrewise homotopy classes rather than 
fibrewise maps. 

Note that fibrewise maps 4> : X -+ Y, where X and Yare fibrewise spaces 
over B, correspond precisely to sections of the fibrewise product X x BY, 
regarded as a fibrewise space over X. Similarly, fibrewise homotopy classes of 
fibrewise maps correspond precisely to vertical homotopy classes of sections. 
Now if Y is a fibre space over B then X XB Y is the induced fibre space over 
X and so the classification of sections by vertical homotopy coincides with 
their classification as maps by ordinary homotopy. This is a useful little trick. 

The fibrewise map 4> : X -+ Y is called a fibrewise homotopy equivalence 
if there exists a fibrewise map 1/J : Y -+ X such that 

4> 0 1/J ~B ly. 

Thus an equivalence relation between fibrewise spaces is defined; the equiva­
lence classes are called fibrewise homotopy types. 

A fibrewise homotopy into a fibrewise constant is called a fibrewise null­
homotopy. A fibrewise space is said to be fibrewise contractible if it has the 
same fibrewise homotopy type as the base space, in other words, if the identity 
is fibrewise null-homotopic. A subset U of a fibrewise space X is said to be 
fibrewise categorical if the inclusion U -+ X is fibrewise null-homotopic. 

There is a point which should be made here about fibrewise quotient 
spaces. As we saw in Section 1, if X is a fibrewise space with fibrewise equiv­
alence relation R the fibrewise maps of XI R into Z correspond precisely to 
the invariant fibrewise maps of X to Z. Since I = [0,1] is compact we can 
regard (XI R) x I as a fibrewise quotient space of X x I, in the obvious way, 
and so the correspondence extends to fibrewise homotopies. 

For example, consider the fibrewise cone CB(X) on the fibrewise space 
X. A fibrewise null-homotopy of the identity on CB(X) is induced by the 
fibrewise homotopy 

it : X x I -+ X x I (t E 1), 

where h(x, s) = (x, st) (x E X, s E I). Therefore CB(X) is fibrewise con­
tractible. 

Let 4>: X -+ Y and 1/J : Y -+ X be fibrewise maps such 1/Jo4> ~B Ix· Then 
1/J is said to be a left inverse of 4>, up to fibrewise homotopy, and 4> to be a 
right inverse of 1/J, up to fibrewise homotopy. Note that if 4> admits both a 
left inverse 1/J and a right inverse 1/J', up to fibrewise homotopy, then 1/J ~B 1/J' 
and so 4> is a fibrewise homotopy equivalence. 
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Examples can easily be given to show that fibrewise maps may be ho­
motopic, as ordinary maps, but not fibrewise homotopic. Thus take B = 1 
and X = (1 x {O, I}) U ({O} x 1), with the first projection. Although X is 
contractible, as an ordinary space, it is not fibrewise contractible since the 
fibres over points of (0,1] are not contractible. 

It can be shown, however, that for a large class of fibrewise spaces X there 
exists an integer m such that for each fibrewise map ¢> : X -t X which is 
null-homotopic on each fibre the m-fold composition ¢>o ••. o¢> is fibrewise null­
homotopic. Details are given in [S2] and [lOS]. Another result which might 
be mentioned here concerns the group G(X) of fibrewise homotopy classes of 
fibrewise homotopy equivalences of X with itself. Under the same conditions 
it is shown, in [S3] and [lOS], that Gl(X) is nilpotent of class less than m, 
where G1 (X) denotes the normal subgroup of G(X) consisting of classes of 
fibrewise homotopy equivalences which are homotopic to the identity on each 
fibre. 

Later we shall be discussing a variety of different problems which have 
attracted research interest. At this stage, however, we mention just two more. 
Take X to be an orthogonal (n - I)-sphere bundle over a finite connected 
complex B, for some n ~ 1. Since the centre of the orthogonal group O(n) 
contains the scalar -1 we have a fibrewise map c : X -t X given by the 
antipodal transformation in each fibre. The antipodal transformation has 
degree ( -1)n and so is homotopic to the identity when n is even. Under what 
conditions is it true that the fibrewise map c is fibrewise homotopic to the 
identity? Questions of this type are investigated in [S2] and [S4]. Another 
problem in the same area is considered by Noakes [lIS], as follows. Each 
fibrewise self-map ¢> of X has a certain degree d(¢» on the fibres. When n is 
even, Noakes shows that the degrees which can be so realized are precisely 
the integers which are congruent to one modulo some number which depends 
onX. 

Some examples 

Example 3.1. Take B = [0, 1] ~ JR and 

E = [0,1] x {O, I} U {O} x [0, 1] ~ JR x JR, 

regarded as a fibrewise space using the first projection. The section s : B -t E 
given by s(t) = (t,O) is a homotopy equivalence but not a fibrewise homotopy 
equivalence. 

Example 3.2. Suppose that the subspace X of B x JRn is fibrewise star-like in 
the sense that for some section s : B -t X the line segment 

(b, (1 - t)s(b) + tx) (0 ~ t ~ 1) 
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is entirely contained within the fibre Xb for each point x E X b, bE B. Then 
X is fibrewise contractible. 

4 Fibrewise cofibrations 

Basic notions 

Let A be a fibrewise space over the base space B. By a fibrewise cofibre 
space under A we mean a fibrewise space X together with a fibrewise map 
u : A -+ X having the following fibrewise homotopy extension property. Let 
E be a fibrewise space, let 1 : X -+ E be a fibrewise map, and let gt : A -+ E 
be a fibrewise homotopy of lou. Then there exists a fibrewise homotopy 
ht : X -+ E of 1 such that gt = ht 0 u. For example, the push-out T VB A is 
a fibrewise cofibre space under A for each fibrewise space T. 

Instead of describing X as a fibrewise cofibre space under A we may 
describe u as a fibrewise cofibration. An important special case is when A is 
a subspace of X and u is the inclusion. In that case we describe (X, A) as a 
fibrewise cofibred pair when the condition is satisfied. Note that (X, 0) and 
(X, X) are fibrewise cofibred pairs. 

By taking E in the condition to be the product B x T, for any space T, 
we see that a fibrewise cofibration u : A -+ X is a cofibration in the ordinary 
sense, in particular u is necessarily injective. 

It is easy to check that the fibrewise coproduct of fibrewise cofibred spaces 
under A is also a fibrewise cofibred space under A. 

Proposition 4.1 Let (X, A) be a closed fibrewise pair. Then (X, A) is fibre­
wise cofibred il and only il (X x {O}) U (A x I) is a fibrewise retract 01 X x I. 

For suppose that u is a fibrewise cofibration. In the fibrewise homotopy 
extension condition take E to be (X x {O}) U (A x I), take I: X -+ E to be 
the obvious fibrewise map and take 9 : A x I -+ E to be the obvious fibrewise 
homotopy. Then the extension h : X x I -+ E is a fibrewise retraction. 

To prove the converse, suppose that there exists a fibrewise retraction 
r : X x I -+ (X x {O}) U (A x I). Given a fibrewise space E, fibrewise map 
1 : X -+ E and fibrewise homotopy 9 : A x I -+ E, as in the fibrewise 
homotopy extension property, we combine 1 and 9 to obtain a fibrewise map 
of (X x {O}) U (A x I) into E. Then precomposition with r gives the desired 
extension. 

In fact a similar result to Proposition 4.1 holds even when A is not closed 
in X, with the mapping cylinder of the inclusion replacing the subspace of 
X x I. 

For example, consider the associated bundle functor P #' as in Section 
1, from the category of G-spaces to the category of fibrewise spaces. From 
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Proposition 4.1 we see that P# transforms closed cofibred pairs in the equi­
variant sense into closed cofibred pairs in the fibrewise sense. In particular, 
taking G to be the orthogonal group O(n), we see that the pair consisting of 
an n-ball bundle over B and the associated (n - I)-sphere bundle is fibrewise 
cofibred. 

Corollary 4.2 Let (X, A) be a closed fibrewise cofibred pair over B. Then 
the pair 

(X, A) XB T = (X XB T, A XB T) 

is also fibrewise cofibred, for all fibrewise spaces T. 

Fibrewise Str¢m structures 

We now come to an important characterization of closed fibrewise cofibred 
pairs. It is a fibrewise version of the corresponding characterization in the 
ordinary theory. There are several variants of the condition, of which we 
prefer the one due to Stn~m, as follows. 

Let (X, A) be a closed fibrewise pair. A fibrewise Str¢m structure on (X, A) 
is a pair (a, h) consisting of a map a : X -t I which is zero throughout A 
together with a fibrewise homotopy h : X X I -t X reI A of Ix such that 
h(x, t) E A whenever t > a(x). 

Proposition 4.3 Let (X, A) be a closed fibrewise pair. Then (X, A) is fibre­
wise cofibred if and only if (X, A) admits a fibrewise Str¢m structure. 

For suppose that (X, A) is fibrewise cofibred, so that there exists a fibre­
wise retraction 

r : X x I -t (X X {O}) U (A x I), 

as in Proposition 4.1. Since I is compact a map a : X -t I is given by 

a(x) = sup J7r2r(X, t) - tJ 
tEl 

(x EX). 

Then (a,7rlr) constitutes a fibrewise Strlllm structure on (X, A). 
Conversely, let (a, h) be a fibrewise Strlllm structure on (X, A). Then a 

fibrewise retraction 

is given by 

r : X x I -t (X X {O}) U (A x I) 

_ { (h(x, t), 0) 
r(x,t) - (h(x,t),t-a(x) 

t ::; a(x), 
t ~ a(x). 

Hence (X, A) is fibrewise cofibred, by Proposition 4.1. 
One of the main applications of the above characterization is to prove the 

fibrewise product theorem, as follows. 
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Theorem 4.4 Let (X, X') and (Y, Y') be closed fibrewise cofibred pairs over 
B. Then the closed fibrewise pair 

(X,X') XB (Y,Y') = (X XB Y,X' XB YUX XB Y') 

is also fibrewise cofibred. 

To see this choose fibrewise Str0m structures (a, h) on (X, X') and ({3, k) 
on (Y, Y'). Define'Y: X XB Y -t I by 'Y(x,y) = min(a(x) , (3(y)), and define 
f: (X XB Y) x I -t X XB Y by 

f(x,y,t) = (h(x,min(t, {3(y))),k(y, min(t, a(x)))). 

Then ('Y, f) constitutes a fibrewise Str0m structure for the closed fibrewise 
pair (X, XI) XB (Y, yl), as required. 

For example, consider the endofunctor ~B of our category determined by 
a closed cofibred pair (D, E). We see from Theorem 4.4 that if the closed 
fibrewise pair (X, A) is fibrewise cofibred then so is the closed fibrewise pair 
(~B(X), ~B(A)). In particular, this is true for the fibrewise cone CB and the 
fibrewise suspension EB. 

There is a weaker form of the concept of fibrewise cofibration which is 
also important, as follows. Let A be a fibrewise space over the base space 
B. By a weak fibrewise cofibre space under A we mean a fibrewise space X 
together with a fibrewise map u : A -t X such that X has the same fibrewise 
homotopy type under A as a fibrewise cofibration u' : A -t X'. This implies, 
and is implied by, a weak form of the fibrewise homotopy extension property: 
for each fibrewise space E, fibrewise map f : X -t E, and fibrewise homotopy 
9t : A -t E of f 0 u, there exists a fibrewise homotopy ht : X -t E such that 
9t = htou and such that ho is fibrewise homotopic to f over B. The properties 
of weak fibrewise cofibrations are similar to those of fibrewise cofibrations. 

5 Fibrewise fibrations 

Basic notions 

At this stage we change our point of view somewhat. Although we continue to 
work over the base space B we not only consider fibrewise spaces over B but 
also fibrewise spaces over those fibrewise spaces. Thus let X be a fibrewise 
space over B. By a fibrewise fibre space over X we mean a fibrewise space 
E together with a fibrewise map p : E -t X with the following fibrewise 
homotopy lifting property. Let A be a fibrewise space, let f : A -t E be 
a fibrewise map, and let 9t : A -t X be a fibrewise homotopy such that 
90 = po f· Then there exists a fibrewise homotopy h t : A -t E of f such that 
9t = po ht · We emphasize that fibrewise here means over B, not over X. For 
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example, the fibrewise product T x B X is a fibrewise fibre space over X for 
each fibrewise space T. 

Instead of describing E as a fibrewise fibre space over X we may describe 
the projection p : E -t X as a fibrewise fibration. We also describe the pull­
back r* E as a fibrewise fibre, for each section r of X over B. 

Note that if p is a fibration, in the ordinary sense of the term, then p 
is a fibrewise fibration. This is in contrast to the situation in the case of 
cofibrations. However, fibrewise maps exist which are fibrewise fibrations but 
not fibrations in the ordinary sense. For example take X = B; then every 
fibrewise space over B is a fibrewise fibre space. 

Consider the fibrewise free path-space 

which comes equipped with a family of projections 

(0 ::; t ::; 1), 

given by evaluation at t. It is a formal exercise in the use of adjoints to 
show that Pt is a fibrewise fibration for t = 0, 1. Let us regard PB(X) as a 
fibrewise space over X using Po as projection. Then for any fibrewise space 
E and fibrewise map p : E -t X the fibrewise mapping path-space WB(P) 
is defined as the pull-back p*PB(X). Since PB(X) is a fibrewise fibre space 
over X it follows quite formally that WB(P) is a fibrewise fibre space over E. 
By the cartesian property we have a fibrewise map 

with components PB(P) and Po. The following characterization of fibrewise 
fibrations is fundamental. 

Proposition 5.1 The fibrewise map p : E -t X is a fibrewise fibration if and 
only if the fibrewise map k : PB(E) -t WB(P) admits a right inverse. 

For suppose that p is a fibrewise fibration. Take W = WB(P) as the 
domain, in the fibrewise homotopy lifting condition, take Po to be f and take 
gt = Pt 0 PB(P)· The condition implies the existence of a fibrewise homotopy 
ht : W -t E of Po such that gt = po ht . The right adjoint W -t P B (E) of the 
fibrewise homotopy is a right inverse of k as required. 

Conversely, suppose that k admits a right inverse. By taking the left 
adjoint we obtain a fibrewise homotopy ht : W -t E, as above. Let A be a 
fibrewise space, let f : A -t E be a fibrewise map, and let gt : A -t X be a 
fibrewise homotopy such that go = po f. Then gt determines a fibrewise map 
g : A -t PB(X) which combines with f to give a fibrewise map l : A -t W. 
Now ht 0 l: A -t E is a fibrewise homotopy of f over gt, as required. 

We have already seen, in Section 4, that the associated bundle functor 
P# transforms cofibrations in the equivariant sense into cofibrations in the 
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fibrewise sense. Now we can see, using Proposition 5.1, that the functor also 
transforms fibrations in the equivariant sense into fibrations in the fibrewise 
sense. The proof is a straightforward exercise in the use of adjoints. 

Proposition 5.2 Let p : E --+ X be a fibrewise map, where E is a fibrewise 
space; Then the evaluation map 

is a fibrewise fibration. 

To see this let us express fibrewise maps into W = WB(P) in the usual 
way by giving their components in PB(X) and E; the former we regard 
as fibrewise homotopies. Let A be a fibrewise space, let f : A --+ W be a 
fibrewise map, and let gt : A --+ E be a fibrewise homotopy of PI 0 f. Consider 
the fibrewise map 

H:AxlxI--+X 

given by 

( ) {
f'(a,28(2-t)-I) 

H a,s,t = 
g(a, 2s - 2 + t) 

(8 ~ 1- !t) 
(8 ~ 1- !t) 

where f' is the fibrewise homotopy given by the first component of f. Take 
H as the first component of a fibrewise deformation of f in which the first 
component remains stationary. Then we obtain a fibrewise homotopy of f 
over gt, as required. 

The fibrewise homotopy lifting property has a number of useful conse­
quences. For example, let E and F be fibrewise spaces over X with projec­
tions p and q, respectively. Let ¢ : E --+ F be a fibrewise map such that q 0 ¢ 
is fibrewise homotopic to p. If q is a fibrewise fibration then it follows from 
the fibrewise homotopy lifting property that ¢ is fibrewise homotopic to a 
fibrewise map 1jJ such that q 0 1jJ = p. 

The fibrewise Dold theorem 

One of the most important results of the classical theory is due to Dold. This 
provides a bridge between ordinary homotopy theory and fibrewise homotopy 
theory. The fibrewise version of Dold's theorem provides a bridge between 
fibrewise homotopy theory over B and fibrewise homotopy theory over X, 
where X is a fibrewise space over B. In the literature, Dold's original proof can 
be found in [45] while Hardie and Kamps have given a more conceptual proof 
in [73]. It is a routine exercise to write out a fibrewise version of the original 
proof, as in [45], and the more conceptual proof may also be generalized 
without difficulty. In this survey let us be content with the statement of the 
fibrewise version of Dold's theorem preceded by that of the auxiliary result 
which leads up to it. 
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Proposition 5.3 Let p : E ~ X be a fibrewise fibration, where E and X 
are fibrewise spaces over B. Let f) : E ~ E be a fibrewise map over X, 
and suppose that f), as a fibrewise map over B, is fibrewise homotopic to the 
identity. Then there exists a fibrewise map f)' : E ~ E over X such that f) 0 f)' 

is fibrewise homotopic to the identity over X. 

Theorem 5.4 Let X be a fibrewise space over B, and let E and F be fibrewise 
fibre spaces over X. Let 4> : E ~ F be a fibrewise map over X. Suppose that 
4>, as a fibrewise map over B, is a fibrewise homotopy equivalence. Then 4> is 
a fibrewise homotopy equivalence over X. 

Corollary 5.5 Let p : E ~ X be a fibrewise fibration, where E and X are 
fibrewise spaces over B. If p is a fibrewise homotopy equivalence over B then 
the fibrewise mapping path-space W B (P) is fibrewise contractible over X. 

Here we regard W = WB(P) as a fibrewise space over X with projection 
the fibrewise fibration Pl, as in Proposition 5.2. Now p = Pl 0 (1, where 
(1 : E ~ W is the standard embedding. Since p and (1 are fibrewise homotopy 
equivalences over B, so is Pl. Also p and Pl are fibrewise fibrations and so Pl 
is a fibrewise homotopy equivalence over X, by Theorem 5.4. In other words, 
W B (p) is fibrewise contractible over X, as asserted. 

Corollary 5.6 Let p : E ~ X be a fibrewise fibration, where E and X are 
fibrewise spaces over B. Then the fibrewise path-space PB(X) is fibrewise 
contractible over the fibrewise mapping path-space W B (P). 

Here we regard PB(X) as a fibrewise space over WB(P) using the projec­
tion k as in Proposition 5.1. Now k admits a right inverse, since p is a fibrewise 
fibration. Hence k is itself a fibrewise fibration (to verify the fibrewise homo­
topy lifting property one observes that the pairs (I x I, (I x {O}) U ( {O} x I)) 
and (I x I, I x {O}) are homeomorphic). Moreover, k is a fibrewise homotopy 
equivalence over B and so, by Theorem 5.4, a fibrewise homotopy equivalence 
over W B (P). This completes the proof. 

Sections of a fibrewise fibration can be classified by fibrewise homotopy 
or, more strictly, by vertical homotopy. In fact there is no difference, as shown 
in 

Proposition 5.7 Let p : E ~ X be a fibrewise fibration, where E and X 
are fibrewise spaces over B. Let sand 8' be fibrewise homotopic sections of 
E over X. Then sand 8' are vertically homotopic. 

We have to show that 8 and s' are homotopic over X, rather than just over 
B. So let ht : X ~ E be a fibrewise homotopy of 8 into 8'. Let kt : X ~ E 
be given by 
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(O::;t::;~), 

(~ ::; t ::; 1). 

Since po kt = po k1- t the fibrewise map po k : X x I -+ X is fibrewise 
homotopic, ·rel X x j, to the projection 11"2. Therefore k is fibrewise homotopic, 
reI X x j, to a fibrewise map f which constitutes a vertical homotopy of 8 

into 8 ' . 

The fibrewise homotopy theorem for fibrewise fibrations 

We now come to the fibrewise homotopy theorem for fibrewise fibrations, 
a result which has no obvious counterpart for fibrewise cofibrations. Again 
one has a choice between a fibrewise version of the standard proof of the 
corresponding result in the ordinary theory, as given for example in [44], or 
a more conceptual proof as given by Hardie and Kamps [73]. Again let us 
be content with the statement of the theorem itself preceded by that of the 
auxiliary result from which it follows. 

Let X be a fibrewise space over B, and let the cylinder X x I be regarded 
as a fibrewise space over B by precomposing with the second projection. 
Consider a fibrewise space D over X x I. We regard 

Dt=DI(Xx{t}) (0 ::; t ::; 1) 

as a fibrewise space over X in the obvious way. The main step in the proof of 
the fibrewise homotopy theorem is the demonstration that if D is a fibrewise 
fibre space over X x I then Do is a fibrewise deformation retract of Dover 
X. Similarly, Dl is a fibrewise deformation retract of D. Hence it follows that 
Do and Dl have the same fibrewise homotopy type over X. 

Theorem 5.8 Let X be a fibrewise space over B, and let E be a fibrewise 
fibre space over X. Let 0, ¢ : X' -+ X be fibrewi8e homotopic fibrewise maps, 
where X' is a fibrewise space over B. Then 0* E and ¢* E have the same 
fibrewise homotopy type over X' . 

To obtain Theorem 5.8 we apply the auxiliary result with D = 1* E, where 
f : X' x I -+ X is a fibrewise homotopy of 0 into ¢. 

Corollary 5.9 Let X be a fibrewise space over B and let E be a fibrewise 
fibre space over X. If X is fibrewise contractible over B then E has the same 
fibrewise homotopy type over B as the fibrewise product X x B T, for some 
fibrewise space T over B. 

There is a weaker form of the concept of fibrewise fibration which is also 
important, as follows. Let X be a fibrewise space over B. By a weak fibrewise 
fibre space over X we mean a fibrewise space E together with a fibrewise 
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map p : E --+ X such that E has the same fibrewise homotopy type over X 
as a fibrewise fibration pi : E' --+ X. This implies, and is implied by, a weak 
form of the fibrewise homotopy lifting property: for each fibrewise space A, 
fibrewise map f : A --+ E and fibrewise homotopy 9t : A --+ X such that 
go = po f, there exists a fibrewise homotopy ht : A --+ E such that 9t = po ht 

and such that ho is fibrewise homotopic to f over B. The properties of weak 
fibrewise fibrations are similar to those of fibrewise fibrations. 

An example 

The verification of the following result is left as an exercise. 

Example 5.10. Let 4> : (Xl, AI) --+ (X2,A2) be a fibrewise map of pairs, 
where (Xi, Ai) is a fibrewise cofibred pair over B (i = 1, 2). Suppose that 
the fibrewise maps Xl --+ X 2 and Al --+ A2 determined by 4> are fibrewise 
homotopy equivalences. Then 4> is a fibrewise homotopy equivalence of pairs. 

6 Numerable coverings 

Let us now turn our attention to a series of important theorems due to Dold 
[45] and tom Dieck [42]. First recall that a halo of a subset X' of a space X 
is a subset V of X, containing X', for which there exists a map Q : X --+ I 
with Q = 1 throughout X' and Q = 0 away from V. Thus X itself is a halo 
for every X', since we can take the function to be constant at l. 

Following Dold we say that the fibrewise space X over B has the section 
extension property (SEP) if for each subset B' of B every section of X over 
B', which can be extended to a halo of B', can be extended to a section of X 
over B. This condition implies, in particular, that X admits a section, since 
we can take B' and V to be empty. 

Unlike fibrewise contractibility, the section extension property is not nat­
ural, in our sense. However, if X has the property then so does any fibrewise 
space which is fibrewise dominated by X. In particular, X has the property 
if X is fibrewise contractible. 

If the fibrewise space X over B has the section extension property then 
so does the restriction XB' of X to any numerically defined open set B' of 
B. By numerically defined, here, we mean that B' is the cozero set /3-1(0, 1J 
for some map /3 : X --+ I. 

The theorems of Dold 

The main theorem of Dold mentioned earlier is similar in spirit to results in 
the theory of sheaves. We give the statement as follows, but refer to [45] for 
the proof. 
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Theorem 6.1 Let X be a fibrewise space over B. Suppose that there exists a 
numerable covering of B such that X V has the SEP over V for each member 
V of the covering. Then X has the SEP over B. 

Dold uses Theorem 6.1 to prove the following, which is one of the basic 
results of fibrewise homotopy theory. 

Theorem 6.2 Let </> : X -+ Y be a fibrewise map, where X and Yare fibre­
wise spaces over B. Suppose that B admits a numerable covering such that 
the restriction </>v : X V -+ Yv is a fibrewise homotopy equivalence over V for 
each member V of the covering. Then </> is a fibrewise homotopy equivalence 
over B. 

For consider the fibrewise mapping path-space W = WB(</» of </>. Observe 
that if </> is restricted to </>v : X v -+ Yv, for any subset V of B, then the fibre­
wise mapping path-space of </>v is just the restriction to V of the fibrewise 
mapping path-space W of </> itself. By hypothesis </>v is a fibrewise homotopy 
equivalence over V for each member V of the covering. Therefore Wv{</>v), 
the restriction of W to V, is fibrewise contractible over Yv, by Corollary 5.5. 
Hence Wv has the SEP over Yv . As V runs through the members of the 
numerable covering of B so Yv runs through the members of a numerable 
covering of Y. By Theorem 6.1, therefore, W has the SEP over Y. In partic­
ular W admits a section over Y and hence </> admits a right inverse </>', up to 
fibrewise homotopy. 

Repeating the argument with </>' in place of </> we obtain a right inverse </>" 

of </>', up to fibre wise homotopy. So </>' admits both the left inverse </> and the 
right inverse </>", up to fibrewise homotopy. Hence </>' is a fibrewise homotopy 
equivalence and so </> is a fibrewise homotopy equivalence, as asserted. 

Returning to the situation where X is a fibrewise space over B, we deduce 

Corollary 6.3 Let p : E -+ X and q : F -+ X be fibrewise fibrations, where 
E, F and X are fibrewise spaces over B. Let </> : E -+ F be a fibrewise map 
such that q 0 </> = p. Suppose that the pull-back 

s* </> : s* E -+ s* F 

is a fibrewise homotopy equivalence over B for each section s of X over B. 
Also suppose that X admits a numerable fibrewise categorical covering. Then 
</> is a fibrewise homotopy equivalence over X. 

For since each member V of the numerable covering is fibrewise categorical 
it follows from Proposition 5.7 that Ev and Fv are fibrewise trivial over 
V. Hence </>v is a fibrewise homotopy equivalence over V, taking s in the 
hypothesis to be given by the fibrewise constant map to which the inclusion 
is fibrewise homotopic. Now Corollary 6.3 follows at once from Theorem 6.2. 
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Note that the assumption in Corollary 6.3 is satisfied for all s if it is satisfied 
for one s in each vertical homotopy class. 

Another important application of Theorem 6.2 is 

Theorem 6.4 Let p : E -+ X be a fibrewise map, where E and X are 
fibrewise spaces over B. Suppose that the restriction p-l V -+ V of p is a 
fibrewise fibration for each member V of a numerable covering of X. Then p 
is a fibrewise fibration. 

This implies, of course, that numerable fibrewise fibre bundles are fibre­
wise fibrations. The proof of Theorem 6.4 is a straightforward fibrewise ver­
sion of the proof of the classical result to which it reduces when B is a point 
(cf. (9.4) of [44], for example, or the globalization theorem of [55]). 

A similar result holds for weak fibrewise fibrations. 

The theorems of tom Dieck 

Some other important results of a similar type are due to tom Dieck [42]. For 
these it seems necessary that the numerable coverings concerned are closed 
under finite intersections. In contrast to the results of Dold we have been 
discussing these are already fully fibrewise homotopy theoretic in character, 
and so we simply quote them from [42], where proofs are given. 

Theorem 6.5 Let ¢ : E -+ F be a fibrewise map, where E and Fare fibrewise 
spaces over B. Let {Uj } and {V;} be similarly indexed numerable coverings 
of E and F, respectively, which are closed under finite intersections. Assume 
that ¢Uj ~ V; for each index j, and that each of the fibrewise maps Uj -+ V; 
determined by ¢ is a fibrewise homotopy equivalence. Then ¢ is a fibrewise 
homotopy equivalence. 

Theorem 6.6 Let p : E -+ X be a fibrewise map, where E and X are fibre­
wise spaces over X. Let {Bj} be a numerable covering of B and let {Ej } be 
a similarly indexed family of subsets of E, both families being closed under fi­
nite intersections. Assume that pEj ~ B j and that E j is fibrewise contractible 
over B j , for each index j. Then E admits a section over X. 

Note that {Ej } is not required to be a covering of E. We can deduce 
another result about fibrewise fibrations, which it is interesting to compare 
with Theorem 6.4. 

Theorem 6.7 Let p : E -+ X be a fibrewise map, where E and X are 
fibrewise spaces over B. Let {Ej } be a numerable covering of E which is 
closed under finite intersections. Assume that the restriction Pj : E j -+ X is 
a fibrewise fibration for each index j. Then p is a fibrewise fibration. 
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For let W = W B (p) denote the fibrewise mapping path-space of p. We 
regard the fibrewise free path-space PB(E) of E as a fibrewise space over 
W, as in Theorem 6.6. Recall that the second projection r : W -+ E is a 
fibrewise homotopy equivalence and that por : W -+ X is a fibrewise fibration, 
as shown in Proposition 5.2. Now the fibrewise mapping path-spaces Wi of 
the projections Pi form a numerable covering of W, which is closed under 
finite intersections. Moreover, r Wi ~ E j for each index j. If Pj is a fibrewise 
fibration then P B (Ej ) is fibrewise contractible over Wj for each index j, by 
Corollary 5.5. Therefore PB(E) admits a section over W, by Theorem 6.6, 
and so p itself is a fibrewise fibration, by Proposition 5.1. The proof we have 
given is just a fibrewise version of the proof that tom Dieck gives in [42] of 
the special case when B is a point. A similar result holds for weak fibrewise 
fibrations. 

7 Fibrewise fibre bundles 

Principal fibrewise G-spaces 

Although we continue to work over the base space B we not only consider 
fibrewise spaces over B but also fibrewise spaces over those fibrewise spaces, 
as in Section 6. 

For example, let E be a fibrewise G-space, where G is a fibrewise topolog­
ical group. We may regard E as a fibrewise space over EIG, using the natural 
projection. Some of the results proved earlier can then be reformulated in a 
simpler fashion. For example, Proposition 2.4 shows that E is fibrewise open 
over E I G if G is fibrewise open over B. 

In the same spirit, consider a fibrewise map p : E -+ X, where E and 
X are fibrewise spaces over B. We may regard E as a fibrewise space over 
X, as well as over B. Among the fibrewise actions of G on E we single out 
for attention those where the action of Gb on Eb, for each point b of B, is 
through fibrewise homeomorphisms of Eb over Xb. This means that p induces 
a fibrewise map p : E I G -+ X. We describe E as a principal fibrewise G -space 
over X if p is a fibrewise homeomorphism. In that case we use p to identify 
EIG with X, as a fibrewise space. 

For p to be a fibrewise homeomorphism it is necessary, in the first place, 
that the projection p is surjective. Also when G is fibrewise open it is neces­
sary for p to be open, and when G is also fibrewise compact it is necessary for 
p to be proper. Sufficient conditions for p to be a fibrewise homeomorphism 
are that the fibrewise action is free and that p is both surjective and either 
open or closed. 

Let us describe a principal fibrewise G-space E over X as trivial if E 
is equivalent to X XB G, as a fibrewise G-space over X. Local triviality in 
the same sense is defined similarly. Specifically, a triviality covering of X 
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is an open covering such that Ev is trivial over V for each member V of 
the covering. For some purposes, a numerable triviality covering is necessary. 
When X is Hausdorff and paracompact this is true automatically. 

Proposition 7.1 Let G be a fibrewise topological group and let X be a fibre­
wise space over B. Let E be a principal fibrewise G -space over X. Suppose 
that the division function d : R -t G is continuous. If E is sectionable (re­
spectively locally sectionable) over X then E is trivial (respectively locally 
trivial) as a principal fibrewise G-space over X. 

For let s : X -t E be a section. A fibrewise G-map </> : X x B G -t E over 
X is given by </>(x,g) = s(x).g. A fibrewise G-map t/J : E -t R is given by 
t/J(f.) = (~, sp(~)). Post composing with d yields an inverse of </>, as required. 
Similarly in the local case. 

Fibrewise G-bundles 

Let G be a fibrewise topological group and let X be a fibrewise space over 
B. By a principal fibrewise G-bundle over X we mean a principal fibrewise 
G-space over X which is locally trivial and for which the division function is 
continuous. We refer to G, in this situation, as the fibrewise structuml group. 
Note that G itself is a (trivial) principal fibrewise G-bundle over B. 

For example, let F be a fibrewise topological group over B and let G be 
a subgroup of F. Suppose that F is locally sectionable over FIG. Then F, 
by Proposition 7.1, is a principal fibrewise G-bundle over FIG. 

Returning to the general case, observe that if E is a trivial principal fibre­
wise G-bundle over X then the fibrewise mixed product E xGT is equivalent 
to X x B T, for each fibrewise left G-space T over B. Without the triviality 
condition this is still true locally and we describe E x G T as the associated 
fibrewise G-bundle with fibrewise fibre T. When T = G, with G acting on 
itself by fibrewise multiplication, the associated fibrewise G-bundle can be 
identified with E. When T = G with G acting on itself by fibrewise conju­
gation the associated fibrewise G-bundle is not in general principal. In fact, 
fibrewise conjugation leaves the neutral section of G fixed and so E x G T has 
a section over X in this case. 

As before, let E be a principal fibrewise G-bundle over X. For each fibre­
wise open subgroup H of G we may, as in Proposition 2.10, identify the 
fibrewise orbit space E I H with the associated fibrewise G-bundle with fibre 
G I H. In particular, suppose that G is itself a subgroup of a fibrewise topo­
logical group F. Assuming the existence of local sections, we regard F as a 
principal fibrewise G-bundle over FIG. Then FIH may be identified with 
the associated fibrewise G-bundle with fibrewise fibre G I H. 

Note that if E is a principal fibrewise G-bundle over X then the pull-back 
>. * E is a principal fibrewise G-bundle over X' for each fibrewise space X' and 
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fibrewise map A : X' -+ X. Moreover, if E Xa T is the associated fibrewise 
G-bundle over X with fibrewise fibre the fibrewise G-space T then 

A·(E Xa T) = A· E Xa T 

is the associated fibrewise G-bundle over X' with fibrewise fibre T. 
Now suppose that we have a fibrewise homomorphism a : G' -+ G of 

fibrewise topological groups. Let E' be a principal fibrewise G'-bundle over 
the fibrewise space X. Regarding G as a fibrewise G'-space via a, we obtain 
the principal fibrewise G-bundle a.E' = E' Xa' G over X, together with a 
fibrewise G'-map c/J : E' -+ a.E' over X, induced by 

E' ---+ E' XB E' ---+ E' XB G'. 
Ll 1 xc' 

We describe a.E' as the principal fibrewise G-bundle over X obtained from 
E' via a. 

Conversely, suppose that E is a principal fibrewise G-bundle over X and 
let c/J : E' -+ E be a fibrewise G'-map over X, where G' acts on E via a. 
Then a fibrewise G-equivalence a.E' -+ E over X is induced by 

E' XB G ---+ E XB G ---+ E. 
¢xl r 

If G' is a subgroup of G and a the inclusion we describe E as the principal 
fibrewise G-bundle over X obtained from E' by extending the fibrewise struc­
tural group from G' to G. Although the fibrewise structural group can always 
be extended in this way, as we have seen, the opposite process of reduction 
of the fibrewise structural group to a given subgroup is not always possible 
(for example, reduction to the trivial subgroup is equivalent to trivialization). 
Moreover, different reductions to a given subgroup G' for the same princi­
pal fibrewise G-bundle are not necessarily equivalent, as principal fibrewise 
G'-bundles. 

Proposition 7.2 Let G be a fibrewise topological group and let X be a fibre­
wise space over B. Let G' be a subgroup of G such that G is locally sectionable 
over GIG'. Let E be a principal fibrewise G -bundle over X. Then the fibre­
wise structural group G of E can be reduced to G' if and only if the associated 
fibrewise G -bundle E I G' with fibrewise fibre GIG' admits a section. 

In one direction this is almost obvious. Thus if E' is a principal fibrewise 
G'-bundle over X and ¢> : E' -+ E is a fibrewise G'-map over X then 

¢>IG' : E'IG' -+ EIG' 

constitutes a section of the associated fibrewise G-bundle. Conversely, let 
s : EIG -+ EIG' be a section. Regarding E as a principal fibrewise G'­
bundle over EIG', consider the induced fibrewise G'-bundle s· E over EIG. 
This comes equipped with a fibrewise G'-map s· E -+ E over s, and hence 
over E I G = X as required. 
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The Milnor construction 

Let G be a fibrewise open group, over a base space B. Following Milnor [113j, 
in the ordinary theory, a countably numerable fibrewise G-bundle can be 
constructed as follows. We regard the cylinder A = B x [ as a fibrewise space 
under the first projection, and denote the second projection by a : A -+ [. 

For each point b of B consider sequences 

(al,gl,a2,g2," .), where al,a2,··· E Ab and gI,g2,.·· E Gb. 

Restrict attention to those sequences such that a(an ) = ° for all but a finite 
number of indices n and such that E a(an ) = 1. Impose on this fibrewise set 
the fibrewise equivalence relation in which two such sequences 

(al, gl , ... ) and (a~ , g~ , ... ) 

are equivalent if an = a~ for all n and either gn = g~ or a(an) = ° for 
each n. The equivalence class of the sequence (al, gl, ... ) will be written as 
[al,gl," .j. The fibrewise set of equivalence classes will be denoted by Ec. 

Fibrewise functions an: Ec -+ A and gn : (aoan)-I(O, 1]-+ G are defined 
in the obvious way for n = 1,2, ... Let us give Ec the coarsest topology for 
which all these functions are continuous. Then Ec becomes a fibrewise space, 
such that for each fibrewise space K a fibrewise function f : K -+ Ec is 
continuous if and only if each function an 0 f and gn 0 (f I (a 0 an 0 f)-I (0,1)) 
is continuous. 

Now consider the fibrewise action rc : Ec XB G -+ Ec of G on Ec given 
by rc([al,gl,a2,g2, ... ],h) = [al,glh,a2,g2h, ... ]. We denote the fibrewise 
orbit space Ec/G by Xc and the natural projection by pc. The fibrewise 
map an is invariant and so induces a fibrewise map an 0 (PC)-1 : Xc -+ A. 
The open sets {an 0 Pc/ 0 a-I (0, I)} form a countably numerable covering of 
Xc, and Ec is fibrewise G-trivial over each member of the covering. Thus 
Ec obtains the structure of a count ably numerable fibrewise G-bundle over 
Xc. Note that Xc admits sections, for example the section induced by the 
fibrewise G-map G -+ Ec which sends g into [1, g, 0, ... j. 

The classification theorem 

Our aim is to show that the fibrewise G-bundle thus constructed enjoys the 
universal property for numerable fibrewise G-bundles, classified as above. 
Specifically, given a fibrewise space X we associate with each fibrewise map 
A : X -+ Xc the induced numerable fibrewise G-bundle A * Ec over X. It 
follows by a straightforward fibrewise version of the argument used in the 
ordinary theory, for example that given by Milnor in [114], that fibrewise 
homotopic maps induce equivalent fibrewise G-bundles. What remains to 
be established is first that every numerable fibrewise G-bundle over X is 
equivalent to A * Ec for some fibrewise map A, and second that if A * Ec is 
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equivalent to J-L* Ea for some fibrewise maps >., J-L : X ~ Xa then>. is fibrewise 
homotopic to J-L. 

So let E be a numerable fibrewise G-bundle over X with projection p. 
We can choose a countable family of open subsets Vn (n = 1,2, ... ) of X and 
fibrewise maps /3n : X ~ A such that E is fibrewise G-trivial over Vn and 
(a 0 /3n)-l(O, 1) ~ Vn for each n. Given a local fibrewise G-trivialization 

¢n : EVn ~ Vn X B G 

we define a fibrewise function gn : E ~ G by gn = 7r2¢n on EVn and by gn = C 

on E - Evn • Here c, as usual, denotes the fibrewise constant. Although the 
fibrewise functions gn may not themselves be continuous they nevertheless 
define a fibrewise map f : E ~ Ea, where 

f = [/31 OP,gl,/32 op,g2' ... ). 

(Here and elsewhere in what follows variables are omitted to ease the not­
ation.) Since f is equivariant, with respect to the fibrewise actions of G on 
E and Ea, we obtain an induced fibrewise map>. : X ~ Xa, such that E is 
equivalent to >. * Ea. This proves the first assertion. 

To prove the second let (J, (J' : E ~ Ea be fibrewise G-maps, expressed in 
the form 

We start by showing that (J and (J' are fibrewise G-homotopic to the fibrewise 
G-maps ¢ and ¢t given by 

¢ = [aI, gl, 0, C, a2, g2, 0, c, ... J, 
¢t = [O,c,a~,g~,O,c,a~,g~, .. . ). 

In fact a fibrewise G-homotopy Ht : E ~ Ea of (J into ¢ is given by the 
expression 

[(1 - t)a1, gl, tal, gl, (1 - t)a2, g2, ta2, g2, ... J, 

and a fibrewise G-homotopy of (J' into ¢/ is given similarly. The next stage 
is to construct, in infinitely many steps, a fibrewise G-homotopy of ¢ into (J. 

The first step, indicated by the expression 

[aI, gl, ta2, g2, (1 - t)a2, g2, ta3, g3, (1 - t)a3, ... J, 

ends with the fibrewise G-map indicated by the expression 

The second step is defined similarly, and so on, until after the nth step we 
reach the fibrewise G-map indicated by the expression 
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By juxtaposing the steps in this series of fibrewise G-homotopies we obtain 
a fibrewise G-homotopy since at each coordinate place in Ea all but a finite 
number of the steps are stationary. Thus a fibrewise G-homotopy of ¢ into 
() is obtained, and similarly, a fibrewise G-homotopy of ¢' into ()'. Since we 
have already seen that ¢ is fibrewise G-homotopic to ¢' we conclude that 
() is fibrewise G-homotopic to ()', as required. This completes the proof of 
the classification theorem. In view of this result we may refer to Xa as the 
classifying fibrewise space of G. Very much the same argument, applied to the 
non-equivariant case, may be used to show that Ea is fibrewise contractible, 
and hence that Xa is vertically connected. 

In particular, take X = B x T, for some space T. Suppose that B is locally 
compact regular. Then the set of fibrewise homotopy classes of fibrewise maps 
of X into Xa is equivalent to the set of homotopy classes of maps of T into 
f(Xa), the space of sections of Xa. 

To illustrate these ideas consider a topological group K. In the category of 
K -spaces let Eo be a space and let Go be a topological transformation group 
of Eo. Thus Eo and Go are both K-spaces, the multiplication of Go and the 
action of Go on Eo are equivariant, and the neutral element of Go is fixed. 
Let P be a principal K-bundle over B. Then the associated bundle P#Go 
with fibre Go is a fibrewise open group. Also the associated bundle P#Eo with 
fibre Eo is a fibrewise P#Go-space, more precisely a principal fibrewise P#Go-
bundle over the associated bundle P#(Eo/Go) with fibre Eo/Go. In fact the 
classifying fibrewise space of P#Go defined as above can be identified with 
the associated bundle with fibre the classifying space of Go, in the ordinary 
sense. 

An example 

Example 7.3. For example take K = Z/2. Take Go to be an Abelian dis­
crete group with Z/2 acting by inversion. The classifying space of Go is 
the Eilenberg-MacLane space K(Go,1). For the principal Z/2-bundle P 
take the sphere sn, with Z/2 acting by the antipodal transformation and 
B = sn / (Z/2) the real projective n-space. Then the classifying fibrewise 
space of the fibrewise topological group 

sn XZ/2 Go 

with fibre Go can be identified with the associated bundle 

sn XZ/2 K(Go, 1) 

with fibre K(Go, 1). 
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8 Fibrewise mapping-spaces 

In this section we consider the problem, first discussed by Thorn [131], of 
constructing an explicit right adjoint to the fibrewise product. Various pro­
cedures for doing this have been discussed in the literature, for example Booth 
and Brown [16, 17] use partial maps while Min and Lee [115] use convergence 
spaces. However, the method adopted in Section 9 of [81] seems at least as 
satisfactory as any and so what we give here follows that account quite closely. 

The problem is to assign a suitable fibrewise topology to the fibrewise set 

mapB(X, Y) = II map(Xb, Yb ), 
bEB 

where X and Y are fibre wise spaces over B. Although we shall give a fairly 
full outline of the theory in the general case, for certain technicalities we 
shall refer the reader to Section 9 of [86], where full details are given. Before 
dealing with the general case let us consider again the case when X is trivial, 
which admits of simpler treatment. We begin by describing a variant of the 
treatment given in Section 1. 

The fibrewise compact-open topology 

The version of compact-open topology we are going to generalize here is 
a refinement of the standard one, as follows. Given spaces X and Y, let 
map(X, Y) denote the set of maps 4>: X -+ Y. For U ~ Y open, C compact 
Hausdorff, and A : C -+ X a map, let (C, A, U) denote the subset of map 
(X, Y) consisting of maps 4> such that 4>AC ~ U. We describe such subsets 
as compact-open, and we describe the topology which they generate as the 
compact-open topology. This is a modification of the usual theory, in which 
C is required to be a subset of X and A is the inclusion, but it has all the 
expected properties, as can easily be checked. 

Consider first the fibre wise set mapB(B x T, Z), where T is a space and Z 
is a fibrewise space over B. Maps of {b} x T into Zb can be regarded as maps 
of T into Z, in the obvious way, and so mapB(B x T, Z) can be topologized 
as a subspace of map(T, Z), with the compact-open topology. Then for any 
fibrewise space Y over B a fibrewise map 

Y x T = (B x T) XB Y -+ Z 

determines a fibrewise map 

Y -+ mapB(B x T, Z), 

through the standard formula, and the converse holds when T is locally com­
pact and regular. All we need for this is the standard theory of the compact­
open topology. 
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Now let us turn to the general case, where X and Y are fibrewise spaces 
over B. Given an open set W ~ B, an open set U ~ Yw, a fibrewise compact 
Hausdorff space Kover W, and a fibrewise map A : K ~ X w, we denote 
by (K,A,UjW) the set of maps cjJ : Xb ~ Yb, where b E W, for which 
cjJAKb ~ U. If K ~ Xw and A is the inclusion then we write (K, A, Uj W) as 
(K, Uj W). We describe such a subset (K, A, Uj W) ofmapB(X, Y) asfibrewise 
compact-open, and describe the fibrewise topology generated by the fibrewise 
compact-open subsets as the fibrewise compact-open topology. From now on, 
when we use the term fibrewise mapping-space, this is the fibrewise topology 
with which it is equipped. 

Some caution is necessary when taking pull-backs or even restricting to 
subspaces of the base. For example, the fibres of the fibrewise mapping-space 
do not necessarily inherit the compact-open topology. Of course if a : B' ~ B 
is a map, where B' is a space, then a fibrewise bijection 

mapB' (a* X, a*Y) ~ a*mapB(X, Y) 

is defined, in the obvious way. The bijection is continuous, since the pull-back 
(a*K,a*A,a*Uja-1W) of a fibrewise compact-open subset (K,A,UjW) of 
mapB(X, Y) is a fibrewise compact-open subset of maPB' (a* X, a*Y). Later 
in this section we will show that this continuous bijection is an equivalence 
of fibrewise spaces over B' under certain conditions. 

It is not difficult to see, however, that when X = B x T, for some space 
T, the special method of topologizing the fibrewise mapping-space which can 
be used in this case agrees with the general method. Specifically, consider the 
injection 

u: mapB(B x T, Y) ~ map(T, Y) 

given, as before, by transforming each map {b} x T ~ Yb, where b E B, into 
the corresponding map T ~ Y. We assert that u constitutes an embedding 
of the domain with fibrewise compact-open topology in the codomain with 
compact-open topology. 

For let (C, A, U) be a compact-open subset of map(T, Y), where U ~ Y 
is open, C is compact Hausdorff and A : C ~ U is a map. Then 

where C x B is fibrewise compact Hausdorff over B. 
In the other direction, let (K, A, Uj W) be a fibrewise compact-open sub­

set of mapB(B x T, Y), so that W ~ B is open, U ~ Yw is open, K is 
fibrewise compact Hausdorff over W and A : K ~ W x T is a fibrewise 
map. Then (K, A, Uj W) is the union of the preimages U-1(Cb , Ab, U), where 
b runs through the points of W, Cb X {b} = K b and Ab is the first component 
of A I Cb. Since each subset (Cb , Ab, U) of map(T, Y) is compact-open we 
conclude that u is an embedding, as stated. 
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Proposition 8.1 LetX andY befibrewise spaces over B. Then mapB(X, B) 
is equivalent to B, as a fibrewise space, and mapB(B, Y) is equivalent to Y. 

To prove the first assertion we show that the projection mapB(X, B) -t B 
is a homeomorphism. Since it is obviously a continuous bijection we only have 
to show that it is open, and for this it is sufficient to show that the projection 
of a fibrewise compact-open subset is open. So let (K, >., Uj W) be a fibrewise 
compact-open subset ofmapB(X,B), where W s;:; B is open, U s;:; W is open, 
K is fibrewise compact Hausdorff over W, and >. : K -t X w is a fibrewise 
map. Then the projection is just U U (W - p>.K) , which is open in B since 
p>.K is closed in W. This proves the first assertionj the proof of the second 
is equally straightforward. 

Clearly if B' ~ B then mapB(X,Y)IB' is equivalent to mapBI(X',Y'), 
as a fibrewise set over B', where X' = XB', Y = YB'. Now the restriction 
(XBI n K, YB n Vj W n B') to B' of a fibrewise compact-open set (K, Vj W) 
of mapB(X, Y) is a fibrewise compact-open set of mapB'(X', Y'), hence the 
identity function 

mapBI(X', Y') -t mapB(X, Y)IB' 

is a continuous bijection. When B' is open in B the function is an equivalence, 
but this is not true generally. 

In particular, the induced topology on the fibre map(Xb, Yb) ofmapB(X, Y) 
may be coarser than the compact-open topology. An exception is when X is 
fibrewise discrete since in that case a compact subset C of the discrete Xb 
is necessarily finite, say C = {Xl, ... , X n }. So we can find a neighbourhood 
W of b and, by using local slices through Xl, ... ,Xn, a family K l , ... ,Kn of 
subsets of X w which are fibrewise compact over W and whose union K meets 
Xb in C. Since K is fibrewise compact over W it follows that the topologies 
on map(Xb, Yb) coincide in this case. 

Among the fibrewise compact-open sets of mapB(X, Y) a special role is 
played by those of the form 

(8, V) = (8W, Vj W), 

where W is open in B, where 8 is a section of X over W and where V is 
open in Y. In the case in which X is fibrewise discrete these special fibrewise 
compact-open sets form a sub-basis for the fibrewise compact-open topology, 
for a fibrewise topological Y. For let (K, Vj W) be a fibrewise compact-open 
set, where W is open in B, where K s;:; Xw is fibrewise compact over W, 
and where V is open in Y. Let b E W be a given point and assume, to avoid 
trivialities, that Kb is non-empty. Let 4J : Xb -t Yb be a continuous function 
such that 4JKb ~ Vb, i.e. Kb ~ 4J- l Vb. We have Kb = {Xl, ... , X n }, say, since 
Kb is discrete and compact, therefore finite. Choose a neighbourhood Wi of 
b, where Wi s;:; W, and a section Si : Wi -t X such that si(b) = Xi, for 
i = 1, ... ,n. Note that Ui = 8i Wi is open in X, since X is fibrewise discrete. 
Since K is fibrewise compact over W the subset 



8 Fibrewise mapping-spaces 43 

is open in B. Now W' = Wo n WI n ... n Wn ~ W, is a neighbourhood of b 
and (s~, V) is a neighbourhood of ¢ for i = 1, ... ,n, where s~ = siIW'. Since 

(s~, V) n ... n (s~, V) ~ (K, V; W) 

this shows that the special fibrewise compact-open sets form a fibrewise sub­
basis. 

The above observation is due to Lever [98] who uses it to establish a 
generalization of the fibrewise Tychonoff theorem including, as a special case 

Theorem 8.2 Let X be fibrewise discrete over B. Then mapB(X, Y) is fibre­
wise compact whenever Y is fibrewise compact. 

The proof, which is not easy, can be found in [98] or in Section 9 of [86]. 
Although the result is obviously of great importance no use of it is made in 
what follows. 

Examples can be given where Y is fibrewise Hausdorff but mapB(X, Y) 
is not. We prove 

Proposition 8.3 Let X and Y be fibre wise spaces over B, with X locally 
sliceable and Y fibrewise Hausdorff. Then maPB(X, Y) is fibrewise Haus­
dorff· 

For consider distinct maps ¢,'l/J : Xb --+ Yb, where b E B. We have 
¢(x) =I 'l/J(x) for some point x of Xb. Since X is locally sliceable there exists 
a neighbourhood W of b and a section s : W --+ Xb such that s(b) = x. Since 
Y is fibrewise Hausdorff there exist disjoint neighbourhoods U, V of ¢(x), 
'l/J(x) , respectively in Y. Then (W, s, U; W), (W, s, V; W) are disjoint fibre­
wise compact-open neighbourhoods of ¢, 'l/J, respectively, in mapB(X, Y). 

Functoriality 

After these preliminaries we turn to the general theory of fibrewise mapping­
spaces, beginning with functoriality. Consider fibrewise spaces X, Y and Z 
over B. Precomposition with a fibrewise map (} : X --+ Y determines a fibre­
wise map 

(}* : mapB(Y, Z) --+ mapB(X, Z), 

while post composition with a fibrewise map ¢ : Y --+ Z determines a fibrewise 
map 
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We prove two results about these induced fibrewise maps, as follows. 

Proposition 8.4 Let () : X -t Y be a proper fibrewise surjection, where X 
and Yare fibrewise spaces over B. Then the fibrewise map 

is an embedding for all fibrewise spaces Z. 

For let W C; B be open, let V C; Zw be open, let K be fibrewise compact 
Hausdorff over W, and let J.L : K -t Yw be a fibrewise map. The fibrewise 
product K x Yw X w is also fibrewise compact Hausdorff over W, since the 
first projection K xYw Xw -t K is properj we denote the second projection 
K x Yw X W -t X w by A. Since ()* is injective, because () is surjective, we 
have 

(K,J-L, Vj W) = ()*-l(K xYw Xw, A, V; W). 

Therefore ()* is an embedding, as asserted. 

Proposition 8.5 Let <p : Y -t Z be a fibrewise embedding, where Y and Z 
are fibrewise spaces over B. Then the fibrewise map 

is an embedding, for all fibrewise spaces Z. If <p is closed, furthermore, then 
<p* is closed provided X is locally sliceable. 

For let (K, A, Uj W) be a fibrewise compact-open subset of mapB(X, Y), 
so that W C; B is open, U C; Yw is open, K is fibrewise compact Hausdorff 
over W, and A : K -t X w is a fibrewise map. Then U = <p-1 V for some open 
set V of Zw and so 

(K, A, Uj W) = <p-;l (K, <Pw 0 A, Vj W). 

This proves the first assertion. 
To prove the second, let a : Xb -t Zb (b E B) belong to the comple­

ment of <p*mapB(X, Y) in maPB(X, Z). Then a(x) E U, for some x E Xb, 
where U = Z - <pY is open. If X is locally sliceable then for some neighbour­
hood W of b there exists a section s : W -t X w such that s( b) = x. Thus 
(W, s, Uj W) is a fibrewise compact-open neighbourhood of A which does not 
meet <p*mapB(X, Y). This completes the proof. 

Proposition 8.6 Let {Xj} be a family of fibrewise spaces over B. Then the 
natural fibrewise map 

mapB(IlXj,Y) -t IlmapB(Xj,Y) 
B 

is an equivalence for all fibrewise spaces Y. 
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Here the ith component of the fibrewise map is 

ai : mapB(IlXj , Y) ~ mapB(Xi , Y), 

where ai : Xi ~ II Xj is the standard insertion. The proof of Proposition 8.6 
is straightforward. 

Our aim is to show that, subject to certain restrictions, the fibrewise 
mapping-space stands in an adjoint relationship to the fibrewise product. We 
begin by proving 

Proposition 8.7 Let X, Y and Z be fibrewise spaces over B. If the fibrewise 
function h : X x B Y ~ Z is continuous then so is the fibrewise function 
k: X ~ mapB(Y' Z), where 

k(x)(y) = hex, y) (x E X b, Y E Yb, bE B). 

To establish the continuity of k it is sufficient to show that the preimage of 
a fibrewise compact-open subset of map B (Y, Z) is open in X. So consider the 
fibrewise compact-open subset (K, A, V; W), where W ~ B is open, V ~ Zw 
is open, K is fibrewise compact Hausdorff over W and A : K ~ Yw is a 
fibrewise map. Suppose that k(x) E (K, A, V; W), where x E X b, bE B. The 
preimage (1 x A -1) h -1 V is a neighbourhood of the preimage {x} x K b of x 
under the projection 

Xw xwK~Xw xwW~Xw. 

Since the projection is closed we have U Xw K ~ (1 x A-1)h-1V for some 
neighbourhood U of x in X w. Then kU is contained in (K, A, V; W). There­
fore k is continuous, as asserted. 

Our next result requires a technical lemma, as follows. 

Lemma 8.8 Let X and Y be fibrewise spaces over B, with X fibrewise reg­
ular. Suppose that the fibrewise topology of Y is generated by a fibrewise 
sub-basis. Then the fibrewise compact-open topology of mapB(X, Y) is gen­
erated by a fibrewise sub-basis consisting of fibrewise compact-open subsets 
(K, >., U; W), where W ~ B is open, U ~ Yw is fibrewise subbasic, K is 
fibrewise compact Hausdorff over W, and A : K ~ Xw is a fibrewise map. 

We omit the proof since it is a straightforward generalization of the proof 
of the corresponding result (9.8) of [86]. From this lemma we at once obtain 

Proposition 8.9 Let Yi, Y2 be fibrewise spaces over B, and let 

Y1 t-- Y1 X B Y2 ---+ Y2 
~1 ~2 

be the standard projections. Then the natural fibrewise map 
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is an equivalence for all fibrewise regular X. 

Here the fibrewise map is given by 1I"h in the first factor, and by 11"2* in 
the second. Next we require another technical lemma as follows. 

Lemma 8.10 Let X and Y be fibrewise regular spaces over B. Then for all 
fibrewise spaces Z the fibrewise compact-open topology of mapB(X XB Y, Z) 
is generated by fibrewise compact-open subsets (K x w L, A x /L, V; W), where 
W ~ B is open, V ~ Zw is open, K and L are fibrewise compact Hausdorff 
over W, and A : K -t X w, /L : L -t Yw are fibrewise maps. 

Again we omit the proof since it is straightforward generalization of the 
corresponding result (9.10) of [86]. From this lemma we at once obtain 

Proposition 8.11 Let Xi, Yi (i = 1,2) be fibrewise spaces over B, with Xi 
fibrewise regular. Then the natural fibrewise function 

mapB(X1 , Yi) XB mapB(X2 ,1'2) -t mapB(Xl XB X 2 , Y1 XB Y2 ) 

is an embedding. 

Here the fibrewise function is given by the fibrewise product functor. Con­
tinuity is obvious, while the lemma shows that the condition for an embedding 
is satisfied. 

In particular consider the fibrewise function 

given by the fibrewise product x B T with a given fibrewise regular space T 
over B. The above result shows that TB# is an embedding for all fibrewise 
spaces Y provided X is fibrewise regular. Now let !liB (X) denote the push-out 
of the cotriad 

X X B T +-- To x B X -t To 

and similarly for fibrewise maps, where To is a closed subspace of T. We 
assert that the fibrewise function 

is continuous, provided T is fibrewise compact regular and X is fibrewise 
regular. For example the fibrewise function given by fibrewise suspension is 
continuous, for fibrewise regular X. 

To see this consider the diagram shown below, where p : TB -t !liB is the 
natural transformation 



8 Fibrewise mapping-spaces 47 

mapB(X,Y) 

~B# 1 
map B (4i B x, 4i BY) 

p' 

Here p* is an embedding, by Proposition 8.4, since p : TBX -+ 4iBX is 
a proper surjection. Also TB# is continuous, by Proposition 8.9, and P* is 
continuous, from first principles. Therefore p*4iB# = p.TB# is continuous 
and so 4i B# is an embedding, as asserted. 

Fibrewise evaluation 

Fibrewise evaluation (i.e. evaluation in each fibre) determines a fibrewise 
function 

mapB(X, Y) XB X -+ Y 

for all fibrewise spaces X, Y over B. More generally, fibrewise composition 
(i.e. composition in each fibre) determines a fibrewise function 

for all fibrewise spaces X, Y, Z over B. We prove 

Proposition 8.12 Let Y be fibrewise locally compact regular over B. Then 
the fibrewise composition function 

is continuous for all fibrewise spaces X and Z. 

For let () : Xb -+ Yb and ¢ : Yb -+ Zb be maps, where b E B. 
Let (K, A, V; W) be a fibrewise compact-open neighbourhood of ¢ 0 () in 
mapB(X, Z). Thus W is a neighbourhood of b, V ~ Zw is open, K is fibre­
wise compact Hausdorff over W, and A : K -+ X W is a fibrewise map. Now 

for some open U ~ Yw. Since Y is fibrewise locally compact regular there 
exists a neighbourhood W' ~ W of b and a neighbourhood N of O(Xb n K) 
in YW' such that the closure YWI n fl of N in YW' is fibrewise compact over 
W' and contained in U. Fibrewise composition sends the fibrewise product 

(XWI nfl, V';W') XW' (K',>.',N;W') 

into (K,A,V;W), where K' = KW" >.' = AW' and V' = ZW' nV. Since 
o E (K', A',N; W') and ¢ E (XWI nfl, VI; WI) this proves Proposition 8.12. 
As a special case we obtain 
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Corollary 8.13 Let X be fibrewise locally compact regular over B. Then the 
fibrewise evaluation function 

is continuous for all fibrewise spaces Y. 

This leads at once to a converse of Proposition 8.7, subject to the expected 
restrictions. 

Corollary 8.14 Let X, Y and Z be fibrewise spaces over B, with Y fibrewise 
locally compact regular. Let k : X --7 maPB(Y, Z) be a fibrewise map. Then 
the fibrewise function h : X XB Y --7 Z is continuous, where 

h(x,y) = k(x)(y) (x E Xb, Y E Yb, bE B). 

To see this it is only necessary to observe that h may be expressed as the 
composition 

X XB Y --7 mapB(Y, Z) XB Y --7 Z 

of k x 1 y and the fibrewise evaluation function. When hand k are related 
as in Proposition 8.7 or Corollary 8.14 we refer to h as the left adjoint of 
k and to k as the right adjoint of h. The relationship is placed on a more 
satisfactory formal basis in our next result, which may be described as the 
exponential law for our theory. 

Proposition 8.15 Let X, Y and Z be fibrewise spaces over B and let 

be the fibrewise injection defined by taking adjoints in each fibre. If X is 
fibrewise regular then ~ is continuous. If both X and Yare fibrewise regular 
then ~ is an open embedding. If, in addition, Y is fibrewise locally compact 
then ~ is an equivalence. 

For by Lemma 8.10, when X is fibrewise regular the fibrewise topology of 
maPB(X, mapB(Y, Z)) is generated by fibrewise compact-open subsets of the 
form (K, A, (L, f.,L, Vi W)i W), where W ~ B is open, V ~ Zw is open, K and 
L are fibrewise compact Hausdorff over W, and A : K --7 Xw, f.,L : L --7 Yw 
are fibre wise maps. The inverse image of this fibrewise subbasic set is just 
(KxwL, AXf.,L, Vi W), which is also fibrewise subbasic, and so ~ is continuous. 

By Lemma 8.10 again, when X and Yare fibrewise regular the fibrewise 
topology of maPB (X XB Y, Z) is generated by fibrewise compact-open subsets 
of the form (K Xw L, A x f.,L, Vi W), where W, V, K, L, A, f.,L are as before. 
The direct image of this subset is just (K, A, (L, f.,L, Vi W)i W), which is also 
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fibrewise compact-open, and so , is an open embedding. The final assertion 
follows at once from Corollary 8.14. 

Another application of Corollary 8.14 is to obtain conditions under which 
fibrewise mapping-spaces behave naturally with respect to pull-backs. We 
prove 

Proposition 8.16 Let X and Y be fibrewise spaces over B, with X fibrewise 
locally compact regular. Then the continuous fibrewise bijection 

is an equivalence of fibre wise spaces over B' for each space B' and map a : 
B' -+ B. 

For since the fibrewise evaluation function 

is continuous so is its pull-back 

Rewriting this as 
a*mapB(X, Y) XB' a* X -+ a*Y 

we take the right adjoint and obtain a fibrewise map 

a*maPB(X,Y) -+ mapB,(a*X,a*Y) 

over B', which is inverse to a#. This proves Proposition 8.16. 
In particular, take B = * and replace B', X, Y by B, Xo, Yo, respectively, 

where Xo, Yo are spaces. We deduce that for any space B there is a natural 
equivalence between mapB(XO x B, Yo x B) and map(Xo, Yo) x B, as fibrewise 
spaces over B, provided Xo is locally compact regular. 

The space of fibrewise maps 

Returning to the general case, let us compare the space r(mapB(X, Y)) of 
sections s : B -+ mapB(X, Y) of the fibrewise mapping-space with the space 
MAPB(X, Y) of fibrewise maps <p : X -+ Y. Here both the space of sections 
and the space of fibrewise maps are endowed with the compact-open topology. 
Consider the function 

which transforms the fibrewise map <p into the section s given by s(b) = <Pb 
(b E B). Clearly (j is injective. 
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Proposition 8.17 Let X, Y be fibrewise spaces over B, and let 

be the injection defined above. If X is fibrewise locally compact regular then 
a is bijective. If in addition B is regular then a is an equivalence of spaces. 

To prove the first assertion, let s : B ~ mapB(X, Y) be a section. Then 
s = a(cjJ), where cjJ : X ~ Y is the fibrewise map given by the composition 

X = B XB X ~ mapB(X, Y) XB X ~ Y; 

here the first stage is s x 1 while the second stage is fibrewise evaluation. 
To prove the second assertion, where B is regular, observe that the 

compact-open topology of r(mapB(X, Y» is generated by compact-open 
subsets of the form (C, IL, (K, A, U; W», where C is compact Hausdorff, 
IL : C ~ B is a map, W ~ B is open, U ~ Yw is open, K is fibrewise 
compact Hausdorff over W and A : K ~ Yw is a fibrewise map. The pre­
image of this subset under a is the compact-open subset (C XB K, A1r2, V). 
Therefore a is continuous. 

Finally, we need to show that a is open. So let (C, IL, U) be a compact­
open subset of MAPB(X, Y), where U ~ Y is open, C is compact Hausdorff 
and IL : C ~ X is a map. Then 

a(C,IL,U) = (C,PIL,(C x B, IL01r1, U;B», 

which is fibrewise compact-open. Thus a is open and therefore an equivalence. 
This completes the proof. 

We conclude with two results about fibrewise fibrations, of which special 
cases have occurred earlier. The proofs are omitted since they are straight­
forward exercises in the use of adjoints. 

Proposition 8.18 Let cjJ : E ~ F be a fibrewise fibration, where E and F 
are fibrewise spaces over B. Then the postcomposition function 

is a fibrewise fibration, for all fibrewise locally compact regular Y. 

Proposition 8.19 Let 11. : A ~ X be a fibrewise cofibration, where X is 
fibrewise locally compact regular over B and A is a closed subspace of X. 
Then the precomposition function 

u· : mapB(X, E) ~ maPB(A, E) 

is a fibrewise fibration for all fibrewise spaces E. 
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Some examples 

Example 8.20. Let X be a fibrewise space over B and let p : E --t X be a 
fibrewise fibration. Then 

is a fibrewise fibration, for all fibrewise compact regular Y. 

Example 8.21. Let u : A --t X be a fibrewise cofibration, where X is fibrewise 
locally compact regular over B and A is a closed subspace of X. Then 

is a fibrewise fibration for all fibrewise spaces E. 

Example 8.22. Let X be a fibrewise space over B. Let E, F be fibrewise 
fibrations over X. If E is fibrewise locally compact regular over X, then 
mapx(E,F) is a fibrewise fibration over X. 

Example 8.23. Let p : E --t X be a fibrewise fibration, where E and X are 
fibrewise spaces over B. Let A ~ X be a closed subspace such that the pair 
(X, A) is fibrewise cofibred. Then the pair (E, EA) is also fibrewise cofibred. 

Example 8.24. The fibrewise homotopy type ofmapB(X, Y) depends only on 
the fibrewise homotopy types of X and Y, where X, Yare fibrewise spaces 
over B. 



Chapter 2. The Pointed Theory 

9 Fibrewise pointed spaces 

Basic notions 

In this chapter we work over a pointed base space B. A fibrewise pointed 
space over B consists of a space X together with maps 

B~X~B 

such that po s = lB. In other words, X is a fibrewise space over B with 
section s. The alternative terminology sectioned fibrewise space is also widely 
used. Note that the projection is necessarily a quotient map and the section 
is necessarily an embedding. It is often convenient to regard B as a subspace 
of X so that the projection retracts X onto B. To simplify the exposition in 
what follows let us assume, once and for all, that the embedding is closed, 
as is necessarily the case when X is a Hausdorff space. We regard any sub­
space of X containing B as a fibrewise pointed space in the obvious way; no 
other subs paces will be admitted. When s is a cofibration we describe X as 
cofibrant. 

We regard B as a fibrewise pointed space over itself using the identity 
as section and projection. We regard the topological product B x T, for any 
pointed space T, as a fibrewise pointed space over B using the section given 
by the basepoint. Of course any map of B into T determines a section of 
B x T, with the map as first component, and hence a fibrewise pointed space. 

Let X be a fibrewise pointed space over B, as above. For each subspace 
B' of B we regard X B , as a fibrewise pointed space over B' with section SB'. 

In particular, we regard the fibre Xb over the basepoint b of B as a pointed 
space with basepoint s(b). 

Fibrewise pointed spaces over B form a category with the following def­
inition of morphism. Let X and Y be fibrewise pointed spaces over B with 
sections sand t, respectively. A fibrewise pointed map ¢ : X -+ Y is a fibre­
wise map which is section-preserving in the sense that ¢ 0 s = t. If ¢ : X -+ Y 
is a fibrewise pointed map over B then the restriction ¢B' : X B, -+ YB' is a 
fibrewise pointed map over B' for each subspace B' of B. Thus a functor is 
defined from the category of fibrewise pointed spaces over B to the category 
of fibre wise pointed spaces over B'. 

M. C. Crabb et al., Fibrewise Homotopy Theory
© Springer-Verlag London Limited 1998
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Equivalences in the category of fibrewise pointed spaces over B are called 
fibrewise pointed topological equivalences. If ¢, as above, is a fibrewise pointed 
topological equivalence over B then ¢B' is a fibrewise pointed topological 
equivalence over B' for each subspace B' of B. In particular ¢b is a pointed 
topological equivalence where b is the basepoint of B. 

For each fibrewise pointed space X over B the pull-back a* X is regarded 
as a fibrewise pointed space over B', in the obvious way, for each space B' 
and map a : B' ---+ B, and similarly with fibrewise pointed maps. Thus a* 
constitutes a functor from the category of fibrewise pointed spaces over B to 
the category of fibrewise pointed spaces over B'. When B' is a subspace of 
B and a the inclusion this is equivalent to the restriction functor described 
earlier. 

Fibrewise collapsing 

Let X be a fibrewise space over B and let A be a closed subspace of X. We 
can define a fibrewise quotient space X/BA of XUB B by identifying points of 
A with their images under the projection. We refer to X/BA as the fibrewise 
collapse of A in X. In particular, when A = X the fibrewise collapse reduces 
to B. If A is fibrewise compact over B the natural projection X ---+ X/BA is 
proper. If in addition X is fibrewise Hausdorff or fibrewise regular then so is 
X/BA. 

Note that if A is a closed subspace of a fibrewise space X over B then 
the fibrewise collapse X/BA becomes a fibrewise pointed space with section 
given by B = A/BA ---+ X/BA; the projection (X, A) ---+ (X/BA, B) is then a 
fibrewise relative homeomorphism. 

Let X and Y be fibrewise pointed spaces over B with sections sand t, 
respectively. We regard the fibrewise product X x B Y as a fibrewise pointed 
space with section given by b H (s(b), t(b». The subspace 

(X XB B) U (B XB Y) ~ X XB Y 

is denoted by X VB Y and called the fibrewise pointed coproduct (or fibrewise 
wedge product). The fibrewise collapse 

X I\B Y = (X XB Y)/B(X VB Y) 

is called the fibrewise smash product. Of course these constructions are func­
torial in nature. 

Note that X x B Y is fibrewise compact, and hence X I\B Y is fibrewise 
compact, whenever X and Y are fibrewise compact. Also if A is a fibrewise 
closed subspace of X the natural projection 

(X I\B Y)/B(A I\B Y) ---+ (X/BA) I\B Y 

is a fibrewise pointed topological equivalence. 
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There exists a similar equivalence 

(X /\B Z) VB (Y /\B Z) -+ (X VB Y) /\B Z 

for all fibrewise pointed spaces X, Y, Z over B. Moreover, provided any two 
of the three are fibrewise compact Hausdorff there is also an equivalence 

(X /\B Y) /\B Z -+ X /\B (Y /\B Z). 

We may refer to these as the distributive law and the associative law for the 
fibrewise smash product. 

Given a pointed space F a functor I/IB is defined which transforms each 
fibrewise pointed space X over B into the fibrewise smash product 

(B x F) /\B X, 

and similarly for fibrewise pointed maps. Suppose that F = D / E, the pointed 
space obtained from a space D by collapsing a closed subspace E. The cor­
responding functor if?B is defined as in Section 1, and I/IB(X) is equivalent 
to the fibrewise collapse if?B(X)/Bif?B(B). We refer to I/IB in this case as the 
reduction of if?B, and write I/IB = if?~. In particular, the reduction GN of the 
fibrewise cone is given by F = I, with basepoint {O}, and the reduction EN 
of the fibrewise suspension is given by E = 1/ j, with basepoint j / i. 

There is an important relationship between the fibrewise join of Section 
1 and the fibrewise smash product, as follows. Using the coarse topology the 
pair (GB(XO *B Xd,Xo *B Xl) is fibrewise homeomorphic to the pair 

(GBXO XB GBXI , GBXO XB Xl U Xo XB GBXd. 

Hence the fibrewise collapse 

is fibrewise pointed homeomorphic to the fibrewise collapse 

When Xo and X I are fibrewise compact Hausdorff, therefore, we conclude 
that EB(XO *B Xd and (EBXO) /\B (EBXd are equivalent, as fibrewise 
pointed spaces, whichever topology is used. 

Bundles of pointed spaces 

A fibrewise pointed space X over B is said to be trivial if X is fibrewise 
pointed homeomorphic to B x T for some pointed space T, and then a fibre­
wise pointed homeomorphism ¢ : X -+ B x T is called a trivialization of X. 
A fibrewise pointed space X over B is said to be locally trivial if there exists 
an open covering of B such that X v is trivial over V for each member V of 
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the covering. A locally trivial fibrewise pointed space is the simplest form of 
fibrewise pointed (or sectioned) fibre bundle or bundle of pointed spaces. A 
more sophisticated form involves a structural group G. A principal G-bundle 
P over B determines a functor P # from the category of pointed G-spaces 
to the category of fibrewise pointed fibre bundles over B. Specifically, P # 
transforms each pointed G-space A into the associated bundle P x G A with 
fibre A and section P XB {ao}, where ao is the basepoint, and similarly with 
pointed G-maps. 

If X is a fibrewise pointed fibre bundle over B then a* X is a fibrewise 
pointed fibre bundle over B' for each space B' and map a : B' -+ B. The 
triviality covering in the case of B' is just the pull-back of the triviality 
covering for B. 

We may refer to a fibrewise pointed fibre bundle, as above, as a bundle of 
pointed spaces. The question naturally arises as to whether a bundle of (non­
pointed) spaces which admits a section is then a bundle of pointed spaces. 
This is true when the fibre is a manifold, as shown in [31] by 

Proposition 9.1 Let B be a space and let X be a fibre bundle over B with 
a topological manifold A, without boundary, as fibre. If X admits a section 
then X (with this section) is locally trivial as a fibrewise pointed space, so 
that X - sB is a fibre bundle over B with fibre A minus a point. 

In other words, a bundle of spaces which admits a section is equivalent as 
a fibrewise pointed space, to a bundle of pointed spaces. One easily reduces to 
the case in which B = A, X is the fibrewise space A x A with the projection 
onto the first factor, and s is the diagonal map. The proof in that case is 
given in Part II, Remark 11.22. 

Adjoints 

Finally, a word about adjoints. As we have seen in Section 1 the fibrewise 
mapping-space 

mapB(X, Z) = 11 map(Xb, Zb) 
bEB 

is defined, at least when X = B x T for some space T. If Z is fibrewise 
pointed with section u : B -+ Z there is an induced embedding 

u* : mapB(X, B) -+ mapB(X, Z). 

Now mapB(X, B) reduces to B and so we may regard mapB(X, Z) as a fibre­
wise pointed space with section u*. When X, as well as Z, is fibrewise pointed 
we may consider the subspace mapZ(X, Z) of pointed maps. In particular, 
take X = B x T, where T is pointed. Then for any fibrewise pointed space 
Y over B a fibrewise pointed map 

(B x T) /l.B Y -+ Z 
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determines a fibrewise pointed map 

Y -+ map~(B x T, Z), 

through the standard formula, and the converse holds when T is compact 
Hausdorff. 

This relationship holds, in particular, when T = I, and shows that fibre­
wise pointed maps of CB(Y) into Z correspond precisely to fibrewise pointed 
maps of Y into PB(Z), the fibrewise path-space. It also holds when T is the 
circle 1/ j, and shows that fibrewise pointed maps of E B (Y) into Z corre­
spond precisely to fibrewise pointed maps of Y into ilB(Z), the fibrewise 
loop-space. 

Given a fibrewise space X over B we regard the coproduct X U B as 
a fibrewise pointed space with section given by the second insertion, and 
similarly with fibrewise maps. Thus a functor is defined from the category of 
fibrewise spaces to the category of fibrewise pointed spaces, representing the 
former category as a full subcategory of the latter category. 

10 Fibrewise one-point (Alexandroff) compactification 

To illustrate some of the ideas we have been discussing, we give a fibrewise 
version of the theory of one-point (or Alexandroff) compactification. This 
construction, which is functorial in character, has formal properties which 
render it of considerable interest to fibrewise homotopy theorists. Fibrewise 
versions of other types of compactification can also be considered but these 
are less relevant to fibrewise homotopy theory. 

The construction 

Given a fibrewise space X over B, a fibrewise pointed space xjj can be 
constructed as follows, and shown to be fibrewise compact. As a fibrewise 
pointed set X; is just the coproduct Xu B with section s. The fibrewise 
topology of X B is generated by (i) the open sets of X (so that X is embedded 
as an open subspace) and (ii) the subsets of the form (Xw - K) U sW, where 
W is open in B and K ~ X w is fibrewise compact over W. 

To show that xjj is fibrewise compact, let U be a covering of the fibre over 
the point b of B by open sets of xjj. Since s(b) is covered, in particular, there 
exists a member U of U which contains a subset of the form (X w - K) U s W, 
where W is a neighbourhood of b and K ~ X w is fibrewise compact over 
W. Now Kb is covered by members of U. Hence W contains a neighbourhood 
V of b such that K v is covered by a finite subfamily of U. By adding U, if 
necessary, we obtain a finite subfamily of U which covers the restriction of 
xjj to V. Therefore xjj is fibrewise compact. 
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In view of this result we refer to XJj as the fibrewise one-point (or Alexan­
drofJ) compactification of X. When X itself is fibrewise compact the construc­
tion reduces to the coproduct X U B. It is important to know when XJj is 
fibrewise Hausdorff, and so we prove 

Proposition 10.1 Let X be fibrewise locally compact HausdorfJ over B. 
Then the fibrewise compactification XJj is fibrewise Hausdorff. 

For since X is open in XJj it is sufficient to show that each point x of Xb 
can be separated from s(b), for each point of B. Since X is fibrewise locally 
compact there exists a neighbourhood W of b in B and a neighbourhood 
U of x in X w such that X w n 0 is fibrewise compact over W. Then U and 
(Xw -XwnO) UsW are disjoint neighbourhoods of x and s(b), respectively. 
Hence XJj is fibrewise Hausdorff. 

Let X be a fibrewise space over B. Given a space B' and map a: B' -t B, 
we can form the pull-back a* X of X, as a fibrewise space over B', and 
then form the fibrewise compactification (a* X)t/. Or we can form the pull­
back a* (XJj) of the fibrewise compactification of X. The canonical fibrewise 
function determines a continuous fibrewise pointed bijection 

() : (a* X)t/ -t a*(XJj). 

Suppose that X is fibrewise locally compact Hausdorff. Then XJj is fibre­
wise Hausdorff over B and so a* (XJj) is fibrewise Hausdorff over B'. Since 
(a* X)t/ is fibrewise compact over B' we obtain that () is an equivalence 
of fibrewise pointed spaces over B'. In particular (B x T)t is equivalent to 
B x T+, as a fibrewise pointed space over B, for locally compact Hausdorff 
T. For example, (B x JRn)t is equivalent to B x (JRn)+ and hence to B x sn. 

Functoriality 

Let us turn now to the question of functoriality. To each fibrewise map 
¢ : X -+ Y, where X and Y are fibrewise spaces over B, there corresponds 
a fibrewise pointed function ¢+ : XJj -t Y,t, given by ¢ on X and fibrewise 
constant on XJj - X. Suppose that ¢ is proper. Then the preimage under ¢+ 
of the fibrewise sub basic open set (Yw - L) u tW of Y,t, where W is open 
in Band L is fibrewise compact over W, is the fibrewise subbasic open set 
(Xw - ¢-l L) U sW of XJj. It follows that ¢+ is continuous. Thus we may 
regard fibrewise one-point compactification as a functor from the category 
of fibrewise spaces and proper fibrewise maps to the category of fibrewise 
pointed spaces and fibrewise pointed maps. 

Proposition 10.2 Let X be fibrewise locally compact HausdorfJ over B, and 
let A be a fibrewise compact subspace of X. Then there exists a natural equiv­
alence 
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of fibrewise pointed spaces. 

Since A is fibrewise compact the natural projection X -7 X/BA is proper 
and so determines a fibrewise pointed map 

(J : X~ -7 (X/BA)~. 

Since (J is fibrewise constant on A~ we have an induced fibrewise pointed 
map 

(J' : X~/BA~ -7 (X/BA)~ 

which is clearly bijective. The domain here is fibrewise compact, since X~ is 
fibrewise compact. Also X/BA is fibrewise locally compact Hausdorff and so 
(X/BA) is fibrewise Hausdorff. Therefore (J' is closed and so an equivalence 
of fibrewise pointed spaces. 

Proposition 10.3 Let X and Y be fibrewise locally compact Hausdorff over 
B. Then there exist natural equivalences 

X~ VB Yl-7 (X UB Y)~, X~ I\B Yl-7 (X XB Y)~ 

of fibrewise pointed spaces. 

To prove the first part of Proposition 10.3 consider the standard insertions 

X -7 X UB Y +- Y. 

These are both proper and so they induce fibrewise pointed maps 

xjj -+ (X UB Y)~ +- Yi. 

The fibrewise coproduct 

of these fibrewise pointed maps is a continuous bijection and hence is an 
equivalence of fibrewise pointed spaces, since X~ VB Yl is fibrewise compact 
and (X UB Y)~ is fibrewise Hausdorff. 

To prove the second part, consider the fibrewise surjection 

~ : X~ XB Yl -7 (X XB Y)~, 

which is given by the identity on X x B Y and by the fibrewise constant on 
the complement X~ V Yl. The domain of ~ is fibrewise compact Hausdorff, 
since X~ and Yl are fibrewise compact Hausdorff. Also the codomain of ~ 
is fibrewise compact Hausdorff, since X x B Y is fibrewise locally compact 
Hausdorff. Now the preimages of the open sets of X x B Y in the codomain 
are open sets of X XB Y in the domain, therefore open in the domain. Also 
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if W is open in Band L is a fibrewise compact subset of X w x w Yw in 
the codomain then ~-l L is a fibrewise compact subset of X w x w Yw in 
the domain. Therefore ~ is continuous and so induces a continuous fibrewise 
bijection 

11 : XiJ A Yt -+ (X xB Y)t· 

But the domain of 11 is fibrewise compact and the codomain is fibrewise 
Hausdorff, hence 11 is an equivalence. 

Finally, let us consider fibrewise one-point compactification from the equi­
variant point of view. Let X be fibrewise Hausdorff over B and let G be 
a fibrewise compact Hausdorff fibrewise group acting fibrewise on X. Now 
G x B X is open in G x B XiJ, since X is open in XiJ, also the action is 
proper, since G is fibrewise compact. It follows that we can extend the fibre­
wise action of G to xjj so that points of the canonical section are left fixed. 
We prove 

Proposition 10.4 Let X be fibrewise locally compact Hausdorff over B. 
Let G be a fibrewise compact Hausdorff group acting fibrewise on X. Then 
(xjj)jG is equivalent to (XjG)t, as a fibrewise pointed space. 

For since G is fibrewise compact the natural projection 7f : X -+ XjG is 
proper and so determines a fibrewise pointed map 

7f+ : Xii -+ (XjG)t· 

Also 7f+ is invariant with respect to the action, since 7f is invariant, and so 
7f+ induces a fibrewise map 

p: XiJjG -+ (XjG)t· 

By inspection p is bijective. Now XiJ is fibrewise compact, by construction, 
and so XiJ jG is fibrewise compact. Also XjG is fibrewise locally compact 
Hausdorff. Therefore (XjG)t is fibrewise Hausdorff and so p is an equiva­
lence. 

11 Fibrewise pointed homotopy 

Basic notions 

Fibrewise pointed homotopy is an equivalence relation between fibrewise 
pointed maps. Specifically, let (), 4> : X -+ Y be fibrewise pointed maps, where 
X and Yare fibrewise pointed spaces over B. A fibrewise pointed homotopy 
of () into 4> is a homotopy It : X -+ Y of () into 4> which is fibrewise pointed 
for all tEl = [O,lJ. 
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If there exists a fibrewise pointed homotopy of () into ¢ we say that () is 
fibrewise pointed homotopic to ¢ and write () ::::~ ¢. In this wayan equivalence 
relation is defined on the set of fibrewise pointed maps of X into Y, and 
the pointed set of equivalence classes is denoted by 7r~ [X; Y]. Formally, 7r~ 
constitutes a binary functor from the category of fibrewise pointed spaces to 
the category of pointed sets, contravariant in the first entry and covariant in 
the second. 

The operation of composition for fibrewise pointed maps induces a func­
tion 

7r~[Y; Z] x 7r~[X; Y]-+ 7r~[X; Z], 

for any fibrewise pointed spaces X, Y, Z over B. Moreover, there are natural 
equivalences between 7r~[XVB Y; Z] and 7r~[X; Z] x 7r~[Y; Z], and between 
7r~[X; Y XB Z] and 7r~[X; Y] x 7r~[X; Z]. 

The fibrewise pointed map ¢ : X -+ Y is called a fibrewise pointed ho­
motopy equivalence if there exists a fibrewise pointed map 'ljJ : Y -+ X such 
that 

'ljJo¢::::~ lx, ¢o'ljJ::::~ ly. 

Thus an equivalence relation is defined; the equivalence classes are called 
fibrewise pointed homotopy types. 

It should be appreciated that the fibrewise pointed homotopy type of a 
fibrewise space which admits a section depends very much on the choice of 
section. For example the torus, fibred over the circle using the first projection, 
has an infinite number of fibrewise pointed homotopy types, depending on 
the choice of section. 

Let p : E -+ X be a fibrewise pointed map, where E and X are fibrewise 
pointed spaces over B. Sections of E over X, in this context, are required to 
be fibrewise pointed maps, and similarly with vertical homotopies. 

Initially, the pointed theory is similar to the non-pointed theory, as in 
Section 3. For example, fibrewise pointed maps ¢ : X -+ Y, where X and 
Yare fibrewise pointed spaces over B, correspond precisely to sections of 
the fibrewise product X x BY, regarded as a fibrewise pointed space over 
X. Similarly, fibrewise pointed homotopy classes of fibre wise pointed maps 
correspond to vertical homotopy classes of sections. 

A fibrewise pointed homotopy into the fibrewise constant is called a fibre­
wise pointed null-homotopy. A fibrewise pointed space is said to be fibrewise 
pointed contractible if it has the same fibrewise pointed homotopy type as the 
base space, in other words if the identity is fibrewise pointed null-homotopic. 

For example, consider the reduced fibrewise cone C~ (X) on the fibre­
wise pointed space X. The fibrewise contraction of CB(X) given in Section 
4 induces a fibrewise pointed contraction of C~ (X). Similarly, the fibrewise 
path-space PB(X) is fibrewise pointed contractible. A subset U of the fibre­
wise pointed space X is said to be fibrewise pointed categorical if the inclusion 
U -+ X is fibrewise pointed null-homotopic. 
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Let ¢ : X ~ Y and t/J : Y ~ X be fibrewise pointed maps such that 
t/J 0 ¢ :::Z Ix. Then t/J is said to be a left inverse of ¢, up to fibrewise pointed 
homotopy, and ¢ to be a right inverse of t/J, up to fibrewise pointed homotopy. 
Note that if ¢ admits both a left inverse t/J and a right inverse t/J', up to 
fibrewise pointed homotopy, then t/J :::Z t/J' and so ¢ is a fibrewise pointed 
homotopy equivalence. 

Suppose that X and Yare fibrewise spaces over B, with closed subspaces 
X' ~ X and Y' ~ Y. Fibrewise maps (X, X') ~ (Y, Y') of the pair induce 
fibrewise pointed maps X/BX' ~ Y/BY', after fibrewise collapsing, and sim­
ilarly with fibrewise homotopies. Hence fibrewise homotopy equivalences of 
the pair induce fibrewise pointed homotopy equivalences. 

Of course the associated bundle functor P # defined in Section 9 trans­
forms pointed G-homotopy classes of pointed G-maps into fibrewise pointed 
homotopy classes of fibrewise pointed maps, for each principal G-bundle P 
over B. 

Fibrewise multiplications 

Given a fibrewise pointed space X over B, a fibrewise pointed map m : 
X x B X ~ X is called a fibrewise multiplication. We describe m as fibrewise 
homotopy-commutative if 

m:::Z mot: X XB X ~ X, 

where t : X X B X ~ X X B X switches factors. We describe m as fibrewise 
homotopy-associative if 

m 0 (m x 1) :::Z m 0 (1 x m) : X XB X XB X ~ X. 

By a fibrewise Hop! structure on X we mean a fibrewise multiplication m 
such that 

m 0 (1 x c) 0 L\ :::Z Ix :::Z m 0 (c x 1) 0 L\, 

where c denotes the fibrewise constant map, as shown below 

X~XXBX~XXBX~X. 
exl 

Given such a structure we describe X as a fibrewise Hopi space. Of course, 
the associated bundle functor P# mentioned earlier transforms Hopf G-spaces 
into fibrewise Hopf spaces over B for each principal G-bundle P over B. 

Sectionable fibrewise spaces may admit fibrewise Hopf structure with one 
choice of section but not with another. Thus consider the product S x S, 
for some (pointed) S. If S is a Hopf space, wth basepoint e, then S x S is 
a fibrewise Hopf space with axial section S x {e}, as we have just observed. 
Suppose, however, that we replace the axial section by the diagonal. Then a 
fibrewise Hopf structure on S x S would determine a map of S x S x S into 
S which satisfies the Hopf condition on S x S x {e} and maps the diagonal 
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of 8 X 8 X 8 identically onto 8. When 8 is a sphere (say 8 = 8 1) this is a 
homological impossibility. 

A fibrewise homotopy right inverse for a fibrewise multiplication m on X 
is a fibrewise pointed map u : X -t X such that the composition 

Ll lxu X m X X --.tX XB X --.tX XB --.t 

is fibrewise pointed null-homotopic. Fibrewise homotopy left inverses are de­
fined similarly. When m is fibrewise homotopy-associative a fibrewise homo­
topy right inverse is also a fibrewise homotopy left inverse, and the term 
fibrewise homotopy inverse may be used. 

A fibrewise homotopy-associative fibrewise Hopf space for which the fibre­
wise multiplication admits a fibrewise homotopy inverse is called a fibrewise 
group-like space. For example the topological product B X T is fibrewise group­
like for each group-like space T. Again, the fibrewise loop-space {}B(Z) of a 
fibrewise pointed space Z is fibrewise group-like. 

A fibrewise multiplication on the fibrewise pointed space Y over B deter­
mines a multiplication on the pointed set lIjHx; Y] for all fibrewise pointed 
spaces X. If the former is fibrewise homotopy-commutative then the latter 
is commutative, and similarly with the other conditions we have mentioned. 
Thus 11'~ [X; Y] is a group if Y is fibrewise group-like. 

Fibrewise comultiplications 

This is an area where the formal duality in homotopy theory operates satis­
factorily. Thus, given a fibrewise pointed space X over B, a fibrewise pointed 
map m : X -t X VB X is called a fibrewise comultiplication. We describe m 
as fibrewise homotopy-commutative if 

m::=~ tom: X -t X VB X, 

where t : X VB X -t X VB X switches factors. We describe m as fibrewise 
homotopy-associative if 

(m V 1) 0 m::=~ (1 V m) 0 m : X -t X VB X VB X. 

By a fibrewise coHopf structure on X we mean a fibrewise comultiplication 
m such that 

where 

V' 0 (1 V c) 0 m ::=Z Ix ::=Z V' 0 (c VI) 0 m, 

X m 1Vc V 
--.tX VB X--.tXVB X--.tX. 

cV1 

Given such a structure we describe X as a fibrewise coHopf space. Of course, 
the associated bundle functor P# mentioned earlier transforms coHopf G­
spaces into fibrewise coHopf spaces for each principal G-bundle P over B. 
Sunderland [130] has studied the problem of the existence of fibrewise coHopf 
structures in the case of fibrewise pointed sphere-bundles over a given base. 
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A fibrewise homotopy right inverse for a fibrewise comultiplication m is 
a fibrewise pointed map u : X -t X such that the composition 

X~XVBX 1VU)XVBX~X 

is fibrewise pointed null-homotopic. Fibrewise homotopy left inverses are de­
fined similarly. When m is fibrewise homotopy-associative a fibrewise homo­
topy right inverse is always a fibrewise homotopy left inverse, and the term 
fibrewise homotopy inverse may be used. 

A fibrewise homotopy-associative fibrewise coHopf space for which the 
fibrewise comultiplication admits a fibrewise homotopy inverse is called a 
ftbrewise cogroup-like space. For example, the topological product B x T is 
fibrewise cogroup-like for each cogroup-like space T. 

A fibrewise comultiplication on the fibrewise pointed space X over B de­
termines a multiplication on the pointed set 7r~ [X j Yj for all fibrewise pointed 
spaces Y. If the former is fibrewise homotopy-commutative then the latter 
is commutative, and similarly with the other conditions we have mentioned. 
Thus 7r~[Xj Yj is a group if X is fibrewise cogroup-like. 

If X is a fibrewise coHopf space and Y is a fibrewise Hopf space then 
the multiplication on 7r~[Xj Yj determined by the fibrewise comultiplication 
on X coincides with the multiplication determined by the fibrewise multi­
plication on Y. Furthermore, the multiplication is both commutative and 
associative. 

By the distributive law for the fibrewise smash product, a fibrewise co­
multiplication on X determines a fibrewise comultiplication on X I\B Y for all 
fibre wise pointed spaces Y. If the former is fibrewise homotopy-commutative 
then so is the latter, and similarly with the other conditions. Thus X I\B Y 
is fibrewise cogroup-like if X is fibrewise cogroup-like. 

For example, take X = 8 1 X B, which is fibrewise cogroup-like since 8 1 is 
cogroup-like. We see that the reduced fibrewise suspension E~ (Y) is fibrewise 
cogroup-like for all fibrewise pointed spaces Y. 

A fibrewise group-like space G may be described as a fibrewise topological 
group up to fibrewise pointed homotopy. In a similar manner we may describe 
a fibrewise pointed map 

r: E XB G -t E, 

for any fibrewise pointed space E, as a fibrewise pointed action up to fibrewise 
pointed homotopy if the following two conditions are satisfied. First 

r 0 (r x 1) ~~ r 0 (1 x m) : E XB G XB G -t E, 

where m denotes the fibrewise multiplication on G. Second 

r 0 (1 x c) 0 Ll : E -t E, 

where c : E -t G is fibrewise constant. For example, let Z be a fibrewise 
pointed space. Juxtaposition of fibrewise paths defines a fibrewise action, 
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up to fibrewise pointed homotopy, of the fibrewise loop-space [}B(Z) on the 
fibrewise path-space PB(Z). 

Fibrewise fibre bundles over a (reduced) fibrewise suspension can, of 
course, be classified by the general method, but there is also a direct ap­
proach as follows. Consider a fibrewise open group G. Let Y be a fibrewise 
pointed space with projection q : Y -+ B. Each section a: B -+ G transforms 
a fibrewise pointed map ¢ : Y -+ G into a fibrewise pointed map ¢' : Y -+ G, 
where 

¢'(y) = aq(y).¢(y).(aq(y))-l. 

In this way the group 1TB[B; G] of vertical homotopy classes of sections of G 
acts on the group 1T~ [Y; G] of fibrewise pointed homotopy classes of fibrewise 
pointed maps of Y into G. 

Now given ¢ as above, we can construct a principal fibrewise G-bundle 
E( ¢) over the reduced fibrewise suspension X = EB (Y) by taking two copies 
of the fibrewise product cB (Y) x B G and identifying Y x B G in the first copy 
with Y x B G in the second copy through the relation 

(y,g) "" (y,g.¢(y)) 

Here CB (Y) denotes the reduced fibrewise cone on Y with Y embedded as 
a subspace in the usual way. The principal fibrewise G-bundle E(¢) over X 
thus constructed is obviously numerable. It is not difficult to show that ev­
ery numerable fibre wise G-bundle over X is equivalent to E(¢) for some ¢. 
Moreover, if ¢ and ¢' are related as above then E(¢) is equivalent to E(¢'), 
also the equivalence class of E( ¢) depends only on the fibrewise pointed ho­
motopy class of ¢. Finally, if E(¢) is equivalent to E('IjJ), for some fibrewise 
pointed map 'IjJ, then there exists some section a such that 'IjJ is fibrewise 
pointed homotopic to ¢', where ¢' is obtained from ¢ by transforming un­
der the action of a. We conclude, therefore, that the equivalence classes of 
numerable principal fibrewise G-bundles over EB (Y) correspond precisely to 
the factor set of 1T~[Y; G] with respect to the action of 1TB[B; G]. When G 
is vertically connected, of course, the correspondence is with 1T: [Y j G] itself. 

12 Fibrewise pointed cofibrations 

Basic notions 

Not much adjustment is necessary to adapt the basic theory of Section 4 to 
the fibrewise pointed case. Thus let A be a fibrewise pointed space over B. 
By a fibrewise pointed cofibre space under A we mean a fibrewise pointed 
space X together with a fibrewise pointed map u : A -+ X with the following 
fibrewise pointed homotopy extension property. Let E be a fibrewise pointed 
space, let f : X -+ E be a fibrewise pointed map, and let gt : A -+ E be 
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a fibrewise pointed homotopy of f 0 u. Then there exists a fibrewise pointed 
homotopy ht : X -+ E of f such that gt = ht 0 u. 

Instead of describing X as a fibrewise pointed cofibre space under A we 
may say that u is a fibrewise pointed cofibration. An important special case 
is when A -is a subspace of X and u is the inclusion. In that case we de­
scribe (X, A) as a fibrewise pointed cofibred pair when the above condition is 
satisfied. Note that (X, B) and (X, X) are fibrewise pointed cofibred pairs. 

Of course, the fibrewise pointed map u : A -+ X is a fibrewise pointed 
cofibration if u is a fibrewise cofibration. In fact the converse holds, by Propo­
sition 4.1, when A is a closed subspace of X and u the inclusion. 

If X is a fibrewise pointed cofibre space under A the push-out 7r.X is 
defined, as a fibrewise pointed space over B, where 7r is the projection. We 
refer to 7r.X as the fibrewise pointed cofibre of the fibrewise cofibre space. 
When A ~ X and u is the inclusion the fibrewise pointed cofibre is just the 
fibre wise collapse X/BA. 

The Puppe sequence 

The remainder of this section is devoted to an outline of the fibrewise version 
of the well-known exact sequence of D. Puppe. This concerns sequences 

Xl~X2~X3~··· 
It h 

offibrewise pointed spaces and fibrewise pointed maps, over B. In this context 
we describe such a sequence as exact if the induced sequence 

7r~[Xl; E) +--7r~[X2; E) +--7r~[X3; E) +-- ... 
I; 12 

of pointed sets and pointed functions is exact, for all fibrewise pointed spaces 
E. 

Given a fibrewise pointed map ¢ : X -+ Y, where X and Y are fibrewise 
pointed spaces over B, the reduced fibrewise mapping cone e~ (¢) of ¢ is 
defined to be the push-out of the cotriad 

eN(X)+--x ~Y. 
UI ,p 

Now e~(¢) comes equipped with a fibrewise embedding 

¢' : Y -+ eN (¢), 

and we easily see that the sequence 

7r~[X; E)+--7r~[Y; E)+--7r~[eN(¢); E) ,p. ,p'. 

of pointed sets is exact, for all fibrewise pointed spaces E. Obviously, the 
procedure can be iterated so as to obtain exact sequences of unlimited length, 
but that in itself is not particularly interesting. 
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To understand the situation better, consider the case of a fibrewise pointed 
cofibration U : A -t X, where A and X are fibrewise pointed spaces over B. 
We assert that the natural projection 

eN(u) -t eN(U)/BeN(A) = X/BA 

is a fibrewise pointed homotopy equivalence. 
For consider the fibrewise pointed null-homotopy gt : eN(A) -t eN(u) of 

the inclusion given by gt(a, s) = (a, s(l- t)), where s, tEl and a E A. Since 
U is a fibrewise pointed cofibration there exists a fibrewise pointed homotopy 
ht : X -t eN(u) of the inclusion. Now gt and ht together form a fibrewise 
pointed homotopy of the identity on eN(u) which deforms eN (A) over itself 
into the fibrewise constant. Hence we obtain a fibrewise pointed homotopy 
inverse of the natural projection, as required. Notice, incidentally, that the 
fibrewise pointed homotopy equivalence thus constructed transforms u' into 
the natural projection X -t X/BA, where u' is derived from u in the way 
that ¢' is derived from ¢. 

Returning to the general case, where ¢ : X -t Y, we next show that 
the embedding ¢' : Y -t eN (¢) is a fibrewise pointed cofibration. In fact 
the embedding X -t eN (X) is a fibrewise pointed cofibration, from first 
principles, and so the conclusion follows from the observation that the push­
out of a fibrewise pointed cofibration is again a fibrewise pointed cofibration. 

By combining these last two results we see that the reduced fibrewise 
mapping cone eN (¢') is equivalent to the reduced fibrewise suspension 

EN(X) = eN(¢)/BY = eN(¢')/BeN(¢), 

up to fibrewise pointed homotopy equivalence. In the process, moreover, (¢')' 
is transformed into a fibrewise pointed map 

¢" : eN(¢) -t EN(X). 

Repeating the procedure we find that eN (( ¢')') is equivalent to the reduced 
fibrewise suspension EN(Y), in the same sense. In the process, moreover, 
(( ¢')')' is transformed into the reduced fibrewise suspension 

EN(¢) : EN(X) -t EN(Y) 

of ¢, precomposed with the fibrewise reflection in which (x, t) I-t (x,l - t). 
This last does not affect the exactness property and so we arrive at an exact 
sequence of the form 

X -----t Y -----t eN ( ¢) -----t EN (X) -----t EN (Y) -----t ... 
iP Eg(iP) 

When the given fibrewise pointed map ¢ is varied by a fibrewise pointed 
homotopy the exact sequence varies similarly. In particular, if ¢ is fibrewise 
pointed null-homotopic the sequence has the same fibrewise pointed homo­
topy type (in an obvious sense) as in the case of the fibrewise constant map, 
where it reduces to 
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A special case 

For example, take B = sn (n 2:: 1). We regard sn V Si (i = 1,2, ... ) as 
a fibrewise pointed space over sn with projection the identity on sn and 
the constant on Si, and with section the first insertion of the coproduct. 
Clearly, fibrewise pointed maps of sn V sq into sn V sr correspond precisely 
to pointed maps of sq into sn V sr, and similarly with homotopies. Note 
that the correspondence is additive, in the sense that the fibrewise track sum 
of fibrewise pointed maps corresponds to the track sum of the corresponding 
pointed maps. Now a pointed map I : sq ~ sr determines a pointed map 
f' : sq ~ sn V sr, by composition with the second insertion of the coproduct, 
and hence a fibrewise pointed map f" : sn V sq ~ sn V sr. If we replace I 
by its reduced suspension Sq+l ~ srH, in this process, then clearly I" is 
replaced by its reduced fibrewise suspension sn V Sq+l ~ sn V srH. 

The following remark, however, is not quite so obvious. Take q = n + r - 1 
and consider the fibrewise pointed map 

9 : sn V sn+r-l ~ sn V sr 

which is given by the Whitehead product of the identity Ln on sn with the 
identity Lr on sr. We assert that the reduced fibrewise suspension 

sn V sn+r ~ sn V srH 

of 9 is given by the Whitehead product of the identity Ln on sn with the 
identity LrH on srH. This can most easily be seen by observing that sn x sr 
can be interpreted either as the reduced fibrewise mapping cone of 9 or the 
reduced ordinary mapping cone of the first Whitehead product, while the 
reduced fibrewise suspension sn X srH of sn x sr can be interpreted either 
as the reduced fibrewise mapping cone of the reduced fibrewise suspension of 
9 or the reduced ordinary mapping cone of the second Whitehead product. 

More generally, consider the reduced fibrewise mapping cone 

Z = en+r U (sn V sr), 

where the map 9 is of homotopy class 

for a: E 7rn+r -l (sr) and k E Z. By combining our two observations we see 
that the reduced fibrewise suspension 

can be constructed similarly using a map of homotopy class 
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where E* denotes the suspension homomorphism. 
The conclusion we arrive at, then, is that there is an exact sequence 

sn V sn+r-l -+ sn V sr -+ Z -+ sn V sn+r -+ sn V sr+l -+ E~: (Z) -+ ... 

Hence if E is a fibrewise pointed space with fibrewise fibre F the sequence 

is exact, where fibrewise homotopy groups have been replaced by ordinary 
homotopy groups as explained above. Further details of the structure of this 
exact sequence, with some calculations, can be found in [81]. 

13 Fibrewise pointed fibrations 

Basic notions 

Let X be a fibrewise pointed space over B. By a fibrewise pointed fibre space 
over X we mean a fibrewise pointed space E together with a fibrewise pointed 
map p : E -+ X with the following fibrewise pointed homotopy lifting prop­
erty. Let A be a fibrewise pointed space, let / : A -+ E be a fibrewise pointed 
map, and let gt : A -+ X be a fibrewise pointed homotopy such that go = pol. 
Then there exists a fibrewise pointed homotopy ht : A -t E of / such that 
gt = po ht . For example, the fibrewise product X XB T is a fibrewise pointed 
fibre space over X for each fibrewise pointed space T. In particular, take 
X = B; then every fibrewise pointed space over B is a fibrewise pointed fibre 
space. 

Returning to the general case, instead of describing E as a fibrewise 
pointed space over X we may describe p as a fibrewise pointed fibration. 
The fibrewise fibre is the pull-back s* E, where s : B -t X is the section of 
X. 

The reader may feel that the introduction of the term fibrewise pointed 
fibration is superfluous since it follows from Proposition 13.1 that a fibrewise 
pointed map is a fibrewise pointed fibration if and only if it is a fibrewise 
fibration. Nevertheless it seems to improve the look of the theory, if not the 
substance, if the term is available for use. 

One can expect to find fibrewise pointed counterparts to the other results 
of Section 5, such as the theorems of Dold. First we have 

Proposition 13.1 Let p : E -+ X be a fibrewise pointed fibration, where E 
and X are fibrewise pointed spaces over B. Let () : E -t E be a fibrewise 
pointed map over X and suppose that (), as a fibrewise pointed map over B, 
is fibrewise pointed homotopic to the identity. Then there exists a fibrewise 
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pointed map (J' : E -+ E over X such that (J 0 (J' is fibrewise pointed homotopic 
to the identity. 

Theorem 13.2 Let X be a fibrewise pointed space over B, and let E and 
F be fibrewise pointed fibre spaces over X. Let ¢ : E -+ F be a fibrewise 
pointed map over X. Suppose that ¢, as a fibrewise pointed map over B, 
is a fibrewise pointed homotopy equivalence. Then ¢ is a fibrewise pointed 
homotopy equivalence over X. 

In the fibrewise pointed theory the terms section and vertical homotopy 
are used in the fibrewise pointed sense, as in 

Proposition 13.3 Let p : E -+ X be a fibrewise pointed fibration, where E 
and X are fibrewise pointed spaces over B. Let sand s' be fibrewise pointed 
homotopic sections of E over X. Then sand s' are vertically homotopic. 

The proofs are straightforward adaptations of the proofs of the corre­
sponding results in Section 5. Similarly we have the fibrewise pointed coun­
terpart of the key result about induced fibrewise fibrations, as follows. 

Theorem 13.4 Let p : E -+ X be a fibrewise pointed fibration, where E and 
X are fibrewise pointed spaces over B. Let (J, ¢ : X' -+ X be fibrewise pointed 
homotopic fibrewise pointed maps, where X' is a fibrewise pointed space over 
B. Then (J* E and ¢* E have the same fibrewise pointed homotopy type over 
X'. 

Corollary 13.5 Let p : E -+ X be a fibrewise pointed fibration, where E and 
X are fibrewise pointed spaces over B. If X is fibrewise pointed contractible 
over B then E has the same fibrewise pointed homotopy type over X as the 
fibrewise product X x B T for some fibrewise pointed space T over B. 

The Nomura sequence 

As Eckmann and Hilton [56] have pointed out, this is an area where the con­
cept of duality between pointed fib rations and pointed cofibrations operates 
successfully, and this is also true in the fibrewise theory. For example, let 
us dualize the fibrewise version of the exact sequence of Section 12, in other 
words obtain a fibrewise version of the Nomura sequence. 

Suppose that we have a sequence 

... ---tX3 ---tX2 ---tX1 
/2 h 

of fibrewise pointed spaces and fibrewise pointed maps. In this context let us 
describe such a sequence as exact if the induced sequence 
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of pointed sets and pointed functions is exact, for all fibrewise pointed spaces 
A. 

For any fibrewise pointed space X over B the fibrewise path-space PBX 
is defined as 

PB(X) = map~(B x I, X). 

Thus the fibre of PBX over the point b of B is just the space of paths in 
the fibre Xb originating at the basepoint given by the section. The fibrewise 
pointed map PB X ~ X given by the ends of the paths is a fibrewise pointed 
fibration. Note that if X is a fibrewise pointed bundle over B with fibre Xo 
then PBX is a fibrewise pointed bundle over B with fibre P Xo, the ordinary 
space of based paths. 

Given a fibrewise pointed map ¢ : Y ~ X, where X and Yare fibre­
wise pointed spaces, the fibrewise mapping fibre (or fibrewise homotopy-fibre) 
FB(¢) of ¢ is defined as the pull-back ¢* PB(X). In other words, it is the 
fibrewise fibre of the fibrewise fibration W B (¢) -t X (Proposition 5.2). The 
fibrewise mapping fibre is a fibrewise pointed space and comes equipped with 
a fibrewise pointed map 

It is easy to see that the sequence 

7r~[Aj FB(¢)]---+ 7r~[Aj Y]---+ 7r~[Aj X] 
¢: ¢. 

of pointed sets and pointed functions is exact, for all fibrewise pointed spaces 
A. Obviously, the procedure can be iterated so as to obtain exact sequences 
of unlimited length but that in itself is not particularly interesting. 

To understand the situation better consider the case of a fibrewise pointed 
fibration p : E ~ X, where E and X are fibrewise pointed spaces over B. 
The fibrewise fibre F is included as a subspace of the fibrewise mapping fibre 
FB(p), We assert that the inclusion is a fibrewise pointed homotopy equiva­
lence. For consider the fibre wise pointed null-homotopy gt : FB(P) ~ PB(X) 
of the second projection, given by 

gt(~, A)(S) = A(s(l - t)). 

Since P is a fibrewise pointed fibration there exists a fibrewise pointed ho­
motopy ht : FB(P) -t E of the first projection. Now gt and ht together form 
a fibrewise pointed deformation of FB(P) into F, keeping F fixed. Therefore 
FB(p) and F have the same fibrewise pointed homotopy type as asserted. In 
fact we have described a rather specific construction for the fibrewise pointed 
homotopy equivalence, and it is this construction which we shall be using in 
what follows. 

Returning to the general case, where ¢ : Y -t X, we next show that the 
fibrewise pointed map ¢' : FB (¢) ~ Y defined earlier is a fibrewise pointed 
fibration. In fact since the evaluation PB(X) -t X is a fibrewise pointed 
fibration this follows at once from the Cartesian property of pull-backs. 
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By combining these last two results we see that the fibrewise mapping 
fibre FB(</>') has the same fibrewise pointed homotopy type as the fibrewise 
loop-space nB(y). With the specific construction described above the process 
transforms (</>')' into a fibrewise pointed map 

Repeating the procedure we find that FB«</>')') has the same fibrewise 
pointed homotopy type as nB(X), and in the process «<//)')' is transformed 
into 

n B(</» : nB(y) -t nB(X), 

apart from a reflection t f-t 1- t in the domain of the fibrewise loops. This last 
does not affect the exactness property and so we arrive at an exact sequence 
of the form 

... -t nB(y) ----t nB(X) ----t FB(</»----tY ----t X. 
{JB(</» </> 

Now let us return to the situation where E is a fibrewise pointed fibre 
space over X. Then a fibrewise action (up to fibrewise pointed homotopy) of 
the fibrewise loop-space nB(X) on the fibrewise fibre F can be constructed 
as follows. Let f denote the composition 

F XB nB(X) ----tF~E, 
11"1 J 

where j is the inclusion, and let gt denote the composition 

F XB nB(X) ----t {}B(X) ----t X, 
11"2 p, 

where Pt is the evaluation. Then po f = go, the fibrewise constant, and so we 
may lift gt to a fibrewise pointed homotopy 

of f into a fibrewise pointed map r, as required. It is not difficult to show 
that the fibrewise pointed homotopy class of r is independent of the choice 
of lifting. Moreover, r satisfies the requirements for a fibrewise action, up 
to fibrewise pointed homotopy, so that for each fibrewise pointed space A 
the group 7rB[A; nB(X)] acts on the pointed set 7rB[A; F] in a way which 
depends only on the fibrewise pointed fibration. 

Using the action thus defined we can say rather more about the properties 
of the exact sequence in the case of the fibrewise pointed fibration p : E -t X. 
In the first place the hitherto unidentified pointed function in the sequence 
is induced by the fibrewise pointed map s : {}B(X) -t F, where s is given in 
terms of r by the composition 

{}B(X) ----t F XB nB(X) ----t F. 
U2 r 

Specifically, the exact sequence takes the form 
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... ~ 7r~[Aj !1B(E)] ~7r~[Aj !1B(X)] ~ 
.G(p). 8. 

7r~[Aj F] ~7r~[Aj E] ~7r~[Aj X]. 
3. p. 

The terms of the sequence are groups, linked by homomorphisms, until we 
reach the last three. Even there certain algebraic properties still hold, as 
stated in 

Proposition 13.6 In the above sequence: 
(i) S.{3I = S.{32, where (3I,{32 E 7r~[Aj !1B(X)], if and only if {3I - {32 E 

(!1p)*7r~[Aj !1B(E)]i 
(ii) i.6 = i.6, where 6,6 E 7r~[Aj F], if and only if 6 = 6·{3 for some 
(3 E 7r~[Aj !1B(X)]. 

Here the dot refers to the action of 7r~[Aj !1B(X)] on 7r~[Aj F] described 
above. For the proofs of (i) and (ii), which are quite elementary, we just 
dualize the proofs of the corresponding results for cofibrations, as given in 

. [119], and then make a fibrewise version in a routine fashion. 

An application 

Proposition 13.7 Let p : E ~ X be a fibrewise pointed fibration such that 
the fibrewise fibre F is fibrewise pointed contractible in E. Then F XB !1B(E) 
has the same fibrewise pointed homotopy type as !1B(X). 

It follows, of course, that F is a fibrewise Hopf spacej in fact this will 
emerge at an early stage in the proof, which is in several steps. 

First let it : F ~ E be a fibrewise pointed homotopy of the fibrewise 
constant c into the inclusion j. Then a fibrewise pointed map d: F ~ !1B(X) 
is given by the right adjoint of p 0 it. We assert that the composition 

F XB !1B(E) ~ !1B(X) XB !1B(X) ~ !1B(X) 
dx.G(p) m 

is a fibrewise pointed homotopy equivalence. Here m, of course, is the fibre­
wise multiplication given by juxtaposition of loops. 

Before proving this let us show that s is a left inverse of d, up to fibrewise 
pointed homotopy. For let Vt : F ~ E be the composition 

F~FxB!1B(X)~E, 
u20d h t 

where ht is the fibrewise pointed homotopy used in the definition of r. Then 
Vo = io and POVt = gt oCT2 od = pojt. Now iI induces the identity on F while 
VI induces Sod. Hence sod is fibrewise pointed homotopic to the identity, 
from the fibrewise pointed homotopy lifting condition. At this stage we can 
already deduce that F is a fibrewise Hopf space, since !1B(X) is a fibrewise 
Hopf space. 
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For the next step we consider, for various fibrewise pointed A, the exact 
sequence 

... -+ 1I"i:[Aj DB(E)] (Op) 1I"i:[Aj DB(X)] ~ 

1I"i:[Aj F] ~ 1I"i:[Aj E] ~ 1I"i:[Aj X]. 
J. p. 

First take A to be DB(X). Since 5*{1} = 5*{d 0 5}, by what we have 
just proved, there exists by Proposition 13.6(i) a fibrewise pointed map 
k : DB(X) -+ DB(E) such that the identity on DB(X) is fibrewise pointed 
homotopic to (do 5).(D(p) 0 k). Here, as before, the dot denotes the operation 
determined by T. Now let f: DB(X) -+ F XB DB (E) be the fibrewise pointed 
map with components 11"1 0 f = 5 and 11"2 0 f = k. We assert that f is an inverse 
of m 0 (d x D(P)), up to fibrewise pointed homotopy. 

Clearly, f is an inverse on the right, since 

m 0 (d x D(p)) 0 f = (d 0 5).(D(p) 0 k), 

which is fibrewise pointed homotopic to the identity. So it remains to be 
shown that 

is fibrewise pointed homotopic to the identity. Since 11"1 of = 5 and 11"2 of = k, 
by definition of f, what we have to prove is first that 

50 m 0 (d x D(P)) : F XB DB(E) -+ F 

is equivalent to 11"1, up to fibrewise pointed homotopy, and secondly that 
k 0 m 0 (d x D(p)) : F XB DB(E) -+ DB(E) is equivalent to 11"2, in the same 
sense. 

To establish the first relation observe that m 0 (d x D(P)) is fibrewise 
pointed homotopic to (d 0 1I"1).(D(p) 011"2). Thus the elements 

{m 0 (d x D(p))} , {d 0 1I"d E 1I"i:[F XB DB(E)j DB(X)] 

differ by the action of an element of 

By Proposition 13.6(ii), therefore, the elements have the same image under 

5* : 1I"i:[F XB DB(E)j DB(X)]-+ 1I"i:[F XB DB(E)j F]. 

In other words 50 m 0 (d x D(p)) is fibrewise pointed homotopic to 50 d 0 11"1 
and hence to 11"1, as asserted. 

Now 5 is a left inverse of d, up to fibrewise pointed homotopy, as we have 
seen, and so D(5) is a left inverse of D(d), in the same sense. Hence the 
homomorphism 
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is surjective, for all A, and so by exactness the homomorphism 

(ilp). : 1I"B[Aj ilB(E)] --t 1I"B[Aj ilB(X)] 

is injective. Taking A to be F XB ilB(E) we see that the second relation 
will follow if we can show that il(P) 0 k 0 m 0 (d x il(P)) is fibrewise pointed 
homotopic to il(P) 011"2. In fact m 0 (d x il(P)) is fibrewise pointed homotopic 
to 

(d 0 s 0 m 0 (d x il(P)).(il(P) 0 k 0 m 0 (d x il(P)) 

from the relation by which k is defined, and hence to 

(d 0 1I"1).(il(p) 0 k 0 m 0 (d x il(P)), 

by the relation we have just proved. But m 0 (d x il(P)) is fibrewise pointed 
homotopic to (d01l"1).(il(p)01l"2) , and so we conclude that il(p)okomo(dx il(P)) 
is fibrewise pointed homotopic to il(P) 011"2, as required. This completes the 
proof of Proposition 13.1. 

The argument given here is essentially just a fibrewise version of that 
given, with more detail, by Eckmann and Hilton [56] in the ordinary theory. 
As they observe, the dual result is also noteworthy. In the fibrewise version 
of the dual we begin with a fibrewise pointed space A and a fibrewise pointed 
cofibre space X under A with fibrewise cofibre Y. If the natural projection 
X --t Y is fibrewise pointed null-homotopic the conclusion is that EB(A) has 
the same fibrewise pointed homotopy type as Y VB EB(X), in particular Y 
is a fibrewise coHopf space. 

14 Numerable coverings (continued) 

Some pointed versions of earlier results 

Recall that in the case of a fibrewise pointed space the members of a covering 
are required to contain the section. That implies, of course, that a point-finite, 
a fortiori locally finite, covering has to be finite. Hence numerable coverings 
are necessarily finite, in the fibrewise pointed case. 

As we have already seen there are fibrewise pointed versions of many of 
our earlier results. Here we reconsider those stated in Section 6 from this point 
of view. First we take Dold's theorem (Theorem 6.2) of which the fibrewise 
pointed version is 

Theorem 14.1 Let 4J: X --t Y be a fibrewise pointed map, where X and Y 
are fibrewise pointed spaces over B. Suppose that B admits a numerable cov­
ering such that the restriction 4Jv : Xv --t Yv is a fibrewise pointed homotopy 
equivalence over V for each member V of the covering. Then 4J is a fibrewise 
pointed homotopy equivalence over B. 
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Essentially this modification of Dold's theorem is due to Eggar [58] (see 
also [59] and [60]). Although Eggar, in his version, assumes that B is para­
compact there is a result of Mather [101] which enables this restriction to 
be dispensed with. (The relevant result is quoted, more conveniently, in [46], 
p.354.) 

Corollary 14.2 Let p : E -+ X and q : F -+ X be fibrewise pointed fi­
brations, where X is a fibrewise pointed space over B. Let ¢ : E -+ F be a 
fibrewise pointed map such that q 0 ¢ = p. Suppose that the pull-back 

s* ¢ : s* E -+ s* F 

is a fibrewise pointed homotopy equivalence over B, where s is the section 
of X. Also suppose that X admits a numerable fibrewise pointed categorical 
covering. Then ¢ is a fibrewise pointed homotopy equivalence over X. 

Since each member V of the covering is fibrewise pointed categorical it 
follows from Corollary 13.5 that Ev and Fv are fibrewise pointed trivial 
over V. Hence ¢v is a fibrewise pointed homotopy equivalence over V, since 
the inclusion is fibrewise pointed homotopic to the fibrewise constant. Now 
Corollary 14.2 follows at once from Theorem 14.1. 

Corollary 14.3 Let E be a fibrewise pointed space and let p : E -+ X be a 
fibrewise pointed map. Suppose that the restriction p-l V -+ V is a fibrewise 
pointed fibration for each member V of a numerable covering of X. Then p 
is a fibrewise pointed fibration. 

This implies, of course, that numerable fibrewise pointed fibre bundles 
are fibrewise pointed fibrations. The deduction of Corollary 14.3 from Theo­
rem 14.1 is straightforward. 

We now turn to some of the results of tom Dieck [42], which we state 
without proofs. 

Theorem 14.4 Let ¢ : E -+ F be a fibrewise pointed map, where E and F 
are fibrewise pointed spaces over B. Let {Uj} and {Vi} be similarly indexed 
numerable coverings of E and F, which are closed under intersections. As­
sume that ¢Uj ~ Vi for each index j, and that each of the fibrewise pointed 
maps Uj -+ Vi determined by ¢ is a fibrewise pointed homotopy equivalence. 
Then ¢ is a fibrewise pointed homotopy equivalence. 

Theorem 14.5 Let p : E -+ X be a fibrewise pointed map, where E and X 
are fibrewise pointed spaces over B. Let {Xj} be a numerable covering of X 
and let {Ej } be a similarly indexed family of subsets of E, both families being 
closed under intersections. Assume that pEj ~ Xj and that E j is fibrewise 
pointed contractible over Xj, for each index j. Then E admits a section over 
X. 
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From Theorem 14.5 we can deduce another result about fibrewise pointed 
fibrations, which it is interesting to compare with Corollary 14.3. 

Theorem 14.6 Let p : E ~ X be a fibrewise pointed map, where E and X 
are fibrewise pointed spaces over B. Let {Ej} be a numerable covering of E 
which is closed under intersections. Assume that the restriction Pj : Ej ~ X 
is a fibrewise pointed fibration for each index j. Then p is a fibrewise pointed 
fibration. 

Similar results hold for weak fibrewise pointed fibrations. 

15 Fibrewise pointed mapping-spaces 

The adjoint of the fibrewise smash product 

In this section our aim is to show that, subject to certain conditions, the 
fibrewise pointed mapping-space provides an adjoint to the fibrewise smash 
product. The results we state here are all more or less straightforward conse­
quences of the corresponding results for the non-pointed theory proved earlier 
in Section 8 and so proofs can for the most part be omitted. The restrictions 
which appear are, of course, inconvenient. To avoid them a fibrewise version 
of Steenrod's 'convenient category' may be used. The necessary machinery 
may be found in [91]; we do not reproduce it here. 

Let X and Y be fibrewise pointed spaces over B. Assume, as before, that 
the sections are closed. By the fibrewise pointed mapping-space mapZ(X, Y) 
we mean the subspace of the fibrewise mapping-space map B (X, Y) consisting 
of pOinted maps of the fibres. Here the basepoints in the fibres are determined 
by the sections in the usual way. The section t of Y determines the section 
t. of mapZ(X, Y) through 

B = mapB(X, B)~ mapB(X, V). 

Note that t. is closed, by Proposition 8.5, when X is locally sliceable. 
So far as naturality is concerned we simply observe, as this stage, that a 

continuous fibrewise bijection 

a# : mapZ: (a· X, a·Y) ~ a*mapZ(X, Y) 

is defined for each space B' and map a : B' ~ B. 
From Proposition 8.1 we have at once 

Proposition 15.1 Let X and Y be fibrewise pointed spaces over B. Then the 
fibrewise pointed mapping-spaces mapZ(X, B) and mapZ(B, Y) are equiva­
lent to B, as fibrewise pointed spaces. 
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Let X, Y and Z be fibrewise pointed spaces over B. Precomposition with 
a fibrewise pointed map () : X -7 Y determines a fibrewise pointed map 

()* : map~(Y, Z) -7 map~(X, Z), 

while postcomposition with a fibrewise pointed map tP : Y -7 Z determines 
a fibrewise pointed map 

From Propositions 8.4 and 8.5 we obtain 

Proposition 15.2 Let () : X -7 Y be a proper fibrewise pointed surjection, 
where X and Y are fibrewise pointed spaces over B. Then the fibrewise pointed 
map 

()* : map~(Y, Z) -7 map~(X, Z) 

is an embedding for all fibrewise pointed Z. 

Proposition 15.3 Let tP : Y -7 Z be a fibrewise pointed embedding, where Y 
and Z are fibrewise pointed spaces over B. Then the fibrewise pointed map 

tP* : map~(X, Y) -7 map~(X, Z) 

is an embedding for all fibrewise pointed spaces X. If in addition tP is closed 
then tP* is closed provided X is locally sliceable. 

Given a finite family {Xj} of fibrewise pointed spaces over B the natural 
projection 

llXj -7 VXj 
B B 

of the fibrewise sum onto the fibrewise wedge product is a fibrewise pointed 
map. Hence and from Proposition 8.6 we obtain 

Proposition 15.4 Let {Xj} be a finite family of fibrewise pointed spaces 
over B. Then the natural fibrewise pointed map 

mapZ(VXj,Y) -711mapZ(Xj ,Y) 
B B 

is an equivalence for all fibrewise pointed spaces Y. 

Here the ith component of the fibrewise pointed map is induced by 0';, 
where O'i : Xi -7 VB Xj is the standard insertion. 
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Adjoints 

We now begin our account of the adjoint relationship between the fibrewise 
pointed mapping-space and the fibrewise smash product, with 

Proposition 15.5 Let X, Y and Z be fibrewise pointed spaces over B. If 
the fibrewise pointed function h : X I\B Y -+ Z is continuous then so is the 
fibrewise pointed function k : X -+ map~ (Y, Z), where 

k(x)(y) = h(x,y) (x E Xb, Y E Yb, bE B). 

This follows at once from Proposition 8.7. We go on to prove 

Proposition 15.6 Let Xi and Yi (i = 1, 2) be fibrewise pointed spaces over 
B, with Xi fibrewise compact regular. Then the fibrewise pointed injection 

map~(Xl' Y1) I\B map~(X2' Y2 ) -+ map~(Xll\l X 2 , Y1 I\B Y2 ), 

given by the fibrewise smash product, is continuous. 

For consider the diagram shown below, where p is the generic fibrewise 
quotient map, where ~ is given by the fibrewise product, and where TJ is given 
by the fibrewise smash product. 

map~(Xb Y1) XB map~(X2' Y2 ) -i-t map~(Xl XB X 2 , Y1 XB Y2 ) 

map~(Xl' Y1 ) I\B map~(X2' Y2 ) ----t map~(Xl I\B X 2 , Yi I\B Y2 ) 
1/ 

By Proposition 8.11 ~ is continuous, also p. and p. on the right are contin­
uous, so that p. 0 p. 0 ~ is continuous. Hence TJ is continuous, since p is a 
fibrewise quotient map. 

Fibrewise evaluation determines a fibrewise pointed function 

for all fibrewise pointed spaces X, Y over B. More generally, fibrewise com­
position determines a fibrewise pointed function 

map~(Y, Z) I\B map~(X, Y) -+ map~(X, Z) 

for all fibrewise pointed spaces X, Y, Z over B. From Proposition 8.12 we 
obtain 
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Proposition 15.7 Let Y be a fibrewise locally compact regular fibrewise 
pointed space over B. Then the fibrewise composition function 

map~(Y, Z) AB map~(X, Y) -t map~(X, Z) 

is continuous for all fibrewise pointed spaces X and Z. 

Corollary 15.8 Let X and Y be fibrewise pointed spaces over B, with X 
fibrewise locally compact regular. Then the fibrewise evaluation function 

map~(X, Y) AB X -t Y 

is continuous. 

Furthermore, from Corollary 8.14 we obtain 

Proposition 15.9 Let X, Y and Z be fibrewise pointed spaces over B, with Y 
fibrewise locally compact regular. Suppose that the fibrewise pointed function 
k : X -t map~(Y, Z) is continuous. Then so is the fibrewise pointed function 
h : X AB Y -t Z, where 

h(x, y) = k(x)(y) (x E Xb, Y E Yb, bE B). 

When hand k are related as in Proposition 15.5 or 15.9 we refer to h as 
the left adjoint of k, and to k as the right adjoint of h. 

In particular, take X = B x T, where T is pointed. Then for any fibrewise 
pointed space Y over B a fibrewise pointed map 

(B x T) AB Y -t Z 

determines a fibrewise pointed map 

through the standard formula, and the converse holds when T is locally com­
pact regular. 

This relationship holds, in particular, when T = i, and shows that fibre­
wise pointed maps of C: (Y) into Z correspond precisely to fibrewise pointed 
maps of Y into PB(Z), the fibrewise path-space. It also holds when T is the 
circle 1/ i, and shows that fibrewise pointed maps of 17: (Y) into Z corre­
spond precisely to fibrewise pointed maps of Y into DB(Z), the fibrewise 
loop-space. 
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The exponential law 

Returning to the general case we obtain from Proposition 8.15, the exponen­
tial law for fibrewise mapping-spaces, the corresponding result for fibrewise 
pointed mapping-spaces as follows. 

Proposition 15.10 Let X, Y and Z be fibrewise pointed spaces over B, with 
X and Y fibrewise compact regular. Then the fibrewise pointed function 

map~(X I\B Y, Z) ~ map~(X, map~(Y, Z)), 

defined by taking ad joints, is an equivalence of fibrewise pointed spaces. 

Note that fibrewise compact is the condition here, rather than fibrewise 
locally compact, because in using Proposition 8.4 we need the natural pro­
jection from X x B Y to X I\B Y to be proper. 

Proposition 15.11 Let X, Y be fibrewise pointed spaces over B, with X 
fibrewise locally compact regular. Then the continuous fibrewise pointed bijec­
tion 

a# :map~:(a*X,a*Y) ~a*map~(X,y) 

is an equivalence of fibrewise pointed spaces for each space B' and map a : 
B'~B. 

This follows at once from Proposition 8.16. In particular, replace B by * 
and replace B', X, Y by B, Xo, Yo, respectively, where Xo, Yo are pointed 
spaces. We deduce that for any space B there is an equivalence, as fibrewise 
pointed spaces over B, between map~(Xo xB, Yo xB) and map*(Xo, Yo) xB, 
provided Xo is locally compact regular. 

The space of fibrewise pointed maps 

Returning to the general case, let us compare the pointed space MAP~(X, Y) 
of fibrewise pointed maps ¢J : X ~ Y with the pointed space r(map~(X, V)) 
of sections s : B ~ map~ (X, Y). Here both the pointed space of sections and 
the pointed space of fibrewise pointed maps are endowed with the compact­
open topology. Consider the pointed function 

u : MAP~(X, Y) ~ r(map~(X, V)) 

which transforms the fibrewise pointed map ¢J into the pointed section s given 
by s(b) = ¢Jb (b E B). Clearly u is injective. From Proposition 8.17 we obtain 

Proposition 15.12 Let X, Y be fibrewise pointed spaces over B, and let 

u : MAPZ(X, Y) ~ r(mapZ(X, V)) 
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be the injection defined above. If X is fibrewise locally compact regular then 
a is bijective. If, in addition, B is regular then a is an equivalence of pointed 
spaces. 

Given fibrewise pointed spaces X and Y, the fibrewise pointed mapping­
space map~(X, Y) obtains fibrewise Hopf structure if either (i) X is fibre­
wise coHopf or (ii) Y is fibrewise Hopf and X is fibrewise regular. If both 
(i) and (ii) hold the fibrewise Hopf structures on map~(X, Y) which arise 
are equivalent, in the sense of fibrewise pointed homotopy, and are fibrewise 
homotopy-commutative. 

Two examples 

Example 15.13. Let <p : E -+ F be a fibrewise pointed fibration, where E and 
F are fibrewise pointed spaces over B. Then the postcomposition function 

<p* : map~ (Y, E) -+ map~ (Y, F) 

is a fibrewise pointed fibration, for all fibrewise pointed compact regular Y. 

Example 15.14. Let u : A -+ X be a fibrewise pointed cofibration, where X 
is fibrewise pointed compact regular over B and A is a closed subspace of X. 
Then the precomposition function 

is a fibrewise pointed fibration for all fibrewise pointed spaces E. 

16 Fibrewise well-pointed and fibrewise non-degenerate 
spaces 

Fibrewise well-pointed spaces 

Let us describe a fibrewise pointed space over B as fibrewise well-pointed 
(or well-sectioned) if the section is a fibrewise cofibration. For example, B 
is always fibrewise well-pointed, as a fibrewise pointed space over itself. For 
another example, let (X, X') be a fibrewise cofibred pair over B; then the 
fibrewise collapse X/BX' is fibrewise well-pointed, by Corollary 4.2. 

Note that the associated bundle functor P# mentioned earlier transforms 
equivariant well-pointed G-spaces into fibrewise well-pointed spaces over B, 
for each principal G-bundle P over B. 
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Clearly, the fibrewise pointed coproduct of fibrewise well-pointed spaces 
is fibrewise well-pointed. Also it follows from Corollary 4.2 that the fibre­
wise product and fibrewise smash product of fibrewise well-pointed spaces is 
fibrewise well-pointed. 

As a direct consequence of the fibrewise homotopy extension property we 
have the following useful result. Let rP : X -t Y be a fibrewise map such that 
rP I s ~B t, where X and Y are fibrewise pointed spaces over B with sections 
s and t, respectively. Suppose that X is fibrewise well-pointed. Then rP is 
fibrewise homotopic to a fibrewise pointed map. In particular, take Y = Bj 
if the section of X is a fibrewise retract up to fibrewise homotopy then it is 
a fibrewise retract. 

Proposition 16.1 Let X be a fibrewise well-pointed space over B. Let 
f) : X -t X be a fibrewise pointed map which is fibrewise homotopic to the 
identity. Then there exists a fibrewise pointed map f)' : X -t X such that f)' of) 
is fibrewise pointed homotopic to the identity. 

In the following argument we embed B in X by means of the section, thus 
releasing the letters s and t to denote parameters. So let ft be a fibrewise 
homotopy of f) into Ix. Then ft I B is a fibrewise homotopy of the inclusion 
into itself. By the fibrewise homotopy extension property there exists a fibre­
wise homotopy 9t : X -t X of Ix such that ft I B = 9t I B. We assert that 
the condition in Proposition 16.1 is satisfied with f)' = 91. 

For consider the juxtaposition ks of 91-sof) and fs, as a fibrewise homotopy 
of f)' 0 f) into Ix. Now It I B = 9t I B and hence H(s,o) = ks I B, where 

H(b, s, t) = {9(b, 1 - 2s(1 - t)) (0 :$ s :$ i), 
f(b, 1- 2(1- s) - (1- t)) (i:$ s :$ 1). 

Again using the fibrewise homotopy extension property we extend H to a 
fibrewise map K : X x I x I -t X such that K(s,o) is fibrewise pointed 
homotopic to k., for each s. Then 

leo ~Z K(o,o) ~Z K(o,l) ~Z K(I,o) ~Z kl 

and so f)' 0 f) ~Z Ix, as asserted. 
The main use of Proposition 16.1 is to prove the useful 

Theorem 16.2 Let rP : X -t Y be a fibrewise pointed map, where X and Y 
are fibrewise well-pointed spaces over B. If ifJ is a fibrewise homotopy equiv­
alence then ifJ is a fibrewise pointed homotopy equivalence. 

For let 1jJ : Y -t X be an inverse of ifJ, up to fibrewise homotopy. Since 
1jJ 0 t = 1jJ 0 ifJ 0 S ~B s there exists a fibrewise pointed map 1jJ' : Y -t X such 
that 1jJ ~B 1jJ'. Since 1jJ' 0 ifJ 0 s = t and since 1jJ' 0 rP ~B Ix there exists, by 
Proposition 16.1, a fibrewise pointed map 1jJ" : X -t Y such that 1jJ" 0 1jJ' 0 ifJ 
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is fibrewise pointed homotopic to the identity. Thus ¢ admits a left inverse 
¢' = 1/J" 0 1/J' up to fibrewise pointed homotopy. 

Now ¢' is a fibrewise homotopy equivalence, since ¢ is a fibrewise homo­
topy equivalence, and so the same argument, applied to ¢' instead of ¢, shows 
that ¢' admits a left inverse ¢" up to fibrewise pointed homotopy. Thus ¢' 
admits both a right inverse ¢ and a left inverse ¢" up to fibrewise pointed 
homotopy. Hence ¢' is a fibrewise pointed homotopy equivalence and so ¢ 
itself is a fibrewise pointed homotopy equivalence, as asserted. 

The proof of our next result is similar but easier and so will be omitted. 

Proposition 16.3 Let p : E -+ X be a fibrewise pointed map, where E and X 
are fibrewise pointed spaces over B. Suppose that E is fibrewise well-pointed 
and that p is a fibrewise fibration. Then p is a fibrewise pointed fibration. 

Fibrewise non-degenerate spaces 

The class of fibrewise well-pointed spaces has many good properties but is 
too restrictive for some purposes. Often, however, it can be replaced by a 
wider class, defined as follows. 

Consider a fibrewise pointed space X over B with section s : B -+ X. 
In this context we denote by XB the fibrewise mapping cylinder MB(S) of 
s, regarded as a fibrewise pointed space with section the insertion (JI. Note 
that the inclusion (J : X -+ XB is a fibrewise map, in fact a fibrewise homo­
topy equivalence, but not a fibrewise pointed map. The natural projection 
p : X B -+ X, which fibrewise collapses MB(1B) = B x I, is a fibrewise 
pointed map as well as a fibrewise homotopy equivalence. Let us describe X 
as fibrewise non-degenerate if p is a fibrewise pointed homotopy equivalence. 

Note that XB itself is always fibrewise non-degenerate, so that every fibre­
wise pointed space has the same fibrewise homotopy type as a fibrewise non­
degenerate space. Furthermore, every fibrewise well-pointed space is fibrewise 
non-degenerate, by Theorem 16.2. 

Fibrewise non-degenerate spaces over B can be characterized as follows. 
By a fibrewise Puppe structure on a fibrewise pointed space X we mean a 
pair (a, U), where U is a fibrewise categorical neighbourhood of B in X and 
a : X -+ I is a map such that a = 1 throughout B and a = 0 away from 
U. For example, take X = EB(Y), where Y is a fibrewise space over B. 
We take a : X -+ I to be given by the suspension parameter and we take 
U = a- I (O, 1], where X is regarded as a fibrewise pointed space with section 
a-I (1). 

Proposition 16.4 Let X be a fibrewise pointed space over B. Then X is 
fibrewise non-degenerate if and only if X admits a fibrewise Puppe stucture. 

For suppose that p : XB -+ X is a fibrewise pointed homotopy equiva­
lence. Take U to be the preimage ofthe open cylinder B x (0, 1J ~ XB under a 
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fibrewise pointed homotopy inverse pi: X -t XB of p. Now pi I U is fibrewise 
pointed null-homotopic. Also pop' I U is fibrewise pointed homotopic to the 
inclusion. Hence the inclusion U -t X is fibrewise pointed null-homotopic. 
Take 0: : X -t I to be the composition 

where the middle stage is fibrewise collapse. Then 0: = 1 throughout B and 
0: = 0 away from U, so that (0:, U) is a fibrewise Puppe structure. 

Conversely, let (0:, U) be a fibrewise Puppe structure on X. With no real 
loss of generality we may suppose that U is a closed neighbourhood of B, since 
otherwise we can replace (0:, U) by the fibrewise Puppe structure (0:', UI ), 

where U' = 0:- 1[0, ~l and 0:' = min(20:, 1). Choose a fibrewise pointed null­
homotopy f : U x I -t X of the inclusion, and consider the fibrewise pointed 
homotopy l' : U x I -t XB given by 

, { f(x, 2t) 
f (x, t) = (p(x), 2t _ 1) 

(0 ~ t ~ ~) 
(~ ~ t ~ 1). 

A fibrewise pointed null-homotopy 9t of the identity on XB is given on the 
subspace X ~ XB by 

9t(X) = {;'(X, t.o:(x» 

and on B x I ~ XB by 

(x ¢ U), 
(x E U), 

b s _ { (b, s) 
9t(,)- (b,1-(1-s)(2-2t» 

(0 ~ t ~ ~) 
(~~t~1). 

Therefore X is fibrewise non-degenerate and the proof is complete. 
We use fibrewise Puppe structures to prove 

Theorem 16.5 If X and Yare fibrewise non-degenerate spaces over B then 
so is the fibrewise product X x BY. 

For let (a, U) and ((3, V) be fibrewise Puppe structures on X and Y, 
respectively. Then (" W) is a fibrewise Puppe structure on X XB Y, where 
W = U XB V and,: X XB Y -t I is given by ,(x,y) = a(x).(3(y). 

It can be shown, as in Section 22 of [86], that the fibrewise smash product 
of fibre wise non-degenerate spaces is also fibrewise non-degenerate. 

If X is a fibrewise pointed space over B then for each subspace V of B 
we may identify the restriction to V of the fibrewise mapping cylinder of the 
section s : B -t X with the fibrewise mapping cylinder of the restriction 
Sv : V -t X v. Hence and from Proposition 7.2 we obtain 
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Proposition 16.6 Let X be a fibrewise pointed space over B. Suppose that 
B admits a numerable covering such that X v is fibrewise non-degenerate over 
V for each member V of the covering. Then X is fibrewise non-degenerate. 

Proposition 16.7 Let X and Y be vertically connected fibrewise pointed 
spaces over B. Suppose that X and Y have the same fibrewise homotopy 
type. Also suppose that X and Y are fibrewise non-degenerate. Then X and 
Y have the same fibrewise pointed homotopy type. 

As usual we denote by a dot the binary operation (juxtaposition) in the 
groupoid of vertical homotopies, and we denote by e the neutral element 
(stationary homotopy) at any section. 

Let S denote the section of X and t the section of Y. Let () : X -+ Y be a 
fibrewise homotopy equivalence with fibrewise homotopy inverse 4> : Y -+ X. 
With any vertical homotopy 11. : B x I -+ X of 4> 0 t into S we associate the 
fibrewise pointed map ~ : 'VB -+ XB given by 4> on Y and by u.e on B x I. 
With any vertical homotopy v : B x I -+ Y of () 0 S into t we associate the 
fibrewise pointed map jj : XB -+ 'VB given by () on X and by v.e on B x I. 

Choose a fibrewise homotopy of 4> 0 () into Ix. Precomposing this with s 
we obtain a vertical homotopy H of some section of X into s. Choose any 
v, as above, and then choose 11. so that (4) 0 v).u is equivalent to H, by a 
vertical homotopy reI (B x i). Then the fibrewise homotopy of 4> 0 () into the 
identity on X can be extended to a fibrewise pointed homotopy of ~ 0 jj into 
the identity on XB. 

Now choose a fibrewise homotopy of () 0 4> into ly. By precomposing this 
with t we obtain a vertical homotopy K of some section of Y into t. With 11. 

as before we choose a vertical homotopy w of () 0 s into t so that (() 0 11.). W is 
equivalent to K. Then the fibrewise homotopy of () 0 4> into the identity on 
Y extends to a fibrewise homotopy of 1jJ 0 ~ into the identity on 'VB, where 
1jJ : XB -+ 'VB is the fibrewise pointed map given by () on X and by w.e on 
B x I. 

Therefore 4> admits both a left inverse 1jJ and a right inverse jj up to fibre­
wise pointed homotopy, and so is a fibrewise pointed homotopy equivalence. 
Thus XB and 'VB have the same fibrewise pointed homotopy type. But XB 
has the same fibrewise pointed homotopy type as X and 'VB has the same 
fibrewise pointed homotopy type as Y, by the assumption of fibrewise non­
degeneracy. Therefore X and Y have the same fibrewise pointed homotopy 
type, as asserted. 

When a fibrewise space admits a section and so can be regarded as a 
fibrewise pointed space we must expect the fibrewise pointed homotopy type 
to depend on the choice of section, in general. However, if so, Sl : B -+ X 
are vertically homotopic sections of the fibrewise space X then an argument 
similar to, but simpler than, that used to prove Proposition 16.4 shows that 
the fibrewise mapping cylinders MB(SO) and MB(Sl) have the same fibre­
wise pointed homotopy type. Suppose, therefore, that the fibrewise pointed 
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space Xi (i = 0,1) obtained from X by using Si as section is fibrewise non­
degenerate. Then Xo and Xl have the same fibrewise pointed homotopy type. 
This means, for example, that if Xo admits fibrewise Hopf structure then so 
does Xl. Similarly with fibrewise coHopf structure. More generally, Xo and 
Xl have the same fibrewise pointed category (see Section 19). 

17 Fibrewise complexes 

The category of pairs 

Fibrewise homotopy theory may be regarded as a branch of the homotopy 
theory of the category Top(2) of pairs of spaces and maps, as discussed by 
Eckmann and Hilton [57] and others. Unfortunately the term pair is poten­
tially confusing in our situation, where it is preferable to describe Top(2) 
as the category of spaces over spaces and maps over maps, the latter being 
classified by homotopies over homotopies. 

Various treatments of the homotopy theory of the category Top(2) may 
be found in the literature. Perhaps that of tom Dieck, Kamps and Puppe [44] 
is the most appropriate for our purposes. However, it is convenient to adopt 
a modification of their terminology and notation, as follows. 

The objects of Top(2), of course, are the morphisms of Top. Thus an 
object consists of a base space B and a space X over B with projection 
p, say. The morphisms of Top(2) are commutative diagrams of morphisms 
of Top. Thus if X is a space over B with projection p and X' is a space 
over B' with projection p' then a morphism from X to X' consists of a map 
f: B -+ B' and a map F: X -+ X' such that p' of = fop. We may refer to 
F as a map over f. 

Maps over maps are classified by homotopies over homotopies, as follows. 
Let fi : B -+ B' be a map (i = 0,1) and let Fi : X -+ X' be a map over 
Ii- Let It : B -+ B' be a homotopy of fo into It and let Ft : X -+ X' be a 
homotopy of Fo into Fl such that p' 0 Ft = It 0 p for all t. We may refer to Ft 
as a homotopy over It. Homotopy equivalences over homotopy equivalences, 
etc., are defined in a similar manner. 

The category Top B of spaces over a given base space B may be regarded 
as contained in the category Top(2) as the subcategory of spaces over B and 
maps over the identity of B. However, the morphisms of Top B are classified by 
homotopies over the stationary homotopy of the identity, which is generally 
a finer classification than that by homotopies over self-homotopies of the 
identity. It is the former classification which is appropriate here. 



88 A Survey of Fibrewise Homotopy Theory 

Fibrewise complexes 

The notion of CW complex, introduced by J.H.C. Whitehead [135), is covered 
in all the standard textbooks, for example in Chapter 7 of [127). To keep this 
section short we do not consider infinite complexes and so the letters CW 
(standing for closure finite, weak topology) can be omitted. 

Recall that a cellular decomposition of a Hausdorff space B consists, in 
each dimension n, of a finite collection of maps () : Dn ~ B, satisfying certain 
conditions. The image of the closed n-ball Dn under the characteristic map 
() is called the closed n-cell. That of Dn - sn-l is called the open n-cell, 
and that of sn-l is called the boundary of the n-cell (the terminology does 
not refer to the topology of B). The conditions are that () maps Dn - sn-l 
homeomorphically onto the open n-cell, and that the boundary of the n-cell 
is the union of open m-cells for m < n. Also the whole collection of open 
cells forms a decomposition of B, so that every point of B is contained in 
precisely one open cell. When these conditions are satisfied we describe B as 
a complex. 

Choose a cellular decomposition of B, and let K be a fibrewise Hausdorff 
space over B. A cellular block decomposition of K consists of a decomposition 
of K into open cellular blocks. Specifically, over each closed n-cell of B, 
with characteristic map () : Dn ~ B, there exists a finite collection of maps 
e : D n x T ~ K, over the map (), where T is compact Hausdorff (the factors 
T may vary with e), satisfying certain conditions. The image of Dn x T 
under e is called the closed n-cellular block, that of (Dn - sn-l) x T the 
open n-cellular block, and that of sn-l X T the boundary of the n-cellular 
block (the terminology does not refer to the topology of K). The conditions 
are that e maps (Dn - sn-l) x T homeomorphically onto the open n-cellular 
block, and that the boundary of the n-cellular block is the union of open m­
cellular blocks for m < n. Also the whole collection of open cellular blocks, 
over the chosen cellular decomposition of B, forms a decomposition of K, so 
that every point of K is contained in precisely one open cellular block. When 
these conditions are satisfied we describe K as a fibrewise complex over the 
complex B. There is no requirement for K to be a complex in the ordinary 
sense. 

Clearly, any fibre bundle with compact Hausdorff fibre over the complex 
B can be regarded as a fibrewise complex over B. Examples of fibrewise 
complexes which are not fibre bundles arise in the theory of transformation 
groups. Specifically, if K is a G-complex, where G is a compact group, then 
the orbit space K/G is a complex and K is a fibrewise complex over K/G, 
as described in [19), the factors of the cellular blocks being orbits of different 
types. 

Thus consider the much-studied family of O(n)-manifolds Wr- 1 (see 1.7 
of [19)) for which the orbit space is the 2-disc D2. We can construct Wr- 1 

by adjoining the 2-cellular block D2 X Vn,2 to sn-l by means of the map 
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tPk : Sl X Vn,2 ~ sn-1, where tPk((cosO,sinO), (u,v)) = ('1.£ cos kO, v sinkO). 
Here the factor Vn 2 is the Stiefel manifold of orthonormal pairs ('1.£, v) in IRn. , 

Special fibrewise complexes 

Fibrewise complexes in which all the factors in the cellular blocks are com­
plexes in the ordinary sense play a special role in the theory and so we will 
refer to them as special fibrewise complexes. For example, the family of O(n)­
complexes W;n-1 we have just described are special fibrewise complexes over 
D2. Also sphere-bundles over complexes are special. If K is a special fibrewise 
complex over B the dimension dim K of K is defined to be the maximum di­
mension of the cellular blocks in the decomposition of K. For example 2n-1 
is the dimension of w;n-1. Also if K is a q-sphere bundle over the complex 
B then the dimension of K is q + dim B. 

Let B be a complex and let K be a fibrewise complex over B. We describe 
a subspace L of K as a subcomplex of K if L is the union of open cellular 
blocks of K subject to the condition that the boundary of each of the cellular 
blocks of L is also in L. This ensures that L itself is a fibrewise complex over 
B. If K is special then dim(K - L) is defined to be the maximum dimension 
of the cellular blocks in the decomposition of K which do not belong to L. 
When K is a sphere-bundle over B with section corresponding to a reduction 
of the structural group then the section forms a sub complex of K assuming 
K is regarded as a fibrewise complex in the obvious way. 

Returning to the general situation, let us denote by Kn, where n ~ 0, 
the sub complex formed by m-cellular blocks for m ~ n. Then Ln = L n Kn 
when L is a sub complex of K. 

It would be convenient if the inclusion of a sub complex in a fibrewise 
complex satisfied the condition for a fibrewise cofibration. While this may 
not be so we can demonstrate a weaker result in this direction which is still 
useful. 

Proposition 17.1 Let B be a complex and let X be a fibre space over B. 
Let K be a fibrewise complex over B and let L be a subcomplex of K. Let 
f : K ~ X be a fibrewise map, and let 9t : L ~ X be a fibrewise homotopy 
of f I L. Then there exists a fibrewise homotopy ht : K ~ X of f such that 
9t = ht I L. 

Here the term fibre space, as distinct from fibrewise space, means that the 
homotopy lifting property holds. The first step in the proof of Proposition 17.1 
is to establish the following. 

Lemma 17.2 Let B be a complex and let 0: Dn ~ B be a map. Let X be a 
fibre space over B. Let 

¢ : ({O} x Dn U I x sn-1) x T ~ X 
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be a map over 0, where T is a complex. Then ¢J can be extended to a map 

'l/J : I x D n x T -t X 

over O. 

By taking adjoints we obtain from ¢J a map 

4> : {O} x Dn U I x sn-1 -t map(T, X) 

over 0, where the codomain is the space of maps with compact-open topology. 
Since X is a fibre space over B so is map(T, X). Hence the induced fibre space 
O*map(T, X) over Dn is equivalent to the product Dn x map(T, X o), where 
Xo is the fibre of X. 

Now 4> determines a section 

s: {O} x D n u I x sn-1 -t O*map(T, X), 

equivalently a section 

s' : {O} x D n u I x sn-1 -t Dn x map(T, Xo). 

Consider the second projection 

S" : {O} x D n u I x sn-1 -t map(T, Xo). 

Since the inclusion sn-1 -t Dn is a cofibration we can extend S" over I x Dn. 
Therefore s' can be extended to a section over I x Dn, and hence s can be 
extended to a section over I x Dn. Therefore 4> can be extended to a map 

;j; : I x Dn -t map(T, X) 

over 0 and finally, taking the adjoint, ¢J can be extended to a map 

'l/J : I x Dn x T -t X 

over 0, as asserted. 
Having established this we can now prove Proposition 17.1 in the special 

case where K is obtained from L by adjoining the single n-cellular block 
Dn x T. All that needs to be done is to precompose with the characteristic 
map of the block, apply Lemma 17.2, and then precompose again with the 
inverse of the characteristic map. We may then proceed by iteration to the 
case where K is obtained from L by adjoining a succession of n-cellular blocks, 
for given n. 

In the general case we make an induction on dimension as follows. Assume, 
for n ~ 1, that there exists a fibrewise homotopy 1[,,-1 : Kn-1 -t X of 
I I Kn-1 such that 1[,,-1 I Ln-1 = 9t I Ln-1, as is clearly true when n = 1. 
Use the special case to extend 1[,,-1 to a fibrewise homotopy 1[' : Kn -t X 
of I I Kn such that It: I Ln = 9t I Ln. This deals with the inductive step 
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and so, since Kn = K for sufficiently large n, proves Proposition 17.1. In 
particular, taking X = {O} x K U I x L we obtain 

Corollary 17.3 Let B be a complex. Let K be a fibre complex over Band 
let L be a fibre subcomplex of K. Then the inclusion L -t K is a fibrewise 
cofibration. 

Here we use the term fibre complex to mean a fibre space which is also a 
fibrewise complex. Next we prove 

Proposition 17.4 Let B be a complex. Let K be a special fibrewise complex 
over B and let L be a subcomplex of K. Let X be a fibre space over Band 
let Y be a subspace of X which is also a fibre space over B. Suppose that the 
pair (X, Y) is d-connected and that dim(K - L) ~ d. Then any fibrewise map 

f: (K,L) -t (X,Y) 

is fibrewise homotopic, relative to L, to a fibrewise map of K into Y. 

The proof proceeds on similar lines to that of Proposition 17.1. The first 
step is to establish 

Lemma 17.5 Let X be a fibre space over the complex B and let Y be a 
subspace of X which is also a fibre space over B. Suppose that the pair (X, Y) 
is d-connected. Let 0 : Dn -t B be a map and let 

4> : (Dn x T, sn-l X T) -t (X, Y) 

be a map over 0, where T is a complex such that n + dim T ~ d. Then relative 
to sn-l X T, 4> is homotopic over () to a map of Dn x T into Y. 

The adjoint of the given map 4> is a map 

~: (Dn,sn-l) -t (map(T,X),map(T,Y)). 

Now ~, like 4>, is over 0 : D n -t B. 
As in the proof of Lemma 17.2, we see that O*map(T, X) is equivalent to 

Dn x map(T, Xo) and O*map(T, Y) is equivalent to Dn x map(T, Yo), where 
Xo and Yo are the fibres of X and Y, respectively. Now ~ determines a section 

s : (Dn, sn-l) -t (O*map(T, X), (0 I sn-l )*map(T, Y)), 

equivalently a section 

s' : (Dn, sn-l) -t (Dn x map(T, X o), sn-l X map(T, Yo)). 

Consider the second projection of s' 
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s": (Dn,sn-l) -+ (map(T,Xo),map(T, Yo)). 

By standard theory (see (7.6.13) of [127), for example) s" is homotopic reI 
sn-l to a map of Dn into map(T, Yo), since the pair (map(T, Xo), map(T, Yo)) 
is (d - dim.T)-connected. Therefore s' is vertically homotopic reI sn-l to a 
section into sn-l X map(T, Yo), and hence s is vertically homotopic reI sn-l 
to a section into (fJ I sn-l )*map(T, Y). Finally, ¢ is homotopic, over '¢ and 
relative to sn-l, to a map of Dn into map(T, Y) and then, taking the adjoint, 
the original map ¢ is homotopic over fJ and relative to sn-l X T, to a map 
of D n x T into Y. This proves the lemma. 

Having established this we can now prove the special case of Proposi­
tion 17.4 where K is obtained from L by adjoining the single n-cellular block 
D n x T. All that needs to be done is to precompose with the characteris­
tic map of the block, apply Lemma 17.5, and then precompose again with 
the inverse of the characteristic map. We may then proceed by iteration to 
the case where K is obtained from L by adjoining a succession of n-cellular 
blocks, for given n. 

In the general case we make an induction on dimension, as follows. As­
sume, for n 2: 1, that there exists a fibrewise homotopy Ir-1 : Kn-l -+ X 
of I I Kn-l, relative to Ln-l, such that 1~-1 Kn-l ~ Y, as is clearly true 
when n = 1. Use the fibrewise homotopy extension property, as in Proposi­
tion 17.1, to extend Ir-1 to a fibrewise homotopy ht : K n -+ X of I I Kn 
relative to Ln. Using Lemma 17.5, since h1Kn-l ~ Y there exists a fibrewise 
homotopy kt : Kn -+ X of hI, relative to Kn-l U Ln, such that klKn ~ Y. 
By juxtaposition of kt and ht we obtain a fibrewise homotopy II" : Kn -+ X 
of I I K n, relative to Ln, such that If Kn ~ Y. This deals with the inductive 
step and so, since Kn = K for sufficiently large n, proves Proposition 17.4. 

Applications 

Most of the applications of Proposition 17.4 can be derived from special cases 
of the following 

Proposition 17.6 Let B be a complex and let K be a special fibrewise pointed 
complex over B. Let u : E -+ F be a k-connected fibrewise pointed map, where 
E and Fare fibrewise pointed fibre spaces over B. Then the induced lunction 

u* : 1TE[K; E) -+ 1TE[K; F) 

is injective when dim K < k, surjective when dim K ~ k. 

By replacing F by the fibrewise mapping cylinder of u we may suppose, 
without real loss of generality that E ~ F. Surjectivity in Proposition 17.6 
follows at once from Proposition 17.4, applied to the pair (K, B), while in­
jectivity follows from Proposition 17.4 applied to the pair (K x I, K x {O}). 
Of course, there is a relative version of this result, proved in the same way. 
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Having reached this stage we can now improve a number of results in 
the literature by replacing assumptions that fibrewise spaces are complexes, 
which is contrary to the spirit of fibrewise homotopy theory, by assumptions 
that they are special fibrewise complexes. Here we give just one illustration 
of this out of many possibilities, the fibrewise Freudenthal theorem. 

Proofs of this fundamental result, under somewhat different hypotheses, 
have been given by Becker [8] and James [78]. However, Proposition 17.1 
enables us to prove the result in the following form. 

Theorem 17.7 Let B be a complex and let K be a special fibrewise pointed 
complex over B. Let E be a fibrewise pointed fibre space over B with (m - 1)­
connected fibre. Then the fibrewise suspension 

E. : rr:[K; E]-* rr:[E:K; E:E] 

is injective for dim K < 2m - 1, surjective for dim K :S 2m - 1. 

To deduce Theorem 17.7 from Proposition 17.6 we note that E:E is a 
fibre space over B, by (6.37) of [79], since E is a fibre space over B, and so 
the fibrewise loop-space f}BE:E is a fibre space over B, by (6.32) of [85]. 
Since the fibre of E is (m - 1 )-connected the classical Freudenthal suspension 
theorem shows that the adjoint 

u: E -* f}BE:E 

of the identity is (2m - I)-connected, and so Theorem 17.7 follows at once 
from Proposition 17.6. Proceeding in the same way as in [79], we deduce 

Corollary 17.8 Let B be a complex. Let K be a fibrewise pointed k-sphere 
bundle and let L be a fibrewise pointed I-sphere bundle over B. Then for each 
fibrewise pointed sphere-bundle N over B the fibrewise smash product 

N# : rr:[K; L]-* rr:[N /\B K; N /\B L] 

is injective when dim B < 2l - k - 1, surjective when dim B :S 2l - k - 1. 

Another treatment of the fibrewise Freudenthal theorem, under different 
assumptions, will be given in Part II, Section 3. The theory presented here 
originally appeared in [92]. 
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18 Fibrewise Whitehead products 

Definition of the product 

Although other approaches are possible, perhaps the best way to establish the 
properties of the fibrewise Whitehead product is by studying the behaviour 
of the fibrewise product under fibrewise suspension, as in 

Proposition 18.1 Let X and Y be fibrewise non-degenerate over B. Then 
EN (X x B Y) has the same fibrewise pointed homotopy type as the fibrewise 
pointed coproduct 

In fact a fibrewise pointed homotopy equivalence may be constructed 
by taking the fibrewise track sum, in some order, of the reduced fibrewise 
suspensions of the natural projection 

and the projections of the fibrewise product into its factors. The proof of 
Proposition 18.1 is fairly lengthy: details are given in Sections 21 and 22 
of [86]. In fact Proposition 18.1 can be iterated so that, more generally, we 
obtain 

Proposition 18.2 Let Xl, ... ,Xn be fibrewise non-degenerate spaces over 
B. Then 

EN(XI XB ... XB Xn) 

has the same fibrewise pointed homotopy type as the fibrewise pointed cop rod-
uct 

VBEH I\B Xi, 
N iEN 

where N runs through all non-empty subsets of the integers 1 to n. 

In fact a fibrewise pointed homotopy equivalence may be constructed 
by taking the fibrewise track sum, in some order, of the reduced fibrewise 
suspensions of the natural projections 

Xl XB ... XB Xn -t I\B Xi, 
iEN 

where Xi is mapped by the identity when i EN, the projection Pi otherwise. 
In this way we obtain a monomorphism 

1fN[EH( I\B Xi); E]-t 1fH[EH(XI XB ... XB Xn); E], 
iEN 
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for any fibrewise pointed space E, of which the image is a normal subgroup. 
We may therefore regard each of the groups 

7r~[E~( I\B Xi); E] 
iEN 

as a normal subgroup of 

7r~[E~(Xl XB ... XB Xn); E]. 

Note that if the fibrewise cogroup-like structure of E~(Xi) is fibrewise 
homotopy-commutative for some i E N then the subgroup in question is 
commutative since, as we have seen, E~(/\BjEN Xj) has the same fibrewise 
pointed homotopy type as 

E~(Xi) AB I\B Xj, 
jEN, #i 

and moreover the fibrewise pointed homotopy equivalence can be chosen so 
as to preserve the fibrewise cogroup-like structure. 

Each of the standard projections 

(i = 1, ... ,n) 

admits a right inverse. Hence the reduced fibrewise suspension of 7ri admits 
a right inverse and so embeds 

(i = 1, ... , n) 

as a normal subgroup of the group 

for each fibrewise pointed space E. There are, however, other normal sub­
groups. 

For example, take n = 2. In that case the reduced fibrewise suspension of 
the natural projection 

Xl XB X 2 -t Xl AB X 2 

is one of the fibrewise pointed maps used to split E~(Xl XB X 2), as in 
Proposition 18.1. Hence the image of 

7r~[E:(Xl AB X 2 ); E] 

under the corresponding induced homomorphism is a normal subgroup of the 
group 

7r:[E:(Xl XB X 2 ); E). 

Again, take n = 3. In that case the reduced fibrewise suspension of the 
natural projection 
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Xl XB X2 XB X3 ~ X 11\B X 21\B X3 

is one of the fibrewise pointed maps used to split EB(X1 XB X2 XB X 3 ), as 
in Proposition 18.2. Hence the image of 

1rZ[EZ(X1I\B X 2 1\B X 3 ); E] 

under the corresponding induced homomorphism is a normal subgroup of the 
group 

1rZ[EB(X1 XB X2 XB X 3 ); E]. 

Of course, the group also contains normal subgroups of the type described in 
the previous paragraph, such as 

1rZ[EZ((X1 XB X 2 ) I\B X 3 ); E]. 

Returning to the case n = 2, let ai E 1rZ[EZ(Xi ); E] (i = 1,2). The 
commutator [a1,a2] is then defined in the group 1rZ[EB(X1 XBX2); EJ, and 
lies in the kernel of the homomorphism 

1r~[EB(X1 XB X 2 ); E] ~ 1r~[EB(X1 VB X 2 ); E] 

=1rZ[EZ(Xd; E] x 1r~[EB(X2); E] 

induced by the reduced fibrewise suspension of the inclusion 

Now the kernel, by exactness of the fibrewise Puppe sequence, is the normal 
subgroup 

1rZ[EB(X1I\B X 2 ); E]. 

We refer to the commutator, regarded as an element of this normal subgroup, 
as the fibrewise Whitehead product of a1 and a2. We have at once that 

(18.3) 

where t : Xl I\B X2 ~ X2 I\B Xl is the switching equivalence. 
Clearly, if E is a fibrewise Hopf space the fibrewise Whitehead product is 

trivial, since the group 

is commutative. 
We assert that the fibrewise Whitehead product vanishes under reduced 

fibrewise suspension, at least when Xl and X2 are fibrewise compact regular. 
For since the fibrewise loop-space [) B EZ (E) is fibrewise Hopf the fibrewise 
Whitehead product 
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7r:[E:(Xt}; nBE:(E)] X 7r:[E:(X2); nBE:(E)] 

1 
7r:[E:(XI I\B X2); nBE:(E)] 

is trivial. IT we now precompose with the product of the homomorphisms 
induced by the adjoint E --+ nBE:(E) ofthe identity on E, and postcompose 
with the standard isomorphism 

7r:[E:(XI I\B X 2); nBE:(E)] --+ 1I":[EN 0 EN(XI I\B X2); EN(E)] 

we obtain the fibrewise suspension of the fibrewise Whitehead product 

7r:[EN(Xd; E] x 7r:[EN(X2); E] --+ 7r:[E:(XI I\B X2); E]. 

This proves the assertion. 
In group theory, we recall, a given element k of a group G determines an 

automorphism of each normal subgroup H of G, by conjugation. We denote 
the automorphism thus: h 1-+ hk (h E H). At this stage it becomes more con­
venient to express the group operations in additive rather than multiplicative 
notation although the groups in question are not, in general, commutative. 

Bilinearity 

There are various ways to show that the fibrewise Whitehead product is 
bilinear, under appropriate conditions, but the following argument also pro­
vides an illustration of the method we shall be using to establish the Jacobi 
identity. We prove 

Proposition 18.4 Let Xi (i = 1,2) be a fibrewise non-degenerate space over 
B su.ch that EN (Xi) is fibrewise homotopy-commu.tative. If 

oi,a~ E 7rN[EN(Xi ); E], 

where E is a fibrewise pointed space, then 

tal + o~, 02] = [aI, a2] + [a~, a2], 
[aI, 02 + a~] = [aI, 02] + [aI, o~J. 

To establish the first relation, we begin with the identity 

tal + a~,02] = [a~,al]0<1 + [01,a2], 

which holds in any group. The elements [o~, 02]0<1 and [a~, a2] differ by the 
iterated commutator [[a~, 02], -01]Ct1. By exactness the latter element lies in 
the normal subgroup 

7rN[EN(X1 I\B X2); EJ ~ 1I":[EN(X1 XB X 2); E]. 
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Since E~ (Xd is fibrewise homotopy-commutative, so is 

(E~{Xd) /\B X 2 = E~{X1 /\B X2). 

Hence the element in question is zero and so we may drop the index a1, in the 
above identity, obtaining the first relation in Proposition 18.4. The second 
part may be proved similarly or else deduced from the first part with the 
help of the commutation law (18.3). 

The Jacobi identity 

To conclude our discussion we turn to the Jacobi identity, as follows. 

Proposition 18.5 Let Xi (i = 1,2,3) be a fibrewise non-degenerate space 
over B such that E~ (Xi) is fibrewise homotopy-commutative. Let 

ai E 7r~[E~{Xi)i E], 

where E is a fibrewise pointed space. Then 

where T is the appropriate cyclic permutation of the factors in the fibrewise 
smash products. 

To establish the identity we begin with the relation 

[[-a2,a1],a3]"'2 + [[-a3,a2],a1]"'3 + [[-a1,a3],a2]"'1 = 0, 

which holds in any group. The elements [[-a2, ad, a3]"'2 and [[a1, a2], a3] 
differ by the iterated commutator [[a2, a1], [-a3, a1]]"'3. By exactness [a2, a1] 
and [-a3,a1] both lie in the normal subgroup 

7r~[E~{X1 /\B {X2 XB X3))i E] ~ 7r~[E~{X1 XB X2 XB X3)i E]. 

Since E~{Xd is fibrewise homotopy-commutative, so is 

EE{X1 /\B (Xl XB X2)). 

Hence the normal subgroup is commutative and the element in question 
vanishes, so that we may replace the first term in the general relation by 
[[a1, a2], a3]. Treating the second and third terms similarly the relation re­
duces to 

[[a1, a2], a3] + [[a2, a3], a1] + [[a3, ad, a2] = o. 
This relation holds in the group 

7rE[EE{X1 XB X 2 XB X3)i E]. 

When we translate it into terms of fibrewise Whitehead products in the group 
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the automorphisms in Proposition 18.5 appear and we obtain the Jacobi 
identity as stated. 

Fibrewise Whitehead products are not easy to calculate; various interest­
ing problems suggest themselves. For example, consider the fibrewise White­
head square 

[I E :(x), l E :(x)) E 7rZ[EZ(X AB X); EZ(X)), 

of the identity on EZ (X), which is the obstruction to the existence of a 
fibrewise Hopf structure on the fibrewise pointed space X. If X is a fibrewise 
pointed q-sphere bundle over B, with q odd, and B is of finite numerable 
category cat B = n, the order of the fibrewise Whitehead square can be 
shown (see [80)) to be a divisor of 2n. When the bundle is trivial the order is 
1 for q = 1,3 or 7, otherwise the order is 2. Examples have been given [81) of 
sphere-bundles over spheres where the fibrewise Whitehead square is of order 
4. Berrick [11) has studied fibrewise Samelson products, which are related. 



Chapter 3. Applications 

19 Numerical invariants 

Although the survey [83] of category, in the sense of Lusternik-Schnirelmann, 
has been somewhat outdated by subsequent research, it may still serve as 
a convenient reference for the basic definitions and standard results in the 
ordinary theory. The following is a brief summary. 

Category and pointed category 

Recall that a subset V of a space X is said to be categorical if V is contractible 
in X. The category cat X of X is defined to be the least number of categorical 
open sets required to cover X. When no such number exists the category is 
said to be infinite. 

Although this is not always made explicit, much of the literature is more 
concerned with the pointed version of category, as follows. Given a pointed 
space X, a subset V of X (necessarily containing the basepoint) is said to 
be pointed categorical if V is pointed contractible in X. The pointed category 
cat* X of X is defined to be the least number of pointed categorical open 
sets required to cover X. When no such number exists the pointed category 
is said to be infinite. If we disregard the basepoint then cat X is defined 
and cannot exceed cat* X. In fact equality holds when X is path-connected, 
under reasonably general conditions. 

In 1956 G.W. Whitehead [134] gave a characterization of pointed cate­
gory which many homotopy theorists found it convenient to adopt as their 
definition. When necessary we refer to this as pointed category in the new 
sense, to distinguish it from pointed category in the previous sense. 

Whitehead's characterization is as follows. Let Xo be the basepoint of 
the pointed space X. In the r-fold topological product nr X (r = 1,2, ... ), 
consider the 'fat-wedge' subspace 

Tr(x,xo) = 7r}l(XO) U ... U 7r;l(XO)' 

where 7ri is the ith projection (i = 1, ... ,r). Whitehead proved 

Proposition 19.1 Suppose that the basepoint Xo of the pointed space X ad­
mits a pointed categorical neighbourhood. If the diagonal map .:1 : X -+ nr X 
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© Springer-Verlag London Limited 1998
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can be compressed into Tr(x, xo) by a pointed homotopy, for some r ~ 1, 
then cat* X ~ r. 

Proposition 19.2 Let X be a normal pointed space. If cat* X ~ r, for r ~ 1, 
then the diagonal map ..1 : X -t If X can be compressed into Tr(x, xo) by 
a pointed homotopy. 

Berstein and Hilton [13] adopted the new definition of category, based 
on Whitehead's characterization, and compared this invariant with another, 
defined as follows. Recall that the r-fold smash product t{ X of X is obtained 
from nr X by collapsing Tr(x, xo). We denote by ..1' : X -t Ar X the 
projection of the diagonal map into the smash product. 

Definition 19.3 The weak pointed category wcat* X of the pointed space X 
is the least number r such that ..1' : X -t Ar X is pointed null-homotopic. 

If no such number exists the weak pointed category is said to be infinite. Of 
course, cat* X ~ wcat* Xj equality holds under certain conditions. Examples 
are given in [13] and [64] where the two invariants are not the same. 

Lower bounds for weak pointed category, and hence for pointed category, 
can be given by using cohomology. Thus consider the reduced cohomology 
ring H* (X, xo) of the pointed space X, with arbitrary coefficients. If wcat* X 
is defined then the ring is nilpotent and the index nil H* (X, xo) of nilpotency 
cannot exceed r. Results of this type have a long history but this particular 
form of the result will be found at the end of [13]. 

Using pointed category in the new sense, it is obvious that cat* X ~ 2 if 
and only if X admits coHopf structure. This suggests saying that X admits 
weak coHopf structure when wcat* X ~ 2, without attempting to give a 
meaning to the concept of weak coHopf structure as such. 

Occasionally, in what follows, we shall need to refer to category in the 
equivariant sense. Equivariant category has a literature of its own but the 
appropriate definition for our purposes is not the one usually adopted. Specif­
ically, let X be a G-space, where G is a topological group. An invariant subset 
U of X is said to be G-categorical if the inclusion U -t X is G-null-homotopic 
(to a point, which is necessarily a fixed point). The G-category, G-cat X, of 
X is defined to be the least number of G-categorical open sets required to 
cover X. If no such number exists the G-category is said to be infinite. There 
is, of course, a pointed version of the definition as well. 

Fibrewise category 

After these preliminaries we are now ready to define fibrewise category, as 
follows. Recall that a subset U of a fibrewise space X over B is said to 
be fibrewise categorical if the inclusion U -t X is fibrewise null-homotopic. 
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The fibrewise category catB X of X is defined to be the least number of 
fibrewise categorical open sets required to cover X. If no such number exists 
the fibrewise category is said to be infinite. 

Note that for any space B' and map 0: : B' -t B we have 

In particular, catB X is bounded below by the category of the fibres of X. 
Of course, catB X = 1 if and only if X is fibrewise contractible. Also 

catB X ~ 2 if X is a fibrewise suspension since X is the union of two open 
fibrewise cones. 

One further remark before we proceed to the fibrewise pointed case. Let 
P be a principal G-bundle over B, where G is a topological group. Given a 
G-space Y we define P # Y, as before, to be the associated bundle with fibre 
Y, and similarly with G-maps and G-homotopies. Now if U is a G-categorical 
open set of Y then P # U is a fibrewise categorical open set of P # Y. It follows 
that 

(19.4) 

Fibrewise pointed category 

Let us turn now to the fibrewise pointed theory, where the base space B is 
pointed. Recall that a subset U of the fibrewise pointed space X (necessar­
ily containing the section) is said to be fibrewise pointed categorical if the 
inclusion U -t X is fibrewise pointed null-homotopic. The fibrewise pointed 
category cat~ X of X is defined to be the least number of fibrewise pointed 
categorical open sets required to cover X. If no such number exists the fibre­
wise pointed category is said to be infinite. 

Note that for any pointed space B' and pointed map 0: : B' -t B we have 

cat~: 0:* X ~ cat~ X. 

In particular, cat~ X is bounded below by the pointed category of the fibres 
of X. 

Of course, cat~ X = 1 if and only if X is fibrewise pointed contractible. 
Also cat~ X ~ 2 if X is the reduced fibrewise suspension of a fibrewise 
pointed space. 

If we disregard the section then the fibrewise category catB X of X is 
defined and cannot exceed cat~ X. The relation between these invariants 
will be considered further below. 

For any fibrewise pointed space X over B the r-fold fibrewise product 
n~ X is defined (r = 1,2, ... ), and contains the union TB(X, B) of the 
preimages 7r;:1 (B) (i = 1, ... , r) of the section. We may refer to Tl3(X, B) 
as the fibrewise fat wedge. Note that n~ X contains the diagonal .1X of X 
while Tl3(X, B) contains the diagonal .1B of B. In other words the pair 

n~(X,B) = (n~X,Tl3(X,B)) 
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contains the diagonal Ll(X, B) = (LlX, LlB) of the pair (X, B). By (6.1) and 
(6.2) of [65] we have fibrewise versions of the Whitehead characterization of 
pointed category, as follows. 

Proposition 19.5 Suppose that the section B of the fibrewise pointed space 
X admits a fibrewise pointed categorical neighbourhood. If the diagonal map 
..1 : X -+ n~ X can be compressed into TB(X, B) by a fibrewise pointed 
homotopy, for some r ~ 1, then cat~ X ~ r. 

Proposition 19.6 Let X be a normal fibrewise pointed space over B. If 
cat~ X ~ r, for r ~ 1, then the diagonal map ..1 : X -+ n~ X can be 
compressed into TB(X, B) by a fibrewise pointed homotopy. 

One way in which fibrewise pointed categorical neighbourhoods of the 
section can arise is as follows. Let P, as before, be a principal G-bundle over 
B, where G is a topological group. Let Y be a pointed G-space such that the 
(closed) basepoint Yo admits a pointed G-categorical neighbourhood U in Y. 
Then the section p#Yo admits the fibrewise pointed categorical neighbour­
hood P#U in P#Y. 

In view of Propositions 19.5 and 19.6 we may choose to define fibrewise 
pointed category through the above characterization, distinguishing it when 
necessary by adding the phrase 'in the new sense'. Note that cat~ X ~ 2, in 
this sense, if and only if X admits fibrewise coHopf structure. 

Recall that the r-fold fibrewise smash product A~ X is obtained from 
n~ X by fibrewise collapsing TB(X, B). We denote by ..1' : X -+ A~ X the 
projection of the diagonal into the fibrewise smash product. 

Definition 19.7 The weak fibrewise pointed category wcat~ X of the fibre­
wise pointed space X is the least number r such that ..1' : X -+ A~ X is 
fibrewise pointed null-homotopic. 

If no such number exists the weak fibrewise pointed category is said to be 
infinite. Of course 

wcat~ X ~ cat~ X, (19.8) 

in the new sense. The relation between the two invariants will be considered 
below. 

We say that X admits weak fibrewise coHopf structure when wcat~ X ~ 2, 
without attempting to give a meaning to the concept of weak fibrewise coHopf 
structure as such. 

Note that for any pointed space B' and pointed map a: B' -+ B we have 

B' *X BX wcatB , a ~ wcatB . 

In particular, wcat~ X is bounded below by the weak pointed category of the 
fibres of X. 



19 Numerical invariants 105 

There is a useful functor which sends each fibrewise pointed space X into 
the mapping cone C(s) of the section, and similarly for fibrewise pointed 
maps and fibrewise pointed homotopies. Then 

cat~ X ~ cat* C(s) ~ cat* B + 1; (19.9) 

the first inequality resulting from use of the functor, the second being due to 
Berstein and Ganea [12]. Similarly 

wcat~ X ~ wcat* C(s) ~ wcat* B + 1. (19.10) 

When the section s is a cofibration we may replace C(s) by the pointed space 
XI B obtained from X by collapsing B. The index of nilpotency nil H*(X, B) 
of the cohomology of the pair (X, B), with arbitrary coefficients, is a lower 
bound for wcat~ X and hence for cat~ X. 

Polar category 

In what follows we shall need another invariant, the polar category. This is 
similar to the well-known sectional category, discussed in Section 8 of [83], 
and so let us start with a few notes on that subject. We work over a base space 
B without basepoint. Given a fibrewise space X over B we describe a subset 
W of B as section categorical if X w admits a section over W. The sectional 
category secat X of X is defined to be the least number of section categorical 
open sets required to cover B. If no such number exists the sectional category 
is said to be infinite. Note that 

secat X ~ cat B (19.11) 

when X is fibrant. 
Consider the r-fold fibrawise join 

x(r) =X*B* ... *BX 

of X with itself, in the Milnor topology. Provided B is paracompact, Schwarz 
has shown that secat X ~ r if and only if x(r) admits a section. This result, 
for which [64] is a convenient reference, leads at once to an upper bound for 
sectional category, as in (8.2) of [83]: 

Proposition 19.12 Let B be a finite complex and let X be a fibre bundle 
over B with (q - 1) -connected fibre, where q ~ 1. Then 

secatX < (q + 1)-l(dimB + 2). 

For lower bounds we turn to cohomology again and consider the homo­
morphism 

p* : H*(B) -t H*(X) 
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induced by the projection. We find that 

secat X ~ nil ker p* . (19.13) 

In particular, suppose that X is an (orthogonal) (q - I)-sphere bundle over 
B, associated with a euclidean q-plane bundle ~. The Euler class Wq(~) is 
defined with integral coefficients when ~ is orientable, with mod 2 coefficients 
in any case. Either directly or via Schwarz' theorem, we find that secat X ~ r 
implies (Wq(~)t = o. 

When X is fibrewise pointed the sectional category itself is without inter­
est. For our purposes, however, another numerical invariant plays an import­
ant role. Let us say that X is polarized if every section of X - B is vertically 
homotopic in X to the standard section. 

Proposition 19.14 Let B be a finite complex and let E be a (q - I)-sphere 
bundle over B. Suppose that dim B < 2q - 2. If the fibrewise suspension E BE 
is polarized then E admits a section. 

For consider the fibrewise space ABEBE of fibrewise interpolar paths in 
EBE, i.e. of paths in each fibre from the south pole to the north. Since E 
is a fibre bundle over B with fibre Sq-l it follows that ABEBE is a fibre 
bundle over B with fibre ASq, the space of interpolar paths in sq. We ob­
serve that ASq is homeomorphic to nsq, the space of loops. We embed E 
in ABEBE using the adjoint of the identity on EBE and consider the pair 
(ABEBE,E) as a fibre bundle over B with fibre the pair (ASq,Sq-l). Since 
the fibre is (2q - 3)-connected, by the Freudenthal theorem, the conclusion 
of Proposition 19.14 follows by obstruction theory. 

By way of illustration, take B = sn and let E be obtained by the clutching 
construction from an element a E 7rn - 1SO(q). The necessary and sufficient 
condition for E to admit a section is that p*a = 0 in 7rn -l (Sq-l), where 
p is the evaluation map. The corresponding condition for ABEBE to admit 
a section is that E*p*a = 0 in 7rn (sq), where E* denotes the suspension 
operator, and this is therefore the condition for EBE to be polarized. For 
an example where this condition is satisfied but E does not admit a section, 
take n = 4 and q = 3. Take a to be twice a generator of the infinite cyclic 
group 7r3SO(3). Then p*a =I 0, since p* is an isomorphism, but E*p*a = 0, 
since 7r4(S3) = Z2' 

Proposition 19.15 Let B be a space and let E be a fibrewise space over 
B. Suppose that the fibrewise suspension EBE is polarized. Then EBE is 
fibrewise coHopj. 

Here we regard EBE as a fibrewise pointed space with the section s where 
the suspension parameter t = O. Then if h" : EBE --+ EBE is a fibrewise 
homotopy of Sip into sp, where Sl is the section where t = 1, then a fibrewise 
coHopf structure 
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is given by 

{ 

((x,4t), (x,O» (0 ~ t ~ t) 
(h2 _ 4t (X,t),(X,0» (t ~ t ~~) 

m(x, t) = 1 3 
((X,0),(x,4t-2» (2~t~4) 

((X,0),h4-4t (X,t» (~~ t ~ 1). 

After these preliminaries we are ready to define the polar category. Given 
a fibrewise pointed space X over B, we say that a subset W of B is polar 
categorical if X w is polar. Then we define the polar category polcat X of X 
to be the least number of polar categorical open sets required to cover B. If 
no such number exists the polar category is said to be infinite. 

If X = EBE, for some fibrewise space E, then we have polcatX = 
secatABEBE, hence 

polcatEBE ~ secatE 

In the other direction we prove 

(19.16) 

Proposition 19.17 Let E be a (q - I)-sphere bundle over the finite complex 
B. Suppose that dimB ~ 2qr - 3, for some r, and that polcatEBE ~ r. 
Then secat E ~ r. 

As in the proof of Schwarz' theorem the condition polcat EBE ~ r implies 
that the polar sections of EBE(r) are vertically homotopic. Then by Propo­
sition 19.14 the condition dim B ~ 2qr - 3 implies that E(r) itself admits a 
section. Now apply Schwarz' theorem. 

Corollary 19.18 Let ~ be a euclidean q-plane bundle over the finite complex 
B. Suppose that polcat EBE ~ r, where E = S(~) is the associated (q - 1)­
sphere bundle. Then (Wq(~)t = 0. 

Here Wq (~), as before, denotes the Euler class with integral coefficients 
when ~ is orientable, with mod 2 coefficients in any case. To deduce Corol­
lary 19.18 from Proposition 19.17, we can assume dimB ~ qr + 1, without 
real loss of generality. Then polcat EBE ~ r implies that secat E ~ r and so 
(Wq(~W = 0. 

Our interest in polar category is due to 

Proposition 19.19 Let X be a normal fibrewise pointed space over B. Sup­
pose that B admits a fibrewise pointed categorical neighbourhood in X. Then 

cat~ X ~ 1 + polcat X . catB(X - B). 

To prove Proposition 19.19, let N be a fibrewise pointed categorical neigh­
bourhood of B. Since X is normal and B is closed there exist neighbourhoods 
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N ' and Nil of B such that Nil ~ N ' and N ' ~ N. Rather than proceed at 
once to the general case let us suppose, to begin with, that X is polarized. 

Let U be an open set of X - N' which is fibrewise contractible in X - B. 
So there exists a fibrewise homotopy ht : U -t X - B such that ho is the 
inclusion and hi = (jp I U for some section (j of X - B. By assumption there 
exists a vertical homotopy kt : B -t X of (j into the standard section s. By 
performing first ht and then ktp I U we obtain a fibrewise null-homotopy of 
the inclusion into sp I U. Since U and Nil are disjoint the open set U U Nil is 
fibrewise pointed categorical in X, where the fibrewise pointed null-homotopy 
on the union is given by the fibrewise null-homotopy on U and the fibrewise 
pointed contraction of N on Nil. 

In the general case X may not be polarized. However, we can use the 
above argument over each polar categorical open set of X and conclude that 
X -N' can be covered by polcat X. catB(X -B) fibrewise pointed categorical 
open sets of X. We supplement this covering of X - N' by the fibrewise 
categorical neighbourhood N of B and conclude that X can be covered by 
1 + polcat X. catB (X - B) fibrewise pointed categorical open sets, as stated 
in Proposition 19.19. 

For example, take G to be the orthogonal group O(q} acting on the sphere 
sq in the usual way, with the poles as fixed points. The open northern hemi­
sphere provides a pointed G-categorical neighbourhood of the north pole, 
while the complement of the north pole is obviously G-categorical. So when 
X is a fibrewise pointed sphere-bundle Proposition 19.19 reduces to 

cat~ X :$ 1 + polcat X, 

which since X is fibrant implies 

cat~ X :$ 1 + cat B. 

(19.20) 

(19.21) 

So far we have mainly been concerned with fibrewise spaces in general. 
For fibrant fibrewise spaces, however, more can be said and we have already 
had some examples of this. Fibre bundles form an important class of fibrewise 
spaces and it is usually unnecessary to assume the existence of a structural 
group. 

Let X be a fibrewise pointed fibre bundle over B with fibre Y. The r-fold 
fibrewise product n~ X is then a fibrewise pointed fibre bundle over B with 
fibre nr Y. Also the fibrewise fat wedge Tlj(X, B} is a fibrewise pointed fibre 
bundle over B with fibre Tr(y, Yo}. Some condition seems to be necessary 
before we can say that the fibrewise smash product A~ X is a fibrewise 
pointed fibre bundle over B with fibre Ar Y. Certainly it is sufficient for Y 
to be compact. Note that when Y is (q -1}-connected then (nr Y, Tr(y, Yo)) 
and A r Y are (qr - I)-connected. 

Various results about fibrewise pointed category in the new sense can be 
found in [93], including 
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Proposition 19.22 Let B be a finite complex. Let X be a fibrewise pointed 
fibre bundle over B with (q - 1) -connected fibre Y, also a complex, where 
q ~ 1. Then 

cat~ X ~ [q-l dim(X - B)l + 1, 

where [x] means the integer part of a real number x. 

For example, take B to be the real projective n-space pn. Take X to be the 
fibrewise pointed circle bundle S (~E9I), where ~ is the Hopf line bundle. Then 
Proposition 19.22 shows that cat~ X ~ n + 2. On the other hand, the Thorn 
space XI B of ~ is just pn+l and so (19.10) shows that wcat~ X ~ n + 2. 
In this case, therefore, both fibrewise pointed category and weak fibrewise 
pointed category are equal to n + 2. If we use multiples of the Hopf bundle 
rather than the Hopf bundle itself the cohomologicallower bound no longer 
coincides with the upper bound given by Proposition 19.22. 

Proposition 19.23 Let B be a finite complex. Let X be a fibrewise pointed 
fibre bundle over B with (q - I)-connected fibre Y, also a complex, where 
q ~ 1. Suppose that Y is a finite complex and that (X, B) is a relative complex. 
Suppose that dim(X - B) ~ q(r + 1) - 2, for some r, and that wcat~ X ~ r. 
Then cat~ X ~ r. 

Since the conclusion is an immediate consequence of Proposition 19.22 
when q = 1 we assume q ~ 2. The argument which follows is essentially a 
fibrewise version of that used by Berstein and Ganea to prove the correspond­
ing result Theorem 3 of [12] in the ordinary theory. 

Consider the diagram shown below, where E is the fibrewise mapping 
path-space WB().) of the natural projection). : n~ X -+ I\~ X. We recall 
that W B ().) is defined as the pull-back of the fibrewise path-space PB I\~ X 
over I\~ X. 

F 

n~X 

!' r If 
E 

Here f is given by the identity into the first factor of the pull-back, by 
the fibrewise constant path following). into the second. Since the fibrewise 
pointed map PB I\~ X -+ I\~ X is a fibrewise pointed fibration, so is the 
composition p : E -+ I\~ X of the second projection with this fibrewise 
pointed map. Finally, f' is the projection of the pull-back into the first fac­
tor, F = p-l B is the fibrewise fibre (that is, the fibrewise mapping fibre 
FB().)) and i, j are the inclusions. 

Now consider the pair (Fo, Tr(y, Yo)), where Fo is the fibre of F over 
the basepoint of B and Tr(y, Yo), the corresponding fibre of TB(X, B), is 
embedded in Fo through the map g. Berstein and Ganea show, in the proof of 
Theorem 3 of [12], that this pair is (q(r+ 1) - 2)-connected. Since wcat~ X ~ r, 
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by hypothesis, we have that poLl is fibrewise pointed null-homotopic, and 
so p 0 f 0 Ll is fibrewise pointed null-homotopic. Since the lower row in the 
diagram is a fibrewise pointed fibration we can lift the fibrewise pointed 
null-homotopy of p 0 f 0 Ll to a fibrewise pointed homotopy of f 0 Ll into 
a fibrewise pointed map 1/J : X -t F. Since dim (X - B) ~ q(r + 1) - 2 a 
standard deformation argument, on the lines of the proof of (6.1) given in 
[93], shows that 1/J is fibrewise pointed homotopic to 9 0 ifJ for some fibrewise 
map ifJ : X -t TB(X, B). Since 

joifJ=!' ofojoifJ=!, oiogoifJ 

:=B !' 0 i o1/J :=B !' 0 f 0 Ll = Ll 

we conclude that cat~ X ~ r, as asserted. 

Fibrewise coHopf structure 

Let us now turn to the special case where the fibrewise pointed category does 
not exceed 2, in other words fibrewise pointed spaces which admit fibrewise 
coHopf structure. This case has already been discussed in [87] and, more 
thoroughly, in [130]. However, weak fibrewise coHopf structures have not 
previously been considered and so we need to include them in the discussion. 
Returning to the situation in Proposition 19.23, we have at once 

Proposition 19.24 Let B be a finite complex. Let X be a fibrewise pointed 
fibre bundle B with (q - 1)-connected fibre Y, also a complex, where q ~ 1. 
Suppose that 

dim(X - B) ~ 3q - 2 

and that X admits weak fibrewise coHopf structure. Then X admits fibrewise 
coHopf structure. 

To make further progress let us assume that Y is a coHopf space as, for 
example, when Y is a sphere. More specifically, let us assume that we have a 
pointed homotopy 

ht:Y-tYxY 

of the diagonal into the inclusion of a coHopf structure m : Y -t Y V Y. 
Suppose that (X, BUY) is a relative complex, that B is (n - 1)-connected, 
that Y is (q - 1)-connected, and hence (X, BUY) is (n + q - 1)-connected. 

The primary obstruction to extending m to a fibrewise map X -t X VB X 
is an element 

() E Hn+q(x, B U Yj 1rn+q-l(Y V Y». 

The primary obstruction to extending ht to a fibrewise pointed homotopy 
X -t X X B X of the diagonal into the fibrewise wedge is an element 
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The primary obstruction to extending the pointed null-homotopy h~ of ..::1' to 
a fibrewise pointed null-homotopy of ..::1' : X -+ X /l.B X is an element 

'lj; E Hn+q(X, B U Yj 7rn+q(Y /I. Y)). 

It is a simple exercise to show that 

() = 8. (if» , (19.25) 

where 8* is the coefficient homomorphism given by the boundary operator 

8: 7rn+q(Y X Y, Y /I. Y) -+ 7rn+q-l (Y V Y), 

and that 
'lj; = >".(if», (19.26) 

where >.. * is the coefficient homomorphism 

7rn+q(Y X Y, Y V Y) -+ 7rn+q(Y /I. Y) 

induced by the natural projection. Note that 8 admits a left inverse, hence so 
does 8*. So if we can calculate (), in a particular case, then we can calculate 
if> and hence 'lj;. Examples will be given in the next section. 

When Y is a sphere, say Y = sq with q ~ 2, the deformation ht of 
the diagonal always exists and any two such deformations are, in a certain 
sense, equivalent. Thus if> is the primary obstruction to the fibrewise pointed 
deformation of ..::1 into X VB X, () is the primary obstruction to the existence 
of fibrewise coHopf structure on X, and 'lj; is the primary obstruction to the 
existence of a fibrewise pointed null-homotopy of ..::1' : X -+ X /l.B X. The 
extension restrictions can be ignored, for the reasons stated. 

20 The reduced product (James) construction 

Reduced product spaces 

Under certain conditions the reduced product space J X of a pointed space 
X has the same homotopy type as n E* X, the loop-space on the reduced 
suspension of X. Several proofs can be found in the literature. The original 
proof [77] made unnecessarily strong assumptions. Later, in the last chap­
ter of [44], tom Dieck, Kamps and Puppe gave a proof under much weaker 
conditions and showed that they could not be further weakened. 

Here, following [63], we give a simple proof of the original result, without 
striving for maximum generality, and show that the same method can be used 
to prove an equivariant version of the reduced product theorem and hence a 
fibrewise version. 
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To begin with we work in the category of pointed spaces. Unless otherwise 
stated maps and homotopies are basepoint-preserving. Suspension always 
means reduced suspension. Later we shall turn to the equivariant theory, but 
here again the action is to be basepoint-preserving. 

Let X be a space with basepoint Xo, which we assume to be closed. As a 
set the reduced product space J X may be described as the free monoid on X, 
with Xo acting as neutral element. Thus a point of J X may be represented 
by a finite sequence of points of X. Sequences with not more than n terms 
form a subset In X ~ JX (n = 0,1, ... ). We topologize In X as a quotient 
space of the n-fold topological product rt X. Then we obtain a sequence of 
spaces 

JO X ~ Jl X ~ ... ~ r X ~ ... , 

where each member of the sequence is contained in the next as a closed 
subspace. Finally, we topologize J X itself as the colimit of the sequence; 
this does not mean (see (17.10) of [44]) that the multiplication on JX is 
continuous. We prove 

Theorem 20.1 Let X be a well-pointed compact Hausdorff space. Suppose 
that X can be covered by open sets, each of which is contractible in X to the 
basepoint. Then J X has the same homotopy type as DE* X. 

The supposition is that the category of X is defined, in the pointed sense, 
and is therefore finite, by compactness. In the proof which follows we disre­
gard basepoints. We shall show that JX and DEX have the same homotopy 
type in the non-pointed sense. For reasons given in (17.3) of [44) this will 
imply that they have the same homotopy type in the pointed sense. 

First, observe that the natural projection from rr X to In X (n = 
0,1, ... ) is proper, since X is compact, and hence the function 

X x rx -t I n+1X 

defined by the multiplication on J X is continuous. FUrthermore, X x J X is 
the colimit of the sequence 

X x JO X ~ X X Jl X ~ ... ~ X x r X ~ ... , 

and so the function 
T: X x JX -t JX 

thus defined is continuous. 
The first step in the proof of the theorem is to show that, for each n, the 

homotopy push-out of the cotriad 

r+1xt--x x rx~rx 

is contractible, where the left-hand arrow is given by the restriction of T. 
This is trivial when n = 0; make the inductive hypothesis that it is true for 
some n ~ O. Write 
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X I> r X = Xo X r X u X X r-1 X ~ X X In X 

and consider the diagram shown below 

rx 

1 1 

1 1 1 
Xo 

The outer square is a homotopy push-out, by the inductive hypothesis. Also 
the top half of the diagram is a push-out in the topological sense, hence a 
homotopy push-out (since the inclusion In X --t In+1 X is a cofibration so is 
the inclusion X X In X --t xl>r+1 X). Similarly, the bottom left-hand square 
is a homotopy push-out. Hence it follows from Theorem lO(ii) of Mather [102] 
that the bottom right-hand square is also a homotopy push-out, which proves 
the inductive step. 

Now the colimit of this sequence of contractible homotopy push-outs is 
just the homotopy push-out of the cotriad 

JX?XxJX~JX. 

We conclude, therefore, that this space is contractible. So far we have only 
used the assumptions that X is well-pointed and compact Hausdorff. 

Now consider the diagram shown below, which depicts two adjacent faces 
of a cube 

XxJX JX 

1 JX 1 
x 1 -----t Xo 

Xo 

Obviously, the back face in the diagram is a homotopy pull-back. We assert 
that the other face is also a homotopy pull-back. This amounts to showing 
that the 'shearing map' 

~: X X JX --t X x JX, 

with components (11"1, T), is a fibrewise homotopy equivalence, where X x JX 
is regarded as a fibre space over X through the first projection. However, X is 
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path-connected and of finite category, and so this follows from Dold's theorem 
(Theorem 14.1). 

Thus both faces are homotopy push-outs and so, completing the dia­
gram of the cube as shown below, we can apply Theorem 11 of Mather [102] 
and conclude that the front face is a homotopy pull-back, from which Theo­
rem 20.1 follows at once. 

XxJX JX 

1 JX Xo 

1 
x 1 ~ Xo 1 

Xo E*X 

The equivariant version 

We turn now to the equivariant version of the theorem, which does not seem 
to have been treated in the literature. Specifically, let X be a (pointed) G­
space, where G is a compact group. Then JX and nE* X are also G-spaces 
and we state 

Theorem 20.2 Let X be an equivariantly well-pointed compact Hausdorff 
G-space, where G is a compact Lie group. Suppose that X can be covered by 
invariant open sets each of which is G-contractible to the basepoint. Then JX 
has the same G-homotopy type as [}E* X. 

The proof of Theorem 20.2 proceeds on the same lines as the proof of 
Theorem 20.1. An equivariant version of Mather's theory is needed, but this 
is completely routine. An equivariant version of Dold's theorem is also needed, 
but this too poses no problems. It seems unnecessary, therefore, to go through 
the details. 

The supposition is equivalent to the assumption that the G-category of 
X is defined, in the pointed sense, and is therefore finite, by compactness. 
This is true, for example, if X is a finite G-complex such that the fixed point 
set X H is connected for all closed subgroups H of G, as is the case when X 
is a double suspension. Thus take G to be the orthogonal group O(n - 1) 
acting on the sphere sn in the usual way, where n ~ 1, so that the poles 
are left fixed and a point Xo on the equator is also left fixed. Cover sn by 
the enlarged hemispheres, which are O(n -1) contractible to their respective 
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poles, and then deform the poles into Xo, which we take as basepoint, along 
the line of longitude. We see that the condition is fulfilled in this case. 

The fibrewise version 

Finally, we turn to the fibrewise version of the reduced product theorem. 
We work in the category of fibrewise pointed spaces over a given base space 
B and require the standard section to be dosed. Then the fibrewise reduced 
product space JBX is defined as in [88] for each fibrewise space X over B. 
The fibres of JBX are just the reduced product spaces of the corresponding 
fibres of X. We prove 

Theorem 20.3 Let X be a (fibrewise pointed) fibre bundle over the base 
space B with compact structure Lie group G and fibre the (pointed) G-space 
A. Suppose that A satisfies the conditions of Theorem ~O.~. Then JBX has 
the same fibrewise homotopy type as {}BENX. 

For let P be the principal G-bundle over B associated with X. The asso­
ciated bundle functor P # transforms the equivariant reduced product space 
J A into the fibrewise reduced product space J B X, and similarly with the sus­
pension and loop-space. Since J A has the same equivariant homotopy type as 
{}E* A, by Theorem 20.2, it follows at once that JBX has the same fibrewise 
homotopy type as {}BEN X. 

The original version of the fibrewise reduced product theorem is due to 
Eggar [59] but conditions are imposed which are rather inconvenient in prac­
tice. More recently, James [88] published a fibrewise version of the proof 
given by tom Dieck, Kamps and Puppe [44] in the ordinary case. This does 
not assume local triviality. However Theorem 20.3 seems adequate for most 
applications and its proof is a good deal simpler than the alternatives. For 
example, it applies in the case of an orthogonal sphere-bundle which admits a 
pair of mutually orthogonal sections. In Section 14 of Part II we shall resume 
the discussion of fibrewise reduced product spaces as part of a study of fibre­
wise configuration spaces and establish a fibrewise stable splitting theorem. 

21 Fibrewise Hopf and coHopf structures 

Fibrewise Hopf and coHopf spaces 

Fibrewise Hopf and coHopf spaces have already been defined. In this section 
we establish some of their properties and give some examples. Other results 
may be found in Scheerer [120]. 

For fibrant fibrewise pointed spaces the following result is useful. 
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Proposition 21.1 Let B be numerably categorical. Let X be a fibrant fibre­
wise pointed space over B. 
(i) If a Hopf structure on the fibre of X can be extended to a fibrewise mul­
tiplication on X then it can be extended to a fibrewise Hopf structure. 
(ii) If a coHopf structure on the fibre of X can be extended to a fibrewise 
comultiplication on X then it can be extended to a fibrewise coHopf structure. 

Here we mean extend up to homotopy, rather than extend as a map. To 
prove (i) let m : X XB X -t X be a fibrewise multiplication on X extending 
a Hopf structure on the fibre. Let O'j : X -t X XB X (j = 1, 2) be the axial 
sections of the fibrewise product. Then the restriction of the fibrewise map 
m 0 O'j : X -t X to the fibre is homotopic to the identity. Hence m 0 O'j is a 
fibrewise pointed homotopy equivalence, by Dold's theorem. Let OJ : X -t X 
be a fibrewise pointed homotopy inverse of m 0 O'j. Then 

is a fibrewise Hopf structure on X which extends the given Hopf structure 
on the fibre. This proves (i) and the proof of (ii) is similar. 

Proposition 21.2 Let X be a numerably fibrewise pointed categorical and 
fibrewise well-pointed fibrewise Hopf space over B. Then X admits fibrewise 
homotopy inverses on each side. 

For let m : X x B X -t X be the fibrewise Hopf structure. By using the 
fibrewise pointed homotopy extension property we may suppose, with no real 
loss of generality, that the section s : B -t X is a strict neutral section for 
m, in the sense that 

m 0 (c x 1) 0 .1 = 1 = m 0 (1 x c) 0.1, 

where c = sop as before. Regard X XB X as a fibrewise pointed space over 
X using the first projection and the section given by (c x 1) 0 .1. Then the 
fibrewise shearing map 

k : X XB X -t X XB X 

is fibrewise over X, where the components of k are given by 11"1 0 k = 11"2, 

1I"2ok = m. By Proposition 21.1 k is a fibrewise pointed homotopy equivalence. 
Hence the composition 

X~XXBX~XXBX~X 

provides a right fibrewise homotopy inverse for m, where u = (1 x c) 0 .1 
and l is a fibrewise pointed homotopy inverse of k. Similarly, m admits a left 
fibrewise homotopy inverse. 
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One would hope for a similar result to be true in the dual case. However, 
even for ordinary coHopf spaces there is a problem here, and the best way to 
proceed seems to be to prove 

Proposition 21.3 Let B be numerably categorical. Let X be a fibrant fibre­
wise coHopf space over B. Suppose that the coHopf structure on the fibre 
admits a homotopy inverse on either side. Then the fibrewise coHopf struc­
ture on X admits a fibrewise homotopy inverse on the same side. 

For suppose that the fibrewise coHopf structure m, restricted to the fibre, 
admits a homotopy inverse on the right. Consider the fibrewise 'coshearing' 
map 

k:XVBX-+XVBX 

given by the identity on the first summand, by m on the second. By hypothesis 
k is a homotopy equivalence on the fibre and hence, by Proposition 10.2, a 
fibrewise pointed homotopy equivalence. Now the composition 

X~XVBX~XVBX~X 

provides a right fibrewise homotopy inverse for m, where u = V 0 (1 V c) and 
l is a fibrewise homotopy inverse of k. 

The existence of homotopy inverses on each side for ordinary coHopf struc­
tures has been discussed by Ganea [66] who shows (using coshearing maps) 
that it is sufficient for the fibres to be simply-connected. 

Fibrewise retraction and coretraction 

For each fibrewise pointed space X over B the right adjoint of the identity 
on EBx is a fibrewise pointed map u : X -+ [}BERX while the left adjoint 
of the identity on [}BX is a fibrewise map v: EE[}BX -+ X. Following the 
practice of Ganea [66) and others in the ordinary theory, let us describe a 
left inverse of u, up to fibrewise pointed homotopy, as a fibrewise retraction, 
and a right inverse of v, up to fibrewise pointed homotopy, as a fibrewise co­
retraction. When X is fibrewise well-pointed the qualification 'up to fibrewise 
pointed homotopy' is unnecessary. 

Clearly, if X is a fibrewise retract of [}BEBX then X is a fibrewise Hopf 
space, while if X is a fibrewise coretract of EB {}BX then X is a fibrewise 
coHopf space. Under certain conditions the converse implications hold. 

Proposition 21.4 Let X be a fibrewise Hopf space over B. Suppose that X 
satisfies the conditions of Theorem 20.3. Then X is a fibrewise retract of the 
fibrewise loop-space [} B EB X on the reduced fibrewise suspension of X. 

For consider the fibrewise reduced product space J B X of X, i.e. the fibre­
wise free monoid generated by X with topology as in Section 20. The fibre­
wise Hopf structure on X determines a fibrewise retraction of JBX onto X 
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by extending multiplicatively. Now it is shown in Theorem 20.3, under the 
hypotheses of Proposition 21.4, that JBX has the same fibrewise pointed 
homotopy type as {}BEHX, hence the result. 

Proposition 21.5 Let X be a fibrewise well-pointed fibrewise coHopf space 
over B. Then X is a fibrewise coretract of the reduced fibrewise suspension 
EB {}BX of the fibrewise loop-space on X. 

For each fibrewise pointed space Y we have a standard fibrewise coHopf 
structure 

k: EHY -7 EHy VB EHY. 

In particular, we have this when Y = {}BX. Consider the diagram shown 
below where v is as before and j is the inclusion 

EH{}BX ~ X 

---7 X XBX 
j 

It is not difficult to show (see (6.63) and (6.65) of [85]) that the fibrewise 
homotopy fibres of v and j are equivalent, in the sense of fibrewise pointed 
homotopy type. Moreover, the verticals in the diagram induce a fibrewise 
pointed homotopy equivalence of the fibrewise homotopy fibres. It follows that 
fibrewise coHopf structures X -7 X VB X correspond precisely to fibrewise 
coretractions X -7 EH{}BX. 

In the ordinary case this result is due to Ganea [66] who works in the 
category of CW-spaces. Sunderland [130] uses Dold's theorem and Ganea's 
result instead. 

It is hard to believe that there is not a proof of Proposition 21.4 on similar 
lines but we are not aware of one. Almost certainly the assumptions needed 
to make the proof we have given work are unnecessarily restrictive. 

In the ordinary theory the existence of Hopf structure is equivalent to the 
vanishing of the Whitehead square, on the one hand, and to the existence of 
maps of Hopf invariant one on the other. Fibrewise versions of these results 
can be developed (see [59], for example), but these are somewhat routine. 
Again one can construct the fibrewise projective plane, from a fibrewise mul­
tiplication, and analyse its fibrewise cohomology. We shall not pursue these 
matters here, in full generality, although some special cases will be discussed 
later on. 

Fibrewise pointed sphere-bundles 

We turn now from the general theory to an important class of special cases, 
the fibrewise pointed sphere-bundles. As we shall see, there is plenty of in­
terest in this range of examples. We may begin with a (real) n-plane bundle 
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~ over B. The fibrewise compactification ~~ is a fibrewise pointed n-sphere 
bundle, the section being the complement of ~, and every fibrewise pointed 
n-sphere bundle can be represented in this way. To look at the situation in an­
other way, ~~ can be obtained from the sphere sn, as a (pointed) O(n)-space, 
by applying the associated bundle functor P# where P is a principal O(n)­
bundle over B. Let us begin our discussion with some observations about 
O(n)-spaces. 

Points of sn are represented in the form 

(coso:, x sin 0:) (x E sn-1, 0:::; 0::::; 71') 

with e = (1,0) as basepoint. We regard sn as an O(n)-space so that 9 E O(n) 
transforms (cos 0:, x sin 0:) into (cos 0:, g.x sin 0:). For each integer k we have 
an O(n)-map Ok : sn --+ sn of degree k, where 

Ok (cos 0:, x sin 0:) = (cos ko:, x sin ko:). 

Note that Ok! k2 = Ok! Ok2 • 

We regard sn x sn as an O(n)-space using the diagonal action. There is 
a well-known O(n)-map 

4J : sn x sn --+ sn 
of bidegree (1 + (_1)n+1, 1), which sends each pair (y, z) into the reflection 
of 0_1 Z in the hyperplane orthogonal to y. 

The coproduct sn V sn may be identified with the invariant subspace 

sn x {e} U {e} X sn ~ sn X sn 

Another O(n)-map 
t/J : sn --+ sn V sn 

of bidegree (1 + (-l)n+l, 1) is defined which sends (cos 0:, x sin 0:) into 

{ ((cos 30:, x sin 30:), e) (0:::; 0::::; i7l') 
(e, (cos 30:, X sin 30:)) (i7l':::; 0: :::; 71'). 

We use these O(n)-maps, as described above, to construct fibrewise maps 
of the associated fibrewise pointed n-sphere bundles. Although we do not 
need to use Noakes' pioneering work in this area, a courtesy reference to 
[118J here is surely appropriate. Specifically let ~, as before, be an n-plane 
bundle with fibrewise compactification ~~. Then for each integer k we have 
a fibrewise map ek : ~~ --+ ~~ of degree k on the fibre. We also have the 
fibrewise multiplication 

4> : ~~ x B ~~ --+ ~~ 
of bidegree (1 + (_1)n+1, 1) on the fibres, and the fibrewise comultiplication 

.p : ~~ --+ ~~ V B ~~ 

of the same bidegree on the fibres. 
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Proposition 21.6 Let B be numerably categorical. Let ~ be an n-plane bun­
dle over B, where n is odd. Suppose that the fibrewise pointed n-sphere bundle 
~~ admits a fibrewise multiplication of bidegree (2k + 1,21 + 1) on the fibres, 
where k and I are integers. Then ~~ admits fibrewise Hopf structure. 

For let m be a fibrewise multiplication on ~~ of bidegree (2k + 1,21 + 1) 
on the fibres. Replace m by m', where 

m'(y,z) = 4>(8-ky,4>(8_lz,m(y,z))) 

for y, z in the same fibre of ~~. Since 4> has bidegree (2,1) on each fibre we 
find that m' has bidegree (1,1) on the fibres. By Proposition 21.1, therefore, 
~~ admits fibrewise Hopf structure. Similarly, using .p instead of 4> we obtain 

Proposition 21.7 Let B be numerably categorical. Let ~ be an n-plane bun­
dle over B, where n is odd. Suppose that the fibrewise pointed n-sphere bundle 
~~ admits a fibrewise comultiplication of bidegree (2k+ 1, 21 + 1) on the fibres, 
where k, 1 are integers. Then ~~ admits fibrewise coHopf structure. 

As we shall see later, the conclusion no longer holds for even values of n 
(it is unnecessary to say this in the case of Proposition 21.5 since sn cannot 
admit a multiplication of bidegree (2k + 1,21 + 1) when n is even). For odd 
values of n, however, these two results show that the existence of fibrewise 
Hopf structure and the existence of fibrewise coHopf structure on fibrewise 
pointed n-sphere bundles are 2-local problems. By using the machinery of 
fibrewise localization (see [105], for example) one can describe the situation 
with greater precision, but the message is that odd primes are irrelevant. 

As we have already remarked, there is a relation between fibrewise mul­
tiplications 

m:X XBX-+X 

where X = ~~, and the corresponding fibrewise maps 

c(m) : X *B X -+ EBx, 
obtained by the fibrewise version of the Hopf construction. Clearly, if m 
determines a Hopf structure on the fibre sn then c(m) determines a map 
S2n+l -+ sn+l of Hopf invariant one, and conversely. In fact one can go 
further and show that the existence of a fibrewise map 

h : X *B X -+ EBx 
of Hopf invariant one on the fibres implies the existence of a fibrewise map 

m:X XBX-+X 
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of bidegree (1,1) on the fibres and hence the existence of fibrewise Hopf 
structure, by Proposition 21.1. 

For which n-plane bundles ~ over B does ~t admit fibrewise Hopf struc­
ture? The question only arises when n = 0,1,3 or 7, since otherwise the fibre 
does not admit Hopf structure. Ignoring the trivial case n = 0, we consider 
the other three cases in turn. 

The classical Hopf structure on 8 1, arising from complex multiplication, is 
o (l)-equivariant. Hence every line bundle ~ satisfies the condition and there 
is no more to be said. 

The classical Hopf structure on 8 3 , arising from quaternionic multiplica­
tion, is 80(3)-equivariant. Hence every orientable 3-plane bundle ~ satisfies 
the condition. 

The classical Hopf structure on 8 7 , arising from Cayley multiplication, 
is G2-equivariant, where G2 is the exceptional Lie group. Hence a 7-plane 
bundle ~ satisfies the condition if its structure group can be reduced to G2 . 

What can be said in the other direction? It is only to be expected that the 
existence of fibrewise Hopf structure has implications for the characteristic 
classes. We find 

Proposition 21.8 Let B be a finite complex. A necessary condition on the 
n-plane bundle ~ for ~t to admit fibrewise Hopf structure is that Wi(~) = 0 
whenever n + 1 - i is not a power of two. 

This was proved by Cook in his thesis through an analysis of the co­
homology of the fibrewise projective plane determined by a fibrewise Hopf 
structure; another proof is given in [24). 

The result shows, in particular that if n = 3 then WI (~) = 0, so that ~ 
is orientable, while if n = 7 then wd~) = 0 and W2(~) = 0 so that ~ admits 
spin structure. Thus we see that orientability is both necessary and sufficient 
when n = 3. Provided B is a finite complex and dim B < 8 we see that 
the existence of spin structure is both necessary and sufficient, since if the 
structural group is reducible to spin(7) it is also reducible to G2 • 

Turning now to the dual problem, we recall that the Thorn space Be of 
the n-plane bundle ~ is equivalent to the space obtained from ~t by col­
lapsing the section. If ~t admits fibrewise coHopf structure then Be admits 
coHopf structure. This implies, in particular, that products are trivial in the 
cohomology ring of Be. Since the Euler class e(~) of ~ maps into the square 
of the Thorn class under the Thorn isomorphism 

ir(B) -t j[2n(B{) 

we conclude that e(~) = 0 when ~t admits fibrewise coHopf structure. 
This result is due to Sunderland [130) who established fibrewise versions 

of many of the results about coHopf spaces proved by Berstein, Ganea and 
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Hilton. For example, Sunderland obtained conditions for a fibrewise coHopf 
space to be a fibrewise suspension. In somewhat the same spirit we now prove 
two results which may illuminate the situation. 

Proposition 21.9 Suppose that X is a fibrewise pointed n-sphere bundle 
over a finite complex B. Let Y be a fibrewise pointed spherical fibration of 
dimension n - 1 over B. Suppose that (e) if n is even, there is a fibrewise 
pointed homotopy equivalence X --t EBy, (0) if n is odd, there is a fibrewise 
pointed map X --t EBy of odd fibre degree. Then X admits fibrewise coHopf 
structure. 

Case (e) is clear. In case (0) it is elementary to check that there is a map 
EBy --t X of odd degree in the opposite direction. By composition with 
these maps a coHopf structure on EBy then determines a map of (odd, odd) 
bidegree on X. The assertion follows from Proposition 21.6. 

It is possible that the existence of a spherical fibration Y as in the state­
ment of the proposition is necessary for the existence of fibrewise coHopf 
structure. In a metastable range dim B < 2n - 2 this is true by a result to be 
established in Part II, Proposition 4.16. We shall see shortly that it is true if 
the base B is a suspension. 

Let A be a pointed finite complex and take B to be the reduced suspension 
EA. A clutching map a: A --t O(n) gives a fibrewise pointed n-sphere bundle 
X on B. (We assume n > 1, the case n = 1 being decided by the Euler class.) 
Let v : sn --t sn V sn be the comultiplication. Then X admits fibrewise 
coHopf structure if and only if (Ja V Ja) 0 v = v 0 Ja in [A A snj sn V sn]. 

Lemma 21.10 The obstruction (JaVJa)ov-voJa is the image ofa under 
the maps 

(projection onto sn-l = O(n)/O(n-1), n-fold suspension, and the Whitehead 
product). 

By the Hilton-Milnor theorem, the third map in Theorem 21.10 is a split 
injection. The composition of the first two maps is the Hopf invariant of Ja. 
Hence X has fibrewise coHopf structure if and only if H(Ja) E [Aj nnS2n-l] 
vanishes. From the EHP-sequence, localized at 2 if n is odd, we find that 
Ja E [Aj nnsn], or some odd multiple if n is odd, must desuspend to 
[Aj nn-1sn-l]. This establishes: 

Proposition 21.11 Suppose that B is a suspension. Then the existence of 
a spherical fibration Y as in Proposition 21.9 is a necessary and sufficient 
condition for the sphere-bundle X to admit fibrewise coHopf structure. 
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(If X' is a fibrewise pointed n-sphere bundle over B classified by an odd 
multiple of 0:, then, if n is odd, there is a fibrewise pointed map X -t X' of 
odd fibre degree.) 

Sphere-bu.ndles over spheres 

Let us turn now to the case where the base space is a sphere. Specifically, 
consider the fibrewise pointed oriented n-sphere bundle Xo: over sm (m > 1) 
corresponding, in the standard classification, to the element 0: E 1I"m_1SO(n). 
For which 0: does Xo: admit fibrewise Hopf structure or fibrewise coHopf 
structure? We take the second question first. 

Proposition 21.12 The fibrewise pointed space Xo: admits fibrewise coHopf 
structure if and only if E';:p.o: = o. 

Here E. denotes the suspension operator and p. is induced by the eval­
uation map p : SO(n) -t sn-l. We have E.p.o: = 0 if and only if Xo: is 
polarized. In the metastable range, when m < 2n -1, the iterated suspension 
E,;:-l is an isomorphism and so the existence of a fibrewise coHopf structure 
implies that E.p.o: = 0 and hence that Xo: is polarized. For an example 
where the converse of Proposition 19.15 breaks down, take m = 9 and n = 5. 
Since S5 admits a 2-field the Whitehead square W5 E 1I"9(S5) can be desus­
pended to an element 'Y E P.1I"sSO(5). Then E.'Y "I- 0 but E~'Y = o. Again, 
by taking 0: so that p.o: has order 3 in 1I"6(S3) = P.1I"6SO(4) we see that 
Proposition 21.6 breaks down for even values of n. 

To prove Proposition 21.12, we use the analysis of the homotopy the­
ory of sphere-bundles over spheres developed in [94]. Writing Xo: = X, for 
simplicity, we have the direct sum decomposition 

where the isomorphism is given by the section Lm E 1I"m(X) on the first 
summand, by the inclusion Ln E 1I"n(X) of the fibre on the second. Recall 
from [94] that with appropriate sign conventions the relation 

[Lm, Ln] = Ln 0 Jo: 

holds in 1I"m+n-l (X), where square brackets denote the Whitehead product. 
Similarly with the associated bundle Z = Xv B X with fibre the coproduct 

Sf V S~ of copies of sn. We have the direct sum decomposition 

and the relations 
[Lm, L~] = L~ 0 Jo: (k = 1,2) 

where L~ E 1I"n(Z) is the class of the kth insertion of the coproduct. 
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Suppose that X admits a fibrewise coHopf structure f : X -+ Z. Then 
we have a commutative diagram as shown below, where 9 : sn -+ Sf V S'2 is 
the induced coHopf structure on the fibre. 

1I't(sm) EB 1I't(sn) 

1 1 g. 

1I't(sm) EB 1I't(Sf V S'2) 

:::::: 1I't(X) 

I,· 
:::::: 1I't(Z) 

From the first relation stated above we obtain that 

[Lm, L; + L;] = (L; + L;) 0 Ja. 

in 1I'm+n-l (Z). Using the second relation and the left distributive law this 
reduces to 

[L;, L;] 0 H Ja. = 0, 

where H denotes the generalized Hopf invariant. However, [L;, L;] E 1I'2n-1 (Z) 
is the image of the basic Whitehead product of 1I'2n-1 (Sf V S'2) and so it 
follows that H Ja. = O. Since H Ja. = ±E;;p*a., this proves that the condition 
in Proposition 21.12 is necessary. 

Conversely, suppose that E;;p*a. = ° and hence H Ja. = O. Since the 
difference [Lm' Ln] - Ln 0 Ja. is the class of the attaching map of the (m + n)­
cell x\(sm V sn) of X we find, by reversing the above argument, that there 
exists a fibrewise map f : X -+ Z extending the coHopf structure on sn. 
Hence X admits fibrewise coHopf structure by Proposition 21.1. 

Let us turn now to the problem of the existence of fibrewise Hopf struc­
ture. Instead of dealing with this directly we first consider a related problem: 
does there exist a pointed map 

which is given, on each fibre, by a map of which the homotopy class (3 E 
1I'2n+1 (sn+1) has Hopf invariant one? Such questions are answered in [94] 
where it is shown that such a fibrewise map exists if and only if 

(21.13) 

Here Wn+1 = [Ln+1' Ln+ 1] E 1I'2n+1 (sn+ 1) is the Whitehead square. We recall, 
incidentally, that 2(3 - Wn+1 E E*1I'2n(sn). We see, therefore, that X admits 
fibrewise Hopf structure if and only if (3 can be chosen with Hopf invariant 
one so that Proposition 21.12 is satisfied. 

In particular, take n = 7 and m = 8. Then 1I'7S0(7) is cyclic infinite and 
1I'14(S7) = J1I'7SO(7) is cyclic of order 120 for n = 7. Let a denote the Hopf 
class in 1I'15(S8). Then Ws = 20' + E*O", where a' generates 11'14 (S7). Now 
(3 = 0'+ kE*O" and Ja. = la', for some integers k,l. The relation in (21.13) 
reduces to 

(3 - 2k)lE*O" 0 E~a = O. 
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However, at 0 E; a has order 24 in 71"21 (S7) and so k can be found to satisfy 
the relation if and only if 1 == 0 mod 8. Therefore the fibrewise pointed 7-
sphere bundles over S8 which admit fibrewise Hopf structure are precisely 
those which arise from elements of the subgroup 871"7SO(7) of 7I"7S0(7) by 
means of the clutching construction. 

We now supplement this by showing that X admits weak fibrewise coHopf 
structure if and only if E~+1 p.a = O. 

To see this, let us regard X, in the usual way, as a CW complex consisting 
ofthe wedge smv sn of the section and the fibre with an (n+m)-cell attached 
by the element 

[Lm' Ln] + Ln 0 Ja, 

where Ja E 7I"m+n_1(sn) is obtained from a by the Hopf construction. It 
is shown in [94] that the obstruction ¢ to the existence of fibrewise coHopf 
structure is just 

[L~, L~] 0 H Ja E 7I"n+m_1(sn V sn), 

where H is the generalized Hopf invariant. Hence it follows by (19.25) that 
the obstruction (J to the fibrewise pointed deformation of the diagonal is just 

(L~ X L~) 0 C.HJa E 7I"m+n(sn X sn,sn V sn), 

where C. is the cone homomorphism. Finally, it follows by (19.26) that the 
obstruction 'ljJ to the existence of weak fibrewise coHopf structure is just 

(L~ 1\ L~) 0 E.H Ja E 7I"m+n(s2n); 

the term (L~ 1\ L;) E 7I"2n(S2n) is just the class of the identity and can be 
suppressed. To obtain the necessary and sufficient conditions in the form 
previously stated, use the relation H Ja = ±E~p.a. 

Finally, let us show that there exists a fibrewise pointed 8-sphere bundle 
over S22 which is weakly fibrewise coHopf but not fibrewise coHopf. Recall 
that S15 admits an 8-field and so the Whitehead square W15 E 7I"29(S15) can 
be desuspended 8 times to an element f3 E 71"21 (S7). Since SO(8) has a section 
over S7 we have f3 = p.a for some element a E 7I"21 SO(8). Then 

E~p.a = E~f3 = W15 :f. 0, 

since 71"31 (S16) has no element of Hopf invariant one, while 

since Whitehead products are killed by suspension. Thus we see that the 
fibrewise pointed 8-sphere bundle over S22 obtained from a by the clutching 
construction is weakly fibrewise coHopf but not fibrewise coHopf. 
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22 Fibrewise manifolds 

Basic notions 

Manifolds over a base have been considered by Atiyah and Singer [5]; we prefer 
the term fibrewise manifold. In [5] a fibrewise manifold X over a base space B 
is defined to be a fibre bundle with fibre a compact manifold A and structural 
group the group Diff(A) of self-diffeomorphisms of A. Up to a point we could 
work with this definition but it is unsatisfactory to be restricted to compact 
fibres. For non-compact fibres the Atiyah-Singer definition is inappropriate 
although it provides a guide as to how to proceed. 

Fibrewise manifolds form a category in which the morphisms are called 
fibrewise smooth maps. An example of a fibrewise manifold over B is the 
product B x A where A is a manifold in the ordinary sense. (In this section 
and the next, by a manifold we mean a finite-dimensional, smooth mani­
fold without boundary, of constant dimension, which is Hausdorff and has a 
countable basis.) An example of a fibrewise smooth map is a fibrewise map 

() : B x A -+ B X A', 

where A and A' are manifolds, such that the second projection 

'1r2() : B x A -+ A' 

defines, for each point b of B, a smooth map Tb : A -+ A' for which deriva­
tives of all orders exist and vary continuously with b. These special cases are 
required for the general definitions, as follows. 

We say that a fibrewise space X over B is a fibrewise manifold if there is 
given a numerable open covering of B and for each member U of the covering 
a local trivialization 

¢u : Xu -+ U x Au, 

where ¢u is fibrewise over U and Au is a smooth manifold, such that the 
transition functions are fibrewise smooth. Specifically, if U, V are members of 
the covering then the map 

(U n V) x Au -+ (U n V) x Av 

determined by ¢vo¢c/ is fibrewise smooth. Note that the fibres are manifolds. 
IT dim Au = k, independently of U, we say that X is k-dimensional. 

For example, a fibre bundle over B with structural group a Lie group G 
and fibre a smooth G-manifold is a fibrewise manifold over B. 

Returning to the general case, let f : X -+ X' be a fibrewise map, where 
X and X' are fibrewise manifolds over B. We describe f as fibrewise smooth 
if when 

¢u : Xu -+ U x Au, ¢'u,: Xh, -+ u' x A'u, 

are trivializations, as above, the map 
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(U nU') X Au -+ (U nu') X A~, 

determined by ¢~, 0 f 0 ¢c/ is fibrewise smooth. 
The definition of fibrewise manifold we have given does not ensure that 

open subsets of fibrewise manifolds are also fibrewise manifolds. However, the 
definition of fibrewise smooth map can still be used in the case of such open 
subsets. 

Note that if X and X' are fibrewise manifolds over B then so is the 
fibrewise topological product X XB X'. To demonstrate this we combine the 
numerable coverings for X and X' by taking intersections in the usual way. 

Fibrewise smooth fibre bundles 

Let 1f : X -+ Y be a fibrewise smooth map of fibrewise manifolds over B. 
We say that X is a fibrewise smooth fibre bundle over Y if there exists an 
open covering of Y by subsets U over which there exists a smooth (over B) 
trivialization 

1f-1U -+ U X A. 

Here A is a smooth manifold and U x A is open in the fibrewise manifold 
Y x A over B. We prove 

Proposition 22.1 Let 1f : X -+ Y be a fibrewise smooth map, where X and 
Yare fibrewise manifolds over B. Suppose that there exists a numerable open 
covering of B and for each member U of the covering local trivializations 

¢: Xu -+ U x A&, 1/J: Yu -+ U x A,& 

such that the map 

1/J 0 1f 0 ¢-l : U x AD -+ U x AU 
is of the form 1 x 1fu, where AD is a smooth fibre bundle over AU with 
projection 1fu. Then 1f is a numerable fibrewise smooth fibre bundle. 

To see this, use a partition of unity for AU for each U of the numerable 
family. This determines a partition of unity of U x A,& and hence of Yu for 
each U. In this way we obtain a partition of unity for Y itself from which it 
follows that X is a fibrewise smooth fibre bundle over Y, as asserted. 

The term fibrewise smooth vector bundle is defined in a similar fashion. 
For our purposes the important example is the fibrewise tangent bundle rBX 
of a fibrewise manifold X, constructed as follows. As a fibrewise set 

rBX = U rXb, 
bEB 

the disjoint union of the tangent bundles to the manifolds Xb. We topologize 
rBX using the smooth local trivializations of X. Specifically, if U is a member 
of the open covering of B, over which X is locally trivial, and 
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4>: Xu -+ U x A 

is the corresponding local trivialization, then ruXu receives the topology 
induced by 

Tt/I : ruXu -+ U x TA. 

Then the open sets of TBX are the subsets which meet each of the ruXu in 
an open set. The local trivializations make TBX a fibrewise manifold over B. 
Moreover, the projections 

U x TA -+ U x A 

and the numerable local trivializations of T A over A combine to provide a 
numerable family of local trivializations of TBX, as required to show that 
TBX is a numerable fibrewise smooth vector bundle over X. 

Proposition 22.2 Let B be a manifold and let X be a smooth fibre bundle 
over B. If X admits a smooth section s then X (with this section) is smoothly 
locally trivial as a fibrewise pointed space, so that X - sB is a smooth fibre 
bundle over B. 

The proof is essentially the same as that of Proposition 9.1. 

Proposition 22.3 Let X be a fibrewise manifold over B. Then there exists 
a fibrewise smooth map 

e : TBX -+ X XB X 

over X which sends the zero-section of TBX into the diagonal of X XB X 
and is injective on each fibre over X. 

Here we regard X x B X as a fibrewise manifold over X using the second 
projection. When B is a point, so that X is just a manifold, the above result 
is standard. The map e is constructed as an appropriately scaled exponential 
map. An outline of the proof is as follows. 

By a fibrewise smooth metric on X we mean, roughly, a family of smooth 
Riemannian metrics on the fibres Xb depending continuously on b (or, for­
mally, a fibrewise smooth section of TBX ® TBX over X defining a metric 
on each fibre). Fibrewise smooth metrics can be constructed by the follow­
ing procedure. Let {U} be the numerable open covering of B and for each 
member U let 

4>u : Xu -+ U x Au 

be the corresponding local trivialization defining the fibrewise smooth struc­
ture of X. The smooth manifold Au admits a smooth Riemannian metric gu, 
say, and this determines a fibrewise smooth metric 4>'UgU on Xu. Choose a 
partition of unity {au} on B subordinated to {U}. By composing with the 
projection we obtain a partition of unity {.au} on X subordinated to {Xu}. 
Then 
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is a fibrewise smooth metric on X. 

Proposition 22.4 Let X be a fibrewise manifold over B with fibrewise 
smooth metric. Then there exists a fibrewise smooth map /j : X --+ (0,00) 
such that the exponential map exp is defined and injective on the open disc 

{lIvllo < /j(x)} 

in the tangent space TzXb for each x E Xb ~ x. 

Here II 110 denotes the norm on TzXb defined by the fibrewise metric g. 
To prove Proposition 22.4 it is sufficient to find such a map /ju on each 

U x Au. For then we can take 

so that /j(x) $ max/ju(4)u(x)) for all x. Without real loss of generality, there­
fore, we can assume X is of the form B x A, for some smooth manifold A. 
The proof then proceeds much as in the classical theory when B is a point. 
The details are in [31]. 

The treatment we have just given is similar to that we gave previously 
in [31]. We shall be returning to the theory of fibrewise manifolds in Part II, 
Section 11. 

23 Fibrewise configuration spaces 

The original idea 

Although configuration spaces arise in other branches of mathematics, for 
topologists they were first considered by Fadell and Neuwirth [62] in 1962. 

Recall that the nth configuration space P(X) of a space X is defined as 
the subspace of the topological nth power nn(X) consisting of n-tuples of 
distinct points of X. We can also think of P(X) as the space emb(Qn,X) 
of embeddings in X of the discrete space Qn = {I, 2, ... , n} ~ Ill. Thus 
.1'1 (X) = X, while P (X) is the complement of the diagonal in X x X. 

The main results of Fadell and Neuwirth concern the case when X is a 
manifold. Then P(X) is also a manifold. Further, if X is connected then 
P(X) is a fibre bundle (without structural group) over .1'T(X) for r = 
1,2, ... , n . .. - 1. Some conditions are given for the existence of sections. 

The special case when X = IRk, the real k-plane, is of particular interest. 
Clearly P(IRk) can be identified with IRk x (IRk - {O}) through the transfor­
mation 
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(Xl,X2) t-+ (Xl +X2, Xl -X2). 

We note, for later use, that this transformation is Z/2-equivariant, where 
Z/2 acts on ,r2(IRk) by switching factors, acts on IRk trivially, and acts on 
IRk - {O} by the antipodal transformation. Recently, Massey [100] has shown 
that .1'3 (IRk) is a fibre bundle over .1'2 (IRk) with structural group the orthogo­
nal groupO (k - 1). Moreover, the bundle is trivial if and only if k = 1, 2, 4 or 
8. Another case of special interest is when X = Sk-l, the (k-l)-sphere. Then 
.1'2 (Sk-l) can be identified with the tangent bundle r(Sk-l) ~ Sk-l X IRk 
by projecting X2 from -Xl onto the tangent plane {Xl} X IRk at Xl. 

The term configuration space is also used for the space of unordered n­
tuples, rather than the space of ordered n-tuples, but in this section we only 
use it in the latter sense. 

Fibrewise configuration spaces 

The first mention of fibrewise configuration spaces in the literature appears 
to be in a note by Duvall and Husch [52]. However, the idea had occurred to 
others about the same time. Our object, in this section, is to obtain fibrewise 
versions of some of the original results of Fadell and Neuwirth. Essentially 
the same theory appeared in [31]. 

By a covering space, in this section, we simply mean a fibre bundle with 
discrete fibre. Let B be a space and let E be a covering space of B, in this 
sense. If a : B -+ E is a section of E the complement E' = E - a B is also 
a covering space of B. We shall mainly be concerned with finite coverings, 
such as B x Q n (n = 1, 2, ... ). 

Let X be a fibrewise space over B. For each finite covering space E 
of B the fibrewise configuration space FE(X) is defined as the subspace 
embB(E,X) of the fibrewise mapping-space mapB(E,X) consisting of em­
beddings. Thus the fibre of FE(X) at the point b of B is just the configura­
tion space emb(Eb, Xb). When E = B x Qn we may write ~(X) instead of 
FE(X). 

Of course, the fibrewise orbit space of FE (X) under the fibrewise action 
of the group of the covering E can also be considered. 

As we shall soon see, the reduction formula 

(n ~ m ~ 1) (23.1) 

plays a useful role in the theory. In fact the fibrewise theory can be used to 
retrieve some of the original results in the ordinary theory. 

We have F1(X) = X, of course, and F1(X) is just the complement of 
the diagonal in X x B X. When X is a k-plane bundle over B we can identify 
F1(X) with the fibrewise product X XB (X -B), where B is embedded as the 
zero-section, using in each fibre the transformation mentioned earlier. This 
identification is Z/2 equivariant, the group acting on J1(X) by switching 
factors, on X by the identity, and on X - B by the antipodal transformation. 
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In most cases of interest X is a fibre bundle over B. Note that FE(X) 
is then also a fibre bundle over B. IT X is a finite covering space of B so is 
FE(X). 

Suppose that X is a G-bundle over B with fibre A, where G is a topological 
group and A is a G-space. Then X may be identified with the mixed product 
P XG A, where P is the associated principal G-bundle. The configuration 
space P(A) is also a G-space, under the diagonal action, and the fibrewise 
configuration space .1](X) may be identified in the same way with the mixed 
product P Xa Fn(A). 

Suppose now that A is a smooth manifold. To see that P(A) is a smooth 
fibre bundle over A we argue as follows. We have already noted that ;F2(A) 
is the complement of the diagonal section in A x A, regarded as a fibrewise 
space over A using the first projection. By Proposition 22.2, therefore, ;F2(A) 
is a smooth fibre bundle over A. Now we can use the reduction formula 

to see at once that Fn(A) is a fibre bundle over A. 
Similar arguments show more generally that P(A) is a smooth fibre 

bundle over P(A) for 1 ~ r < n. Indeed P+1(A) as a fibrewise space over 
P(A) can be regarded as the complement of the union of the r canonical 
sections of the trivial bundle P(A) x A over P(A). Removing the sections 
one by one we see from Proposition 22.2 that pH (A) is a fibre bundle over 
P(A). Then 

P(A) = 0-;:{A) (p+1 (A» 

is clearly a smooth fibre bundle over P(A). By applying Proposition 22.1 
we can generalize this to 

Proposition 23.2 Let El and E2 be numerable finite covering spaces of B, 
and let X be a fibrewise manifold over B. Then F:1UE2(X) is a numerable 
fibrewise smooth fibre bundle over F:l (X). 

Under certain conditions the fibrewise fibrations considered above admit 
sections. In special cases ad hoc constructions can be used but for a general 
result we need to rely on the theory of fibrewise manifolds, as in 

Proposition 23.3 Let E be a numerable finite covering space of B with 
section (1 and let X be a fibrewise manifold over B with projection p. Suppose 
that the fibrewise configuration space :Pi E (TB X) admits a section over X. 
Then FE (X), regarded as a fibrewise space over X with projection (1*, admits 
a section. 

For a section of Px·E(TBX) over X determines a fibrewise embedding 
of p* E in TBX over X. Without loss of generality we may assume that the 
pull-back of (1 corresponds to the zero-section of TBX. Composition with the 
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map e in Proposition 22.3 gives the required section of Ff(X) over X. To be 
precise, for x E Xb let us denote by iz : Eb -t (TBX)z the embedding given 
by the section: thus iz(a(b)) = O. Write ez : (TBX)z -t Xb for the restriction 
of e to fibres over x. Then ez 0 iz : Eb -t Xb is the required embedding in 
Ff(Xh. When E is trivial this result simplifies to 

Proposition 23.4 Let X be a fibrewise manifold over B. Suppose that the 
fibrewise tangent bundle TBX admits a nowhere-zero section over X. Then the 
fibrewise configuration space F~(X) admits a section over X for all n 2: 1. 

Indeed let v : X -t TB X be the nowhere-zero vector field. Then a section 
of FX(TBX) over X is defined by sending each point x into the n-tuple 
(UI, ... ,un), where Ui = (i -1)v(x) E (TBX)z (i = 1, ... ,n). We deduce 

Corollary 23.5 Let X be a fibrewise manifold over B. Suppose that the pull­
back TBX XB FB(X) of TBX to FB(X) admits a nowhere-zero section for 
some r 2: 1. Then F~(X) admits a section over F;(X) for n 2: m 2: r. 

For the hypothesis implies that TFB'(X).r;+l(X) admits a nowhere-zero 
section over .1]f(X). Then Proposition 23.4, with B replaced by .1]f(X) and 
X replaced by .r;+I(X), shows that 

.r;;(X)(.r;+l(X)) = .1](X) 

has a section over FW(X), as asserted. 
When B is a point we retrieve from Corollary 23.5 various results of 

Fadell and Neuwirth. For example, we see that sections exist when X is an 
open manifold, also when X is a compact connected manifold with Euler 
characteristic zero. 

With general B the conclusion of Corollary 23.5 holds for affine bundles 
with r = 2, also for sphere-bundles with r = 3, using the identifications made 
earlier. Of course, direct geometric constructions can also be used. 

For example, let X be a sphere-bundle over B, and let 

p : F8+I (X) -t .1](X) 

be defined by dropping the last point from each n-tuple, where n 2: 3. Given 
three distinct points PI,P2,P3 in the same fibre Xb of X, consider the line 
segment L joining PI to P2 in the associated affine bundle. If x is any point 
of L between PI and P2 we can project x into Xb from P3, thus obtaining a 
point x' of Xb. If x is chosen sufficiently close to PI the projection x' will 
be distinct from any previously given set PI, ... ,Pn of distinct points of X b• 

Thus a section of p is given by the transformation 

(PI ,P2, ... ,Pn) f-t (PI ,P2, ... ,Pn, x'). 

Full details are given by Fadell [61] in the case where B reduces to a point. 
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Again we suppose that E is a finite covering space of B with section a. We 
also suppose that X is a fibre bundle over B with section s. The projection 

a* : FE(X) -t X 

is defined as before, and the fibrewise fibre p-1(sB) is equivalent to the 
fibrewise configuration space FE' (X'), where E' = E-aB and X' = X -sB. 

When X is a vector bundle over Band s is the zero section it is easy to 
see that FE (X) is equivalent, as a fibrewise pointed space, to the fibrewise 
topological product X XB FE' (X'). In fact a trivialization 

~: X XB FE' (X') -t FE(x) 

is given in each fibre by the formula ~(x, u') = u, where x E Xb (b E B), 
u' : E~ -t X~ and u : Eb -t Xb are related by 

u(s(b)) = x - s(b), u(e') = x - u'(e'). 

The same conclusion may be reached in other cases. 

Hop! structures 

By a (strict) Hop! structure on a pointed space A we mean a multiplication 
m : A x A -t A, which coincides with the folding map on the wedge product 
A V A. We describe the Hopf structure as special if each of the left translations 
is homeomorphic. For example, the classical Hopf structures on sq, for q = 
1,3 or 7, are special in this sense. 

Now let A be a pointed G-space, where G is a topological group. Then 
A x A is a pointed G-space, with the diagonal action, and G-equivariant Hopf 
structures can be considered, as in [24]. 

For example, take the classical Hopf structure on sq, for q = 1,3 or 
7. In the case of Sl this is given by complex multiplication, which is 0(1) 
equivariant, in the case of S3 by quaternionic multiplication, which is SO(3)­
equivariant, and in the case of S7 by Cayley multiplication, which is G2-

equivariant. 
Equivariant Hopf structures lead to fibrewise Hopf structures, as follows. 

Let B be a space and let X be a fibrewise pointed G-bundle over B with 
fibre the pointed G-space A. Suppose that A admits a G-equivariant Hopf 
structure m. Then m defines a fibrewise Hopf structure m' : X x B X -t X on 
X. Moreover, if m is special then m' is special in the sense that fibrewise left 
translation is homeomorphic. This implies that the fibrewise configuration 
space FE(X) is trivial as a fibrewise fibre bundle over X with fibrewise fibre 
FE' (X'). Specifically, a trivialization 

~: X XB FE' (X') -t FE(X) 
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is given in each fibre by the formula ~(x, u') = u, where x E Xb (b E B), 
u' : E~ -+ X~ and u : Eb -+ Xb are related by 

u(s(b)) = m'(x,s(b)), u(e') = m'(x,u'(e')). 

The conclusion holds, in particular, for the fibrewise suspension of every 
(orthogonal) O-sphere bundle, of every orient able 2-sphere bundle, and of 
every 6-sphere bundle admitting G2-structure. 

Sequences of fibrewise fibrations 

As Fadell and Neuwirth show, the homotopy theory of ordinary configuration 
spaces can be investigated through a sequence of fibrations. Specifically, if A 
is a connected manifold the fibrations are those associated with the succes-
sive configuration spaces Fn(A), P-I(A - Qd, ... ,FI(A - Qn-d, where 
ql, ... ,qn-l are distinct points of A and Q r = {ql, ... , qr}. By homogeneity, 
the spaces obtained by this procedure are independent of the choice of points 
to be deleted, up to diffeomorphism. 

When we turn to the fibrewise theory this is no longer the case. For 
example, take B = sn and X = sn X sn, regarded as a fibrewise space using 
the first projection. The complement of the diagonal section is the tangent 
bundle to sn, while the complement of the second (axial) insertion is the 
trivial bundle. Except when sn is parallelizable, the complements of these 
sections are not equivalent in the sense of fibrewise homeomorphism. This can 
be seen as follows. If the tangent bundle is fibrewise homeomorphic to the 
trivial bundle then its fibrewise one-point compactification is trivial. From 
such a trivialization we readily obtain a Hopf structure on sn; hence n = 1, 3 
or 7. It is therefore necessary to exercise caution. 

So let X be a fibrewise manifold over B, with connected fibres. We 
let S1, ... , Sn-l be mutually non-intersecting sections of X and we write 
QrB = SIB U ... U srB, for r = 1, ... , n - 1. To investigate the fibrewise 
homotopy theory of FB(X) we can proceed by inductive arguments through 
the sequence of fibrewise fibrations associated with the successive fibrewise 
configuration spaces FB(X), ~-I(X - QIB), ... ,F1(X - Qn-IB). As we 
have seen, these fibrations may admit sections under certain conditions. 

For example, let X be a Euclidean bundle of rank k, with associated 
sphere-bundle S(X). We suppose that S(X) admits a section s from which 
we construct the family of mutually non-intersecting sections s, 2s, 3s, . .. , ns 
of X. Then X is fibrewise contractible, X - QIB has the same fibrewise 
homotopy type as S(X), X - Q2B has the same fibrewise homotopy type as 
S(X) VB S(X), and so on. 

Of course, it can also be useful to consider the sequence of fibrewise fi­
brations 

.1](X) -+ ~-I(X) -+ ... -+ F1(X) = X 

where the successive fibres are X - QIB, X - Q2B, ... ,X - Qn-IB. 
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We shall be returning to the theory of fibrewise configuration spaces in 
Section 14 of Part II. 



Part II. An Introduction to Fibrewise Stable 
Homotopy Theory 

Introduction 

It is invariably difficult to trace the origins of a mathematical theory. But it 
is appealing to see the roots of Fibrewise Stable Homotopy Theory in Alge­
braic Geometry, especially as in Grothendieck's reformation of the subject, 
[69], both in the abstract framework and more specifically in Grothendieck's 
formulation of the Riemann-Roch Theorem. In the work of Atiyah and Singer 
[5] in the late 1960s on the Index Theorem for families of elliptic operators we 
already have a fully fledged fibrewise stable theory (K-theory) using many 
of the techniques (equivariant methods, transfer maps) which were to play 
a major role in Algebraic Topology in the next decade. Major applications 
within Algebraic Topology soon followed: the Kahn-Priddy theorem [96], the 
Becker-Gottlieb proof of the Adams conjecture [9], the fixed-point theory 
of Dold [47]. More recently, taking up the K-theory theme Kasparov has 
introduced a fibrewise non-commutative theory [97]. 

The account of Fibrewise Stable Homotopy Theory which we shall present 
here is intended as an introduction; its goals are modest, and there is much 
that is omitted. (For a taste of recent work we refer the reader to the preprint 
[54] of Dwyer, Weiss and Williams.) The geometric setting of classical Alge­
braic Topology is the topology of finite complexes (or even closed manifolds). 
In studying finite complexes there is much to be gained by enlarging the field 
of interest to include infinite CW-complexes (such as classifying spaces) and 
spectra, but these more complicated objects can be viewed as technical con­
structs (or machines) rather than as objects of intrinsic geometric interest in 
their own right, and this is the viewpoint which we take here. Stated bluntly, 
an infinite complex is the union of its finite sub complexes. 

When we do fibrewise topology over a space B, the base will normally 
be a compact ENR (thus a retract of a closed manifold), and the fibres will 
usually be finite complexes (at least up to homotopy). We thus sidestep the 
topological niceties which cannot be avoided if one wants to set up an abstract 
theory in full generality. The restriction that the base space be an ENR is, 
however, more than a technical convenience. Although many of the formal 
constructions in the fibrewise stable theory can be carried through with little 
or no modification for more general base spaces, it is far from clear that this 
produces the 'right' stable theory. (In most applications where the base is an 
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infinite CW -complex one would want the fibrewise stable theory to be built 
up from the fibrewise stable maps over finite subcomplexes.) 

More seriously, it is at present necessary to restrict the fibrewise spaces to 
be locally trivial, at least up to homotopy. Thus we exclude precisely the sort 
of singular fibres which are so important in Algebraic Geometry. Traditionally 
these fibrewise spaces are characterized by homotopy lifting properties and 
called homotopy-fibrations. (The abbreviation 'h-fibration' was used in [44], 
and the term 'weak fibration' in [45].) In order to emphasize the geometric 
aspect and the parallel with fibre bundles in Differential Geometry we shall 
use the non-standard term 'homotopy fibre bundle'. (Readers will no doubt 
substitute their own preferred name.) The word 'homotopy' will be used in 
this adjectival form in other contexts, too, some standard like 'homotopy­
fibre' and 'homotopy-cofibre', others such as 'homotopy fixed-point set' (in 
our usage, see Definition 6.11) less familiar. 

Fibrewise homotopy theory is often called homotopy theory over a (base) 
space. Partly for emphasis, partly because the base space may not be clear 
from the context, we shall sometimes retain this usage and refer to fibrewise 
spaces over a base B, fibrewise maps over B, and so on. In Part I, where the 
base space was normally fixed, this was unnecessary. 

The exposition is set out as follows. Assuming that the reader, having at 
least skimmed the first two chapters of Part I, is familiar with the basic con­
cepts of Fibrewise Homotopy Theory, we introduce in Section 1 the homotopy 
fibre bundles to which we have alluded above. These are the basic geometric 
objects which we shall study. Section 2 recapitulates the formal framework of 
fibrewise homotopy theory, especially the various exact sequences, and con­
cludes with an application to homotopy-commutative fibrewise Hopf spaces, 
setting a pattern, of including applications of the theory at the first oppor­
tunity, which we shall follow throughout Part II. The basic definitions of 
fibrewise stable homotopy theory are presented in Section 3. In Section 4 we 
look at the stable cohomotopy Euler class of a real vector bundle, the proto­
typical characteristic class; it plays a fundamental role in the theory. We give 
applications to obstruction theory and fibrewise coHopf spaces. 

Section 5 is a somewhat technical topological section on the definition and 
properties of fibrewise Euclidean and Absolute Neighbourhood Retracts. The 
results are used at once in Section 6 to describe Dold's version of fibrewise 
fixed-point theory for ENRs, and in Section 7 to extend the theory to ANRs. 
These sections are written with a view to geometric applications, as for ex­
ample in the investigation of periodic orbits for semi-flows; see [6], [27] and 
[36]. But they contain, in particular, the construction of the transfer, which 
is of fundamental importance in fibrewise stable homotopy theory. 

In Section 8 we extend our fibrewise stable homotopy category to in­
clude formal desuspensions, which we shall call 'fibrewise stable spaces'. (A 
more advanced account would introduce the general concept of a fibrewise 
spectrum. Our fibrewise stable spaces are fibrewise suspension spectra.) The 
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construction is described alongside that of virtual vector bundles, which enter 
into Section 9 on the solution of the Adams conjecture using the transfer. The 
structure of the stable category is investigated further in Section 10 where 
we consider duality and its connection with the fixed-point theory. 

Fibrewise differential topology was already an important tool in the work 
of Atiyah and Singer to which we have referred above. The fibrewise mani­
folds, which appeared there under the name of manifolds over a base, were 
discussed briefly in Part 1. In Section 11 we continue the development of 
this theory. From the standpoint of homotopy theory, the Pontrjagin-Thom 
construction is central to the study of manifolds. In Section 12 we describe 
the fibrewise version of the construction and various ideas which flow from 
it: the definition of Gysin (or direct image) maps, the Poincare-Hopf vector 
field index, and Poincare-Atiyah duality for smooth manifolds. 

Sections 13 and 14, although of considerable independent interest, are 
included primarily as applications of the methods of Section 12. In Section 
13 we show how fibrewise techniques can be used to establish Miller's stable 
splitting [111] of the unitary group U(n). In Section 14 we describe fibrewise 
generalizations of the stable splitting theorems for configuration spaces. The 
generalizations themselves are rather routine, but lead in a special case to a 
proof due to B6digheimer and Madsen [15] of the stable splitting of the space 
of free loops on a suspension, a result of Carlsson and Cohen [21]. 

Finally, Section 15 deals with fibrewise homology theory. Earlier sections 
are mostly concerned with describing the structure of fibrewise stable homo­
topy theory, but with the introduction of homology theory we are able, at 
last, to make some concrete calculations. 

Notation is a frequent barrier to understanding. We present below a key 
to the notational conventions which we have striven to maintain throughout 
Part II. There are, inevitably, a few exceptions to our general rules. The term 
'map' is normally used for a continuous mapping. Occasionally, for empha­
sis, we add the adjective 'continuous'. As in Part I, the recurrent adjective 
'fibrewise' is normally placed at the beginning of a sequence of adjectives and 
is understood to qualify all the following terms. However, we do sometimes, 
when confusion is unlikely, omit the word 'fibrewise' in the cause of read­
ability. For the sake of consistency we have broken with tradition and use 
the term 'fibrewise homotopy equivalence' rather than the established 'fibre 
homotopy equivalence' and sometimes 'fibrewise product' instead of 'fibre 
product'. 

We draw the reader's attention, in particular, to our conventions, em­
phasized in boldface in Section 1, that the generic base space B is normally 
an ENR and that all fibrewise pointed spaces (and all pointed spaces) are 
homotopy well-pointed. 
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A guide to notation 

B, B' 
A 
G, /3, ... 
M,N 
X,Y,Z 
f, g, ... 
U,V,W 
e,,,,, , 
E,F 

F 

+ + 
'B 

* 
r 
B 

maPB 
mapB 
C 
p 
T, TB 

base spaces, normally compact ENRs. 
closed subspace of B, normally a sub-ENR. 
Greek letters are normally used for maps between base spaces. 
fibrewise spaces over B. 
fibrewise pointed spaces over B. 
Roman letters are normally used for fibrewise maps. 
open subspaces of topological spaces. 
vector bundles, usually real and finite-dimensional. 
vector spaces, usually real and finite-dimensional (sometimes com­
plex, sometimes infinite-dimensional normed vector spaces). 
We also use 'F' for fibre. 
A subscript + denotes adjunction of a disjoint basepoint, in fibres 
over B. 
A superscript + denotes one-point compactification (with basepoint 
at infinity), fibrewise over B. 
A '*' is used as a generic symbol for a basepoint, sometimes in the 
fibrewise sense. 
the space of sections of a bundle. 
A boldface 'B' is used for the classifying space so as to avoid a 
clash of notation with the base 'B'. 
cone, fibrewise cone, defined for (fibrewise) pointed spaces, and also 
homotopy-cofibre. 
path space, fibrewise path space, defined for (fibrewise) pointed 
spaces. 
homotopy-fibre, fibrewise homotopy-fibre. 
suspension, fibrewise suspension, defined for (fibrewise) pointed 
spaces. 
loop space, fibrewise loop space, defined for (fibrewise) pointed 
spaces. 
fibrewise mapping-space over B. 
fibrewise pointed mapping-space over B. 
free loop space map(Sl, -). 
free path space map([O, 1], -). 
tangent bundle, fibrewise tangent bundle of a smooth manifold, 
fibrewise manifold. 

M{, Mh Thorn space, fibrewise Thorn space, of a finite-dimensional vector 
bundle e over a (fibrewise) space M. 



Chapter 1. Foundations 

1 Fibre bundles 

We begin by reviewing some of the fundamental concepts of fibrewise homo­
topy theory to establish notation and set the scene for the introduction of 
new material. 

It will be convenient to assume throughout Part II that all topological 
spaces considered are compactly generated and that products are formed 
in that category. (As in [91] we take the definition of the term 'compactly 
generated' to include the weak Hausdorff condition that the inclusion of the 
diagonal be closed.) We recall that metric spaces, in particular, are compactly 
generated. 

Base spaces 

As we have indicated in the Introduction, in order to develop a satisfactory 
elementary stable theory we have to restrict the base spaces considered to be 
Euclidean Neighbourhood Retracts (ENRs). This represents such a significant 
change of viewpoint from that taken in Part I that we restate for emphasis: 

Unless the context clearly indicates otherwise (such as when we 
talk about bundles over a classifying space) all base spaces consid­
ered are assumed to be ENRs. 

This restriction simplifies many aspects of the homotopy theory described 
in Part I and sometimes allows us to omit, in the statements of results, hy­
potheses which would otherwise be necessary assumptions. To avoid confu­
sion we shall include frequent reminders that the base is understood to be an 
ENR. 

At this point it may be useful to recall that a topological space B is an 
ENR if there exists an embedding i : B <-+ U into some open subset U of 
a finite-dimensional Euclidean space E and a retraction r : U -t B of U 
onto B: r 0 i = lB. Compact (smooth) manifolds are the basic examples. 
A compact manifold B can be embedded in a Euclidean space E and the 
normal bundle of the embedding included in E as a tubular neighbourhood 
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U; the retraction r is given by projecting the fibres of the normal bundle 
to B. Finite complexes are ENRs, and every compact ENR is a retract of a 
finite complex, indeed of a finite polyhedron. 

A review of the basic properties of ENRs is included at the beginning 
of Section 5. We note at once that an ENR is locally compact Hausdorff 
and admits partitions of unity subordinate to any open covering. Another 
important property enjoyed by an ENR B is uniform local contractibility. 
This means that there is an open neighbourhood W of the diagonal Ll(B) in 
B x B and a homotopy Ht : W -t B such that Ho(a,b) = a, H1(a, b) = b 
and Ht(b, b) = b, for all (a, b) E W, 0 ~ t ~ 1. 

From now on, our generic base space B is supposed to be an ENR. It will 
usually be compact. 

Fibrewise spaces 

We shall use notation such as M -t B (or, more carefully, p : M -t B) 
for a fibrewise space over B. The fibrewise space M should be thought of, 
informally, as a family of spaces Mb (the fibres p-l(b) of p) indexed by points 
b E B. In the same way, one should think of a fibrewise map f : M -t N 
between fibrewise spaces over B as a family of maps fb : Mb -t Nb between 
fibres. 

Given a subspace A of B, we use the standard notation MA -t A for the 
restriction p-l A of the fibrewise space M and fA: MA -t N A for the family 
of maps fa : Ma -t Na indexed by a E A. 

Fibre bundles: local triviality 

The basic examples of fibrewise spaces are the fibre bundles. For any space 
F we can form the fibrewise space B x F -t B over B with fibre {b} x F, 
often identified with F in the natural way, at b. A fibrewise space M is trivial 
if it is fibrewise homeomorphic to such a fibrewise space B x F -t B and 
locally trivial if there exists an open covering U of B such that Mu is trivial 
over U for each U E U. We use the term fibre bundle for any locally trivial 
fibrewise space. Note that we do not require all the fibres to be homeomorphic 
(although this will, clearly, be the case if B is connected). 

Since the base spaces which we are considering admit partitions of unity, 
the fibre bundles are numerable. The standard theory then applies. Thus, 
if a : B' -t B is a continuous map from an ENR B' to B, the pull-back 
a* M -t B' of a fibre bundle Mover B is a fibre bundle over B'. Moreover, 
if a and (3 are homotopic maps B' -t B, then the induced bundles a* M 
and (3* M are fibrewise homeomorphic. In particular, any fibre bundle over a 
contractible base is trivial. 
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Fibrewise homotopy 

Informally, two fibrewise maps M -+ N over B are fibrewise homotopic if 
one can be deformed continuously into the other through fibrewise maps. 
Precisely, two fibrewise maps I and g are fibrewise homotopic if there is 
a fibrewise map H' : M x [0,1] -+ N over B such that H'(x,O) = I(x), 
H'(x,l) = g(x), for x E M. Such a map H' corresponds to a fibrewise map 
H : M x [0,1] -+ N x [0,1] over B x [0,1] which restricts to I on B x {O} and 
to g on B x {I} (up to obvious identification): H(x, t) = (H'(x, t), t). From 
the viewpoint of fibrewise topology it is perhaps more natural to think of H 
(rather than H') as a fibrewise homotopy between I and g. Homotopy is by 
its very definition a fibrewise concept. 

Fibrewise homotopy equivalence 

In fibrewise homotopy theory we study fibrewise spaces up to fibre homotopy 
equivalence (or fibrewise homotopy equivalence to be more consistent in our 
terminology). One of the first theorems of fibrewise homotopy theory is the 
result of Dold that a fibrewise map is a fibrewise homotopy equivalence if it 
is locally a fibrewise homotopy equivalence: 

Theorem 1.1 Let I : M -+ N be a fibrewise map 01 fibrewise spaces over 
B, and let U be an open covering 01 the base B (supposed to be an ENR). 
Then I is a fibrewise homotopy equivalence il and only il the restriction 
lu : Mu -+ Nu over each set U E U 01 the covering is a fibrewise homotopy 
equivalence. 

Note that this simplified statement is possible only because the base space 
B admits partitions of unity; in general, one needs to specify that U be a 
numerable covering. 

Homotopy fibre bundles: local homotopy triviality 

When we pass to homotopy theory it is natural to say that a fibrewise space 
M -+ B is homotopy trivial if it is fibrewise homotopy equivalent to a trivial 
fibrewise space B x F -+ B. It is locally homotopy trivial if there exists an 
open covering U of the base such that Mu -+ U is homotopy trivial for all 
U E U. We shall call a fibrewise space which is locally homotopy trivial a 
homotopy fibre bundle (although it should be noted that this is not standard 
terminology) . 

Fibrewise maps between homotopy fibre bundles are locally homotopic to 
products. 

Proposition 1.2 Let I : M -+ N be a map between homotopy fibre bun­
dles over B. Then lor each b E B there exists an open neighbourhood U 
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01 b and local fibrewise homotopy trivializations ¢ : Mu -t U X Mb and 
1/J : U x Nb -t Nu such that fu is fibrewise homotopic to 1/J 0 (1 x /b) 0 ¢. 

Since B is locally contractible we can reduce to the case in which the 
bundles are trivial: 

f: B x F -t B x F', 

and b E B is contained in an open neighbourhood U which is contractible 
in B to the point b. Write f(a, x) = (a, !'(a, x)). Let Ht : U -t B 
be a homotopy with Ho = 1B and Hi the constant map at b. Define 
Ft(a, x) = (a, !'(Ht(a), x)). Then Fo = I and Fi = 1 x /b. This completes 
the proof. 

At the risk of excessive use of the word 'trivial', we refer to the property 
established in Proposition 1.2 as local homotopy triviality of the fibrewise map 

I· 

Remark 1.3. Local homotopy triviality may originate in properties of the 
fibres rather than in properties of the base. Suppose that P is a compact 
Hausdorff topological space and Q is an ENR. Then the space map(P, Q) 
is an Absolute Neighbourhood Retract (ANR) and hence uniformly locally 
contractible. (See the discussion in Section 5.) Now let B be any topological 
space, not necessarily an ENR, and let I be a map B -t map(P, Q). Then it 
follows from uniform local contractibility that each point b E B has an open 
neighbourhood U such that flU is homotopic to a constant map. 

The homotopy lifting property 

Homotopy fibre bundles (over ENRs) are characterized by the homotopy lift­
ing property up to homotopy. Let us begin with the straightforward homotopy 
lifting property. 

Definition 1.4 Let M -t B be a fibrewise space over B. We say that M has 
the homotopy lifting property if, for each base space B' and fibrewise space 
M' -t B' over B', given a homotopy at : B' -t B, ° ~ t ~ 1, and fibrewise 
map 10 : M' -t Mover 00 (that is, a fibrewise map M' -t aoM over B'), 
there is a homotopy It over at extending 10, as displayed in the diagrams: 

M' ~ M M' x [0,1] -Lt M 

1 1 1 1 
B' ---+ B 

a, 
B' x [0,1] ---+ B 

a 

As it stands, the space B' seems to be redundant. We could take M' = B' 
with the identity projection (at the expense of waiving our convention that 
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base spaces should be ENRs). The property then reduces to the standard 
definition of a fibration over B. However, the change in emphasis is important 
conceptually and will be essential when we study fibrewise pointed spaces. 

Now let us introduce, for any fibrewise space M -t B, an associated 
fibrewise space M" -t B as follows. Let P B = map([O, 1], B) be the space of 
(free) paths in B. As a space 

M" := ((x,w) EM x PB I p(x) = w(O)}, 

with the projection (x,w) I-t w(I). It is thus the topological fibre product 
M x B P B -t B. There is a natural fibrewise map M -t M", mapping x E Mb 
to (x, b) E M:, where the second factor b denotes the constant path at b. The 
next lemma is an elementary exercise. 

Lemma 1.5 The fibrewise space M" -t B has the homotopy lifting property 
(Definition 1..4)· 

In the homotopy category it is desirable to weaken the homotopy lifting 
property to produce a property of fibrewise spaces which is invariant under 
(fibrewise) homotopy equivalence. 

Definition 1.6 We say that a fibrewise space Mover B has the homotopy 
lifting property up to homotopy if, for each base space B' and fibrewise space 
M' -t B' over B', the following condition holds. 

Given a homotopy at : B' -t B, 0 ~ t ~ 1, for which there exists an € > 0 
such that at = ao for 0 ~ t ~ €, and a fibrewise map 10 : M' -t Mover ao, 
there is a homotopy It over at extending 10. 

An equivalent condition is that, given any homotopy at : B' -t B and 
fibrewise map 10 over ao, there exists a homotopy gt over at and a homotopy 
It over (constant) ao extending 10 with It = go. (To see that this follows from 
Definition 1.6, extend the range of definition of at to the interval [-1,1] by 
defining at = ao for t < O. The converse is proved by reversing the process, 
with appropriate rescaling of the interval.) From this form of the condition 
it is clear that, if M satisfies the homotopy lifting property up to homotopy, 
then so does any fibrewise space which is fibrewise homotopy equivalent to 
M. 

Remark 1.7. It is an elementary exercise, replacing B' by B' x [0,1], to show 
that any two lifts It in the definition (Definition 1.4 or 1.6) of the homotopy 
lifting property are fibrewise homotopic. In particular, given 10 : M' -t M 
over ao, we obtain a canonical map It : M' -t Mover a1 up to fibrewise 
homotopy. 

It is routine to check that the homotopy lifting properties are inherited 
by pull-backs. These properties are local in the following sense. 
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Proposition 1.8 Let M --i B be a fibrewise space. Suppose that U is an 
open covering of the base B. Then M has the homotopy lifting property (or 
the homotopy lifting property up to homotopy) if and only if each Mu --i U, 
U E U, has that property. 

Again notice that this statement uses our standing hypothesis that the 
base space B is an ENR. 

Since a trivial bundle clearly has the homotopy lifting property, we have: 

Proposition 1.9 Let M --i B be a homotopy fibre bundle over an ENR B. 
Then M has the homotopy lifting property up to homotopy. 

More is true: a homotopy fibre bundle is fibrewise homotopy equivalent 
to a fibrewise space with the homotopy lifting property. 

Proposition 1.10 Let M --i B be a homotopy fibre bundle. Then the natural 
map M --i MU, described above, is a fibrewise homotopy equivalence. 

This brief exposition of the theory of fibrations started from the concept 
of a homotopy fibre bundle. The standard development of the theory begins 
with the homotopy lifting properties and proves that every fibrewise space 
with the homotopy lifting property up to homotopy (over an ENR) is a 
homotopy fibre bundle. 

Pull-backs 

The pull-back a* M --i B' of a homotopy fibre bundle M --i B by a map 
a : B' --i B is transparently a homotopy fibre bundle. 

Proposition 1.11 Let ao, al : B' --i B be homotopic maps, and let M --i B 
be a homotopy fibre bundle. Then the induced homotopy fibre bundles aoM 
and ai M are fibrewise homotopy equivalent. To be more precise, a homo­
topy at, 0 :::; t :::; 1, determines a canonical fibrewise homotopy equivalence 
aoM --i ai M up to homotopy. 

For consider the fibrewise map, fo say, aoM --i Mover ao : B' --i B which 
defines the pull-back. The homotopy lifting property (up to homotopy) gives 
maps It : aoM --i M over at, which determine fibrewise maps aoM --i a; M 
over B'. From Remark 1.7, the fibrewise homotopy class of It, and so of 
the map aoM --i aiM, is well-defined. One can check that this map is a 
fibrewise homotopy equivalence by constructing in the same manner a map 
in the opposite direction and using again the uniqueness of the lifts. 

The particular case in which B' is a point has special significance. A 
path w : [0,1] --i B from a = w(O) to b = w(l) determines a homotopy 
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class: Ma -+ Mb. Moreover, homotopic paths from a to b determine the same 
homotopy class. This defines a functor from the fundamental groupoid of B 
(with objects the points of Band morphisms from a to b the homotopy classes 
of paths from a to b) to the homotopy category (of compactly generated 
topological spaces). 

Dold's theorem lor homotopy fibre bundles 

The next theorem of Dold is a key result in the development of fibrewise 
homotopy theory. It allows us to establish fibrewise generalizations of many 
classical results by merely formulating them correctly. For ease of reference 
we single it out from many theorems due to Dold as Dold's theorem. 

Theorem 1.12 (Dold's theorem). Let I : M -+ N be a fibrewise map between 
homotopy fibre bundles over B. Then I is a fibrewise homotopy equivalence 
il and only il Ib : Mb -+ Nb is a homotopy equivalence 01 fibres at each point 
b E B 01 the base. 

Notice that, if B is connected, then it suffices, by Proposition 1.2, to check 
that Ib : Mb -+ Nb is a homotopy equivalence at a single point b E B in order 
to conclude that I is a fibrewise homotopy equivalence. 

This theorem plays the role in fibrewise homotopy theory that is played in 
equivariant homotopy theory by the theorem that recognizes an equivariant 
homotopy equivalence by its non-equivariant restriction to fixed subspaces. 
(To be precise, let G be a compact Lie group and let I : M -+ N be a G-map 
between compact G-ENRs. Then I is a G-equivariant homotopy equivalence if 
and only if, for each closed subgroup H ~ G, the restriction IH : MH -+ NH 
to the subspaces fixed by H is a (non-equivariant) homotopy equivalence.) 

The gluing construction 

The well-understood and elementary procedure for gluing together fibre bun­
dles defined on subspaces can be carried over to homotopy theory. 

Proposition 1.13 Suppose that the compact ENR B is a union 01 two closed 
sub-ENRs Bl and B2 with intersection an ENR A = Bl nB2. Let Ml -+ Bl 
and M2 -+ B2 be homotopy fibre bundles, and let h : (MdA -+ (M2)A be 
a fibrewise homotopy equivalence. Suppose further that the fibres 01 Ml and 
M2 have the homotopy type 01 CW-complexes. Then there exists a homotopy 
fibre bundle M -+ B over B together with fibrewise homotopy equivalences II : 
Ml -+ MBI over Bl and h : M2 -+ MB2 over B2 such that (fdA ~ (h)A 0 h 
over A. 
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This result is significantly harder to establish that the corresponding one 
for topological, rather than homotopy, fibre bundles. It follows from the gen­
eral theory of classifying spaces of such homotopy fibre bundles and the 
Mayer-Vietoris construction (2.12). See, for example, [104]. The force of the 
classification theorem is the following. We take a fixed CW -complex F as 
fibre. First of all, every homotopy fibre bundle, with fibre homotopy equiv­
alent to F, over a compact ENR B is fibrewise homotopy equivalent to one 
of a set of bundles of this type, so that we may talk about the set, in ad 
hoc notation X(B) say, of fibrewise homotopy equivalence classes of homo­
topy fibre bundles over B with fibre F. Then we can introduce, for a closed 
sub-ENR A ~ B, the set X(B, A) of fibrewise homotopy equivalence classes 
of homotopy fibre bundles M --t B with fibre F equipped with a fibrewise 
homotopy trivialization (up to homotopy) MA --t A x F over A. The theorem 
asserts that this functor X is represented by a classifying space X, which is 
a pointed CW-complex. To be precise, there is an equivalence of functors: 

X(B, A) --t [B/A; X] 

to the set of pointed homotopy classes of maps B / A --t X. 

Fibrewise cofibrations 

We recall next some properties of fibrewise cofibrations, referring to Part I 
and [44] for details. 

Definition 1.14 Let i : M --t N be a fibrewise map over B. We say that i 
is a fibrewise cofibration if, for each fibrewise space P over B, each fibrewise 
map 90 : N --t P and homotopy It : M --t P with 10 = 90 0 i, there exists a 
homotopy 9t : N --t P extending I, that is, It = 9t 0 i. 

In homotopy theory it is often more natural to look at homotopy­
cofibrations. 

Definition 1.15 We say that i, as above, is a fibrewise homotopy-cofibration 
if it has the extension property described above for the data (P, go, It) when­
ever, for some f, 0 < f < 1, It = 10 for 0 ~ t ~ f. 

The property of being a fibrewise cofibration or homotopy-cofibration is 
local: 

Proposition 1.16 Let i : M --t N be a fibrewise map over an ENR B. Then 
i is a fibrewise (homotopy) cofibration if and only if each point b E B of the 
base has an open neighbourhood U such that iu : Mu --t Nu is a fibrewise 
(homotopy) cofibration over U. 
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Let M now be a subspace of a fibrewise space N over B. There are two 
useful criteria for the inclusion i : M <-+ N to be a fibrewise cofibration, 
the formulation of which involves a pair (1/;, ht ), where 1/; : N ~ [0,1] is a 
continuous function which is zero throughout M and ht : N ~ N, 0 ::; t ::; 1, 
is a fibrewise homotopy such that 

ho(x) = x for all x E N, 

ht(x) = x for all x E M, t E [0,1]. 
(1.17) 

Lemma 1.18 Let M be a closed subspace of the fibrewise space N over B. 
Then the following conditions are equivalent. 

(i) The inclusion i : M <-+ N is a fibrewise cofibration. 
(ii) There exists a pair (1/;, ht ) as in {J.17} such that (a) 1/;-1 (0) = M, and 

(b) ht(x) EM whenever t > 1/;(x). 
(iii) There exists a pair (1/;, hd as in (1.17) such that (a) 1/;-1(0) = M, and 

(b) hl(X) E M for all x E N such that 1 > 1/;(x). 

A pair (1/;, ht ) satisfying (ii) is often called a fibrewise Stn>Jm structure. 
(See Part I, Proposition 4.3). The condition (ii)(a) follows automatically from 
(ii)(b) and the fact that M is closed in N.) Condition (iii) is a neighbourhood 
deformation retraction property. 

To state the corresponding characterization of a fibrewise homotopy­
cofibration we need some notation. For any f, with 0 < f < 1, we write 
Ae : [0, 1] ~ [0,1] for the piecewise-linear function 

A (t) _ { 0 for 0 ::; t ::; f, 
e - (t-f)/(I-f) forf<t::;1. 

Proposition 1.19 Let i : M <-+ N be the inclusion of a (not necessarily 
closed) subspace M of a fibrewise space N over B. Then the following condi­
tions are equivalent. 

(i) The map i is a fibrewise homotopy-cofibration. 
(ii) There exists a pair (1/;,ht ) as in (1.17) such that ht(x) EM whenever 

Ae(t) > 1/;(x). 
(iii) There exists a pair (1/;,ht ) as in (1.17) such that hl(X) E M for all 

x E N such that 1 > 1/;(x). 

The condition (ii) is independent of the choice of f: 0 < f < 1. 

Fibrewise pointed spaces 

Pointed spaces play an essential, if sometimes purely technical, role in ho­
motopy theory. Geometric spaces are not usually equipped with a basepoint, 
and in order to do homotopy theory one has to choose or adjoin basepoints. 
The same is true in the fibrewise theory. 
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We shall try to maintain a distinction in notation between the unpointed 
and pointed theories, using letters such as M, N for geometric fibrewise 
spaces (such as fibrewise manifolds) and X, Y for fibrewise pointed spaces. 

Informally, a fibrewise pointed space X ---t B is a family of pointed spaces 
Xb parametrized by b E B. Precisely, it is given by a fibrewise space X ---t B 
and a map s : B ---t X such that s(b) E Xb. The map s embeds B as a 
subspace of X. It is often convenient to write b for the basepoint s(b) of the 
fibre X b • 

A fibrewise pointed map f : X ---t Y over B is a family of basepoint­
preserving maps fb : X b ---t Yb· 

The unique fibrewise pointed map X ---t Y which is null in each fibre is 
normally called the jibrewise null map; but when we pass to the stable theory 
it is natural to refer to it also as the zero map. 

Adjoining a basepoint 

Let M ---t B be a fibrewise space over B. We write M+B ---t B for the fibrewise 
pointed space obtained by adjoining a disjoint basepoint to each fibre: as a 
space M+B is the disjoint union M U B. 

If N ---t B is another fibrewise space over B and f : M ---t N is a fibrewise 
map, then a fibrewise pointed map f+ : M+B ---t N+B is defined in the 
obvious way. When M is connected (as a space), every fibrewise pointed map 
is of this form, with the exception of the null (or zero) map. In general, one 
can analyse pointed maps M+B ---t N+B in terms of the components of M. 

Adjunction of a basepoint in this way allows us to absorb the geometric 
theory of fibrewise homotopy into the pointed theory. 

Fibrewise one-point compactijication 

Another way in which basepoints arise geometrically is by one-point (or 
Alexandroff) compactification. (See Section 10 of Part I.) Let M ---t B be 
a locally compact Hausdorff fibrewise space over B. Then the fibrewise one­
point compactification of M, obtained by adjoining a basepoint at infinity to 
each fibre, will be denoted by M~. 

An important example which will occur often is that of a finite-dimensional 
real vector bundle ~ over B. The fibrewise one-point compactification ~~ is a 
sphere-bundle. When ~ is equipped with a positive-definite inner product, ~~ 
can be identified, by stereographic projection, with the unit sphere-bundle 
S(JR EB~) in JR EB ~, the direct sum of the trivial bundle B x JR ---t B and ~, 
with (1,0) corresponding to the basepoint at infinity (in each fibre). 
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Pointed fibre bundles 

We say that a fibrewise pointed space X -+ B over B is trivial, if it is fibrewise 
pointed homeomorphic to B x F -+ B for some pointed space F. The fibrewise 
pointed space X -+ B is locally trivial, or a pointed fibre bundle, if there is 
an open covering U of B such that Xu -+ U is trivial, as a fibrewise pointed 
space, for all U E U. Thus a pointed fibre bundle is a bundle of pointed spaces. 
The fibrewise one-point compactification ~~ of a vector bundle ~ over B is a 
good example: it is a pointed sphere-bundle. 

The complement X - B of the basepoints in a pointed fibre bundle X 
is evidently a fibre bundle over B. We use this observation in the following 
example. 

Example 1.20. Let X := B x B -+ B : (a, b) f-t a be the fibrewise pointed 
space with basepoint (b, b) E Xb. As a fibrewise space X -+ B is trivial. It is 
shown in Proposition 11.20 that X -+ B is a pointed fibre bundle when B 
is a (topological) manifold without boundary. On the other hand, if B is the 
closed interval [0, 1], then X is not a pointed fibre bundle, for X - B -+ B is 
not locally trivial. 

Homotopy well-pointed fibrewise spaces 

To obtain a workable homotopy theory it is necessary to put some restrictions 
on basepoints. Let X -+ B be a fibrewise pointed space. It is reasonable to 
insist first of all that the basepoints form a closed subspace B ~ X, as is 
always the case when X is Hausdorff. 

Let us define a fibrewise pointed space Xl> to be the subspace 

Xl> := (X x {O}) U (B x [0,1]) 

of X x [0,1] with the basepoint (b,1) at b E B. The projection defines a 
fibrewise pointed map 

(1.21) 

The fibrewise pointed space X is said to be (fibrewise) well-pointed if the 
inclusion B -+ X is a fibrewise cofibration or, in other words, if there exists 
a fibrewise retraction r : X x [0, 1] -+ Xl>. (See Sections 4 and 16 of Part 
1.) This property of X is not invariant under fibrewise pointed homotopy 
equivalence. The corresponding invariant property is the following. 

We say that X is (fibrewise) homotopy well-pointed (or non-degenerate) 
if the inclusion B -+ X is a fibrewise homotopy-cofibration. 

It is elementary to check that for any X the fibrewise pointed space Xl> is 
well-pointed and that the fibrewise pointed space X is homotopy well-pointed 
if and only if the map Xl> -+ X is a fibrewise pointed homotopy equivalence. 

The condition is usually satisfied in geometrically occurring examples. 
Clearly, for any fibrewise space M -+ B, the fibrewise pointed space M+B is 
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well-pointed. A pointed fibre bundle is homotopy well-pointed if and only if 
each fibre is homotopy well-pointed, because the property is local, by Propo­
sition 1.16. 

Proposition 1.22 Let X --t B be a fibrewise pointed space and let U be an 
open covering of B. Then X is homotopy well-pointed if and only if Xu is 
homotopy well-pointed for all U E U. 

Example 1.23. Consider the path space P B = map([O, 1], B) --t B : w 1-+ w(O) 
as a fibrewise space over B. It is fibrewise pointed, with basepoint at b the 
constant path. Using the fact that B is an ENR, one can show that P B --t B 
is well-pointed. (In fact, the basepoint B --t P B includes B as a fibrewise 
sub-ENR of the fibrewise ANR PB. See Lemma 5.4.) 

Given a fibrewise pointed space X, the construction (Lemma 1.5) gives 
a fibrewise space X •. We can make it a fibrewise pointed space by taking as 
basepoint in the fibre at b the point (b, b), that is, the constant path at b. 

Lemma 1.24 Suppose that X is well-pointed. Then the fibrewise pointed 
space X. constructed above is well-pointed. 

This follows rather easily from Example 1.23. 

From now on all fibrewise pointed spaces (and all pointed spaces) 
are assumed to be homotopy well-pointed. 

Pointed homotopy fibre bundles 

Let X --t B be a fibrewise pointed space. We say that X is a pointed homo­
topy fibre bundle if it is locally pointed homotopy trivial, that is, if each point 
of B has an open neighbourhood U such that Xu is pointed fibrewise homo­
topy equivalent to a trivial bundle of pointed spaces U x F. Notice that our 
requirement that a pointed homotopy fibre bundle be homotopy well-pointed 
is equivalent to the requirement that each fibre be homotopy well-pointed, 
by Proposition 1.22. 

Fibrewise pointed maps between pointed homotopy fibre bundles are lo­
cally trivial as fibrewise pointed maps. The proof of Proposition 1.2 carries 
through unchanged. 

Proposition 1.25 Let f : X --t Y be a (fibrewise) map between pointed 
homotopy fibre bundles over B. Then for each b E B there exists an open 
neighbourhood U of b and local pointed fibrewise homotopy trivializations ¢ : 
Xu --t U X Xb and'IjJ : U X Yb --t Yu such that fu is fibrewise homotopic to 
'IjJ 0 (1 x fb) x ¢. 
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The pointed homotopy lifting property 

The theory for pointed homotopy fibre bundles now proceeds along the same 
lines as the unpointed theory, although there are some subtleties in the detail. 

Definition 1.26 Let X -+ B be a fibrewise pointed space over B. We say 
that X has the pointed homotopy lifting property if, for each base space B' 
and fibrewise pointed space X' -+ B' over B' , given a homotopy at : B' -+ B, 
o ::; t ::; 1, and fibrewise pointed map fo : X' -+ X over ao, there is a pointed 
homotopy It over at extending fo· 

X' ~ X X' x [0,1) ~ X 

1 1 1 1 
B' -----t B 

at 
B' x [0,1) -----t B 

a 

A fibrewise pointed space X possessing this property is generally referred 
to in the literature [10, 104) as an ex- or based fibration. 

There is a corresponding definition of the pointed homotopy lifting prop­
erty up to homotopy, and this is invariant under fibrewise pointed homotopy 
equivalence. 

One can again show that both properties are local (for ENR base spaces), 
and so deduce the first part of the following proposition. 

Proposition 1.27 A pointed homotopy fibre bundle possesses the pointed 
homotopy lifting property up to homotopy and is fibrewise pointed homotopy 
equivalent to a fibrewise pointed space with the pointed homotopy lifting prop­
erty. 

Starting from a fibrewise pointed space X -+ B it is not so straightforward 
as in the unpointed case to construct an associated fibrewise pointed space 
with the pointed homotopy lifting property. The fibrewise pointed space XU, 
defined as the fibre product X x B P B with the basepoint (b, b) in X:, is not 
quite the right candidate. 

Proposition 1.28 Let X -+ B be a fibrewise pointed space. Then (Xb)U is a 
well-pointed fibrewise space with the pointed homotopy lifting property. 

If X is a pointed homotopy fibre bundle, then this construction produces 
a well-pointed fibrewise space with the pointed homotopy lifting property 
which is canonically fibrewise pointed homotopy equivalent to X. 

The discussion of pull-backs of homotopy fibre bundles carries over, with 
only notational changes, to the pointed theory. 
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Dold's theorem for pointed homotopy fibre bundles 

The following characterization of fibrewise pointed homotopy equivalences 
between pointed homotopy fibre bundles will again be referred to as simply 
Dold's theorem. 

Theorem 1.29 (Dold's theorem). Let f : X --+ Y be a fibrewise map between 
pointed homotopy fibre bundles over B. Then f is a fibrewise pointed homo­
topy equivalence if and only if fb : Xb --+ Yi, is a pointed homotopy equivalence 
of fibres at each point b E B of the base. 

Recall that the fibrewise pointed spaces X and Yare assumed to be 
homotopy well-pointed; so, too, are the fibres. This theorem therefore follows 
from the original theorem of Dold (Theorem 1.12) and Part I, Theorem 16.2. 
(The result in this form is due to Eggar [58J.) If f is a fibrewise homotopy 
equivalence then it is a fibrewise pointed homotopy equivalence, and if fb is 
a homotopy equivalence then it is a pointed homotopy equivalence. 

The gluing construction for pointed homotopy fibre bundles 

We shall need the pointed version of Proposition 1.11. 

Proposition 1.30 Suppose that the compact base B is a union of two closed 
sub-ENRs Bl and B2 with intersection an ENR A = Bl n B 2. Let Xl --+ Bl 
and X 2 --+ B2 be homotopy fibre bundles with fibres of the homotopy type of 
CW-complexes, and let h : (XdA --+ (X2 )A be a fibrewise pointed homotopy 
equivalence. Then there exists a pointed homotopy fibre bundle X --+ B over 
B together with fibrewise pointed homotopy equivalences It : Xl --+ XB 1 over 
Bl and h : X 2 --+ XB2 over B2 such that (fdA ~ (h)A 0 hover A. 

Moreover, the fibrewise space X together with the equivalences It and h 
is unique in the following sense. If X', If and f~ give a second solution to 
the gluing problem, then there is a fibrewise pointed homotopy equivalence 
g : X --+ X' such that fi ~ fI 0 gB, for i = 1, 2. (This is a routine exer­
cise on the Mayer-Vietoris sequence that we shall meet in the next section 
(Proposition 2.14).) 

Local triviality of fibrewise Hopf spaces 

Fibrewise Hopf spaces have already been discussed in some detail in Part I, 
Section 21. Let (X,m) and (X',m') be two fibrewise Hopf spaces over B. 
We say that a fibrewise pointed map f : X --+ X' is a fibrewise H -map if 
it is compatible with the multiplication: m' 0 (f x f) ~ f 0 m. The map 
f is a fibrewise H -equivalence if further it is a fibrewise pointed homotopy 
equivalence. It then follows that its inverse is a fibrewise H-map. 
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Proposition 1.31 Let X ~ B be a pointed homotopy fibre bundle admitting 
a fibrewise HopI structure m. Then (X, m) is locally trivial as a fibrewise 
HopI space. 

We have to show that each point b E B is contained in an open neigh­
bourhood U such that (Xu, mu) is fibrewise H-equivalent to the trivial fibre­
wise Hopf space over U with fibre the Hopf space (Xb, mb). This follows 
from the local contractibility of the base. There is no loss of generality in 
supposing that X is trivial: X = B x F. We choose U contracting by a 
homotopy H t : U ~ B to b. Thus, Ho is the inclusion and HI is the con­
stant map b. Then we get a homotopy mHo from m to the multiplication 
(1 x mb) : U x (F x F) ~ U x F. 

Remark 1.32. Suppose that G is a pointed compact ENR admitting a Hopf 
structure. Then the space of Hopf structures on G is an ANR and so, in 
particular, locally contractible. 

This can be seen as follows. We may assume that G is a subspace of a 
Euclidean space E with the basepoint at O. Choose a retraction r : U ~ G 
of an open neighbourhood U onto G. Consider the set of Hopf structures on 
G as a subspace of the Banach space of continuous maps G x G ~ E taking 
(0,0) to o. A neighbourhood retraction is given by mapping m to the Hopf 
structure m given by: 

m(x, y) = r(m(x, y) - m(x, 0) + x - m(O, y) + y). 

(These ideas on local triviality of fibrewise Hopf spaces are taken from [38].) 

2 Complements on homotopy theory 

In this section we shall work entirely with fibrewise pointed spaces (assumed 
to be homotopy well-pointed). 

Homotopy classes 

Let X and Y be fibrewise pointed spaces over B. Suppose first of all that B 
is compact, as will usually be the case, and that A ~ B is a closed sub-ENR. 
We write 

[X; Y](B,A) or 1TrB,A)[X; Y] 

for the set of (fibrewise) homotopy classes of fibrewise pointed maps I : X ~ 
Y which are zero (that is, null) over A: la = * : Xa ~ Ya for all a E A. 
Fibrewise homotopies are understood also to be zero over A. 

More generally, for i ~ 0, we set 
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where EB denotes the (reduced) fibrewise suspension: 

where the equivalence relation", identifies Xb x {O, I} and {b} x [0,1] to 
the basepoint b in the fibre at b E B. (As we deal exclusively with fibrewise 
pointed spaces here, we omit the superscript 'B' used in Part I to indicate 
the reduced suspension. The same simplification in notation will be made 
elsewhere.) It will be useful later to think of the iterated fibrewise suspension 
E}, as the fibrewise smash product with the trivial sphere-bundle (B x lRi)~ = 
B X Si. 

For i = 0, 1I"~,A)[X; Y] is simply a pointed set; for i = 1, it is a group, 
and, for i > 1, an Abelian group. The group structure on these fibrewise 
homotopy groups is defined just as in the classical theory. 

The cohomological indexing is chosen with the stable theory, to be in­
troduced in the next section, in mind. When the subspace A is empty, we 
abbreviate 1I"(B,0) to 1I"B' 

Compact supports 

In some applications, when the base is not compact, it is useful to consider 
homotopy classes with compact supports. Suppose that B is not necessarily 
compact. We say that a fibrewise pointed map f : X ---t Y has compact 
support if it is zero outside a compact subset of the base, that is, if fb = * 
for b in the complement of some compact subset of B. In the same way, a 
(fibrewise) homotopy with compact support, regarded as a fibrewise map over 
B x [0,1]' is required to have compact support in B x [0,1]. 

We write C1l"Bi[X; Y] for the set of (compactly supported) homotopy 
classes of compactly supported fibrewise pointed maps E},X ---t Y. 

If the topology of B is sufficiently well behaved, the compactly supported 
theory over B will be the direct limit of the theories over pairs (B', A'), where 
B' is a compact sub-ENR of B and A' is a closed sub-ENR of B' such that 
B' - A' is open in B. This will be the case if B is, for example, a smooth 
manifold; see Proposition 5.3. 

The cofibre exact sequence 

Let f : X' ---t X be a fibrewise pointed map over B. 

Definition 2.1 The fibrewise homotopy-cofibre (or mapping cone) CB(f) of 
f is defined to be the fibrewise quotient of 

(B x {O}) U (X' x [0,1]) U (X x {I}) 
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by the identification of (X', 0) with (P(X'),O) and (x', 1) with (J(x' ),I) for 
x' E X', and (b,t) with (b,O) for all bE B. In other words, we have a 
topological push-out diagram: 

X' X 

1 1 
over B, where CBX' is the fibrewise cone on X'. (Consistent with the con­
vention introduced above, the cone is understood to be reduced.) 

The homotopy-cofibre CB(J) is equipped with maps X --+ CB(J) --+ EBX'. 
There is also an evident map from CB(J) to the topological cofibre X/BI(X'), 
given by (x',t) f-+ [J(x' )]' for x' E X', (x,l) f-+ [xl for x E X. As in the 
ordinary theory, we have: 

Lemma 2.2 Let I : X' --+ X be a fibrewise homotopy-cofibration. Then the 
canonical map from the homotopy-cofibre to the topological cofibre: 

is a fibrewise pointed homotopy equivalence. 

(Indeed, the condition that I be a fibrewise homotopy-cofibration is nec­
essary as well as sufficient.) 

The construction of the homotopy-cofibre is compatible with homotopies. 
Consider a homotopy-commutative diagram: 

X, -l--t X 

y' ---+ Y 
9 

with a given (fibrewise) homotopy H between hI and gh'. Then there is an 
associated map H* : CB(J) --+ CB(g) induced by (x, 1) f-+ (h(x), 1), 

( ') {(h l (X I ),2t) for 0 ~ t ~ ~, 
x,tf-+ 1 

(H(x' , 2t - 1),1) for 2" ~ t ~ 1. 

As a first consequence of this homotopy invariance one can replace X and 
X' by the fibrewise pointed spaces Xl> and (X')I>, (1.21). It is then not too 
hard to check that CB(J), and EBX, are homotopy well-pointed (using the 
technique described in Part I (Proposition 16.4)). 

It is clear that the fibrewise suspension EBX of a pointed homotopy fibre 
bundle is again a pointed homotopy fibre bundle. The homotopy invariance 
noted above shows that the cofibre construction can also be made within 
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the category of pointed homotopy fibre bundles. For a map between such 
bundles is locally homotopy trivial, by Proposition 1.25. We state the result 
for reference. 

Lemma 2.3 Let f : X' -t X be a fibrewise pointed map between pointed 
homotopy fibre bundles. Then the homotopy-cofibre CB(f), and the fibrewise 
suspension EBX, are pointed homotopy fibre bundles. 

The construction of the homotopy-cofibre is made precisely to achieve the 
property that: given a fibrewise pointed map 9 : X -t Y and a null-homotopy 
H from the null map * to 9 f, there is a canonical factorization of 9 through 
CB(f), given by (x', t) I-t H(x', t) and (x,l) I-t g(x). Beginning with this 
observation, the usual arguments yield the exact cofibre (or Puppe) sequence. 
We assume in the statement that B is compact and that A is a closed sub­
ENR (but only because we have limited our definition of the relevant terms 
to that case). 

Proposition 2.4 For any fibrewise pointed space Y over B, there is a long 
exact sequence: 

... -t 7l"(~,A)[CB(f); Y) -t 7l"U;,A) [X; Y) -t 7l"U;,A) [X'; Y) 

-t 7l"(~1)[CB(f); Y) -t ... 

-t 7l"(B,A) [CB(f); Y) -t 7r(B,A) [X; Y) -t 7r(B,A) [X'; Y]. 

The sequence is exact, in the first place, as a sequence of pointed sets, 
and so of groups from the term 7l"(i,A) [X; Y]. Just as when B is a point, a 

little more can be said at the next term. The group 7l"(J,A)[X'; Y] acts on 
the set 7l"(B,A) [CB(f); Y), and two elements lie in the same orbit if and only 
if they have the same image in 7l"(B,A) [X; Y). (For further details see Section 
12 of Part I.) 

There is a corresponding exact sequence for homotopy with compact sup­
ports c7l"'B over a locally compact base B. 

The fibre exact sequence 

The treatment of the homotopy-fibre is formally similar. We write the space 
of based paths map'B(B x [0,1], Y) as PB(Y) (taking 0 as the basepoint in 
[0,1]). Consider a fibrewise pointed map 9 : Y -t Y". 

Definition 2.5 The fibrewise homotopy-fibre (or mapping fibre) FB(g) -t B 
of 9 is the subspace ofYxBPBY" consisting of those pairs (y,w) where y E Yb 
and w : [0, 1]-t Yt is a path from the basepoint w(O) = b to w(l) = g(y). The 
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basepoint in the fibre at b is (b, b), where, as usual, the second component b 
denotes the constant path. We have a pull-back diagram 

FB(g) ---t PB(Y") 

1 1 
y ---t Y" 

9 

There is a natural map from the fibrewise topological fibre, {y E Y I 
g(y) = *}, to the homotopy-fibre, and this map is a fibrewise pointed homo­
topy equivalence if and only if 9 is a fibrewise homotopy-fibration. (See the 
discussion in Section 13 of Part 1.) 

The construction of the homotopy-fibre, like that of the homotopy-cofibre, 
is homotopy-theoretic. From our hypothesis that Y and Y" are homotopy 
well-pointed it follows that FB(g) and the fibrewise loop space nBy are 
also homotopy well-pointed. The construction also preserves homotopy local 
triviality. 

Lemma 2.6 Let 9 : Y -+ Y" be a fibrewise pointed map of pointed homotopy 
fibre bundles over B. Then the homotopy-fibre FB(g), and the fibrewise loop 
space nBY, are pointed homotopy fibre bundles. 

The derivation of the long exact fibre sequence (or Nomura sequence) 
follows the classical theory. For the statement we suppose that B is compact 
and that A is a closed sub-ENR. There is a corresponding sequence in the 
theory with compact supports. 

Proposition 2.7 For any fibrewise pointed space X over B, there is a long 
exact sequence: 

... -+ 7r(~,A)[X; FB(g)]-+ 7r(~,A)[X; Y]-+ 7rU;,A)[X; Y"] 

-+ 7rU;~1) [X; FB (g)] -+ ... 

-+ 7r?B,A)[X; FB(g)]-+ 7r?B,A)[X; Y]-+ 7r?B,A) [X; yll 

As in the case of the cofibre sequence, the group 7r(~,A)[X; Y"] acts on 

the set 7r?B,A)[X; FB(g)] and the sequence is exact at this point in the refined 
sense. 

Pull-backs 

Let 0: : (B', A') -+ (B, A) be a map of compact ENR pairs. Given a fibrewise 
pointed map f : X -+ Y between fibrewise pointed spaces over B, we can 
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form the pull-back 0:* 1 : 0:* X -t o:*Y over B'. If 1 is zero (null) over A, then 
0:* 1 will be zero over A'. This construction gives us pull-back maps 

0:*: 1I"~,A)[X; Y]-t 1I"~"AI)[O:*X; o:*Y] 

with evident functorial properties. 
In the class of pointed homotopy fibre bundles the pull-back is homotopy 

invariant. To explain this statement, let us suppose that X and Yare both 
pointed homotopy fibre bundles and that O:t : (B', A') -t (B, A), 0 ::; t ::; 1, is 
a homotopy. Then, as we have observed in Proposition 1.11, there are natural 
fibrewise pointed homotopy equivalences: O:oX -t o:iX and O:oY -t o:iY. 

Proposition 2.8 In the situation described above, 

0:0 = o:~ : 1I"(~,A)[X; Y] -t 1I"(~"AI)[O:OX; O:oY] = 1I"~"AI)[o:rX; o:rY], 

where the identifications are made using the canonical fibrewise pointed ho­
motopy equivalences determined by the homotopy O:t. 

This follows from the uniqueness, up to homotopy, of the homotopy lifting 
(Remark 1.7). For let gt : O:oX -t o:;X extend the identity go = 1 on X and 
ht : O:oY -t o:;Y extend the identity ho = 1 on Y. Consider a fibrewise map 
1 : X -t Y. Then 0:;J 0 gt and ht 0 ao/: aoX -t o:;Y both extend 0:01 and 
so are homotopic. 

There is a corresponding pull-back construction for fibrewise homotopy 
with compact supports over locally compact base spaces. The map B' -t B 
will, of course, be required to be proper (so that the inverse image of a 
compact subspace is closed and, consequently, the pull-back of a compactly 
supported map will be compactly supported.) 

The relative exact sequence 

In this subsection we fix fibrewise pointed spaces X and Y over a compact 
base B and examine the relation between homotopy theory over B and ho­
motopy theory over a closed sub-ENR A. There is an obvious restriction 
map 

1I"Bi[X; Yj-t 1I"A: i [XA; YAj. 

We begin by extending the restriction map on 11"0: 1I"~[X; Yj -t 1I"~[XA; YAj 
formally on the left to a long exact sequence. The next term in the sequence 
will classify maps 1 : X -t Y over B together with a null-homotopy over A, 
that is, Ft : XA -t YA, 0 ::; t ::; 1, with Fo = 1 A and Fl = *. The pair (f, Ft ) 

determines a class in 

1I"~BX{0}UAX[O,lJ,AX{l})[X; Y]. 
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Here we have written simply X and Y for the pull-backs of those fibrewise 
spaces over B to B x {O} uA x [0,1]. We make similar abbreviations in what 
follows. For example, with this convention we have a natural identification 

7r(~,A)[X; Y] = 7r~BXDi,AxDiUBxaDi)[X; V], 

which we shall use shortly. 
The next term in the long exact sequence will be 

7r~AX[O,l].AX{O,l})[X; Y] = 7r~[EAXA; VAl = 7rAl[XA; VA]. 

We can also write this group as the set 

7r~BX {O}uAx[O,l].B x {O}UAx{l}) [X; V], 

by excision, and this set maps by restriction to the set of homotopy classes 
over (B x {O}UA x [0, 1], A x {1}). We need to check exactness ofthe segment 

7r~BX{O}UAX[O,l].BX{O}UAX{l})[X; Y]-+ 

7r~BX{O}UAX[O,ll,AX{l})[X; Y] -+ 7r~x{O}[X; Y]. 

But a map over (B x {O} u A x [0, 1], A x {1}) and a null-homotopy (of its 
restriction) over B x {O} combine to give a map over the pair 

(B x [-l,l]UA x [O,I],B x {-l}UA x {1}). 

Now restrict this map to (B x {-l}UA x [-l,IJ,B x {-1}UA x {1}) and 
change the second coordinate t to (1 + t)/2 to obtain the required lift. 

In this way we construct, quite formally, a relative exact sequence: 

Proposition 2.9 Let X and Y be fibrewise pointed spaces over a compact 
ENR B and let A be a closed sub-ENR of B. Then there is a long exact 
sequence: 

... -+ 7rU;X{O}UAX[O,l].AX{l})[X; YJ -+ 7r8i[X; Y]-+ 7rAi[XA; YAJ 

-+ ... -+ 7r~[X; Y]-+ 7r~[XA; VA]. 

Again this sequence is exact in the refined sense, with the homotopy group 
7rAl[XA; YAJ acting on the term to its right in the sequence. 

The result has more substance when X and Y are pointed homotopy fibre 
bundles. The following crucial lemma is due to Becker and Gottlieb [lOJ. 

Lemma 2.10 Suppose that X and Yare pointed homotopy fibre bundles. 
Then the projection map (B x {O} U A x [0, IJ, A x {1}) -+ (B, A) induces an 
isomorphism (of sets, or groups when appropriate): 

7r(~,A)[X; YJ -+ 7r(~X{O}UAX[O,l].AX{l})[X; YJ. 
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The proof uses both the fact that the inclusion B y A is a cofibration and 
the fact that X and Y have the homotopy lifting property (up to homotopy). 
From the first, we have a retraction r : B x [0, 1]-t B x {O} u A x [0,1]. This 
gives a map 

(B,A) -t (B x {O}UA x [0, 1], A x {I}): b t-+ r(b,I), 

which is an inverse homotopy equivalence, of pairs, to the projection. The 
assertion of the lemma now follows from Proposition 2.8. 

We shall refer to the final result as the relative exact sequence: 

Proposition 2.11 Let X and Y be fibrewise pointed spaces over a compact 
ENR B, and let A be a closed sub-ENR of B. Suppose that X and Yare 
pointed homotopy fibre bundles. Then homotopy groups over B and A are 
related by a long exact sequence: 

... -t lI'(~,A)[X; Y] -t lI'Bi[X; Y]-t lI'A"i[XA; YA]-t ... 

-t lI'~B,A)[X; Y]-t lI'~[X; Y]-t lI'~[XA; YA]. 

The M ayer- Viet oris sequence 

We can also look at the problem of gluing together fibrewise maps defined over 
subspaces of the base and agreeing where both are defined. Let BI and B2 be 
closed sub-ENRs of the compact ENR B, and suppose that their intersection 
A = BI n B2 is also an ENR. Consider the pair of restriction maps 

1I'~1 [XBl j YBtl X 1I'~2[XB2; YB2 ] ::::t 1I'1[XAj YA]. 

To extend this diagram to an exact sequence, we note that a pair of maps 
fi : XBi -t YBi' i = 1, 2, and a (fibrewise) homotopy Ft : XA -t YA 
between their restrictions to the intersection A define a map from X -t Y 
over Bl x {O} U A x [0,1] U B2 x {I}, thus: 

1I'~lX{O}UAX[O,1]UB2X{1}[Xj Y]-t lI'~l[X; Y] x 1I'~2[X; Y]. 

The next term is 

lI'A"l[X; Y] = lI'~AX[O,1],AX{O,l})[X; Y] 

= lI'~Bl x{O}uAx[O,I]UB2 X {1},Bl X{O}UB2 x{I}) [X j Y], 

and we can restrict from (Bl x {O}UA x [0, I]UB2 x {I}, Bl x {O} UB2 x {I}) 
to BI X {O} U A x [0,1] U B2 x {I}. 

Again, quite formally, we obtain a long exact sequence: 
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... -+ 7r.a:XOUAX[O,1]UB2X1[X; Yj-+ 7rli;[X; Yj EEl 7rli~[X; Yj-+ 7rA:i[X; Yj 

... -+ 7rli~[X; Yj x 7rli:[X; Yj-+ 7rA:1[X; Yj 

-+ 7r~lXOUAX[O,1]UB2XdX; Yj-+ 7r~l[X; Yj x 7r~2[X; Yj :::::t 7r~[X; Yj. 

The union B1 UB2 is necessarily a closed sub-ENR of B. (See, for example, 
[18j.) To simplify notation we suppose that B = B1 UB2. Then the projection 

Bl x {O} u A x [0, Ij U B2 x {I} -+ B (2.12) 

is a homotopy equivalence. An inverse map can be obtained by gluing together 
maps Bl -+ Bl X {O} U A x [0, ~j and B2 -+ A x [~, Ij U B2 x {I} which 
coincide on A: a E A I-t (a, ~). The two maps are constructed from retractions 
Bi x [O,lj -+ Bi X {O} u A x [O,lj as in the proof of Lemma 2.10. From 
Proposition 2.8 again, we obtain: 

Lemma 2.13 Let X and Y be pointed homotopy fibre bundles over B = 
B1 U B2. Then the projection map (2.12) induces a bijection 

7rlii[X; Yj-+ 7r.a:X{O}UAX[O,1]UB2X{1}[X; Yj. 

This establishes the M ayer-Vietoris sequence: 

Proposition 2.14 Let B1 and B2 be closed sub-ENRs of B such that B = 
Bl U B2 and A := B1 n B2 is an ENR. Let X and Y be pointed homotopy 
fibre bundles over B. Then one has a long exact sequence: 

... -+ 7rlii[X; Yj-+ 7rli;[X; Yj EEl 7rli~[X; Yj-+ 7rA: i[X; Yj-+ ... 

-+ 7r-1 [X, Yj -+ 7r-1 [X, Yj X 7r-1 [X, Yj -+ 7r-1 [X, Yj 
B' B1 ' B2' A' 

-+ 7r~[X; Yj-+ 7r~JX; Yj x 7r~.[X; Yj :::::t 7r~[X; Yj. 

Obstruction theory 

The next result can be regarded as a refinement of Dold's theorem. 

Proposition 2.15 Let B be a finite complex of dimension ~ m and let A 
be a subcomplex of B. Let g : Y' -+ Y be a fibrewise pointed map of pointed 
homotopy fibre bundles over B. Suppose that, for some integer n, for each 
b E B and any finite pointed complex P, composition with fb induces a sur­
jection [Pi Ytj -+ [Pi Ybj if dim P ~ n, a bijection if dim P < n. Let X be a 
pointed homotopy fibre bundle over B with each fibre homotopy equivalent to 
a finite complex of dimension ~ 1. Then the induced map 

9* : 7rU;,A)[X; Y'j-+ 7r(~,A)[X; Yj 

is surjective for i ~ n - (m + 1), bijective for i < n - (m + I). 
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There are several accounts of variants of this result in the literature [10, 
79]. In the form stated, it is a routine application of classical obstruction 
theory. 

Most of Proposition 2.15 can be established by cell-by-cell argument using 
the Mayer-Vietoris sequence, at least when A is empty. (The general case re­
quires a relative version of the Mayer-Vietoris sequence.) The proof proceeds 
by induction over the cells of B, using the five-lemma. (To be precise, this 
will prove surjectivity for any i, but injectivity only for i ~ 1.) One writes 
B = Bl U B 2, where B2 is a disc and Bl n B2 is the bounding sphere. Since 
the bundles are all homotopy trivial over the disc, the assertion is true over 
B2 and Bl nB2, by the hypothesis on the maps gb on fibres. Given the result 
for the restriction of 9 to B l , we can deduce the result for B. 

Remark 2.16. We observe, for future reference, that it would suffice to assume 
that each fibre Xb is a homotopy retract of some pointed finite complex Q 
of dimension:::; l, that is, that there exist pointed maps i : Xb -+ Q and 
r : Q -+ Xb such that r 0 i is homotopic to the identity. 

The Serre exact sequence and the Blakers-Massey theorem 

As a first application of the obstruction theory we give the fibrewise ver­
sions of the results of Serre and Blakers-Massey relating homotopy-fibres 
and homotopy-cofibres in a range of dimensions. Consider a fibrewise pointed 
map 9 : Y' -+ Y between pointed homotopy fibre bundles over B, and let 
h : Y -+ CB(g) be the projection to the fibrewise homotopy-cofibre. Since 
the composition hog is canonically null-homotopic, we have a commutative 
diagram of fibre sequences: 

~ Y' ~ Y 

(2.17) 

Proposition 2.18 Let B be a finite complex of dimension:::; m, let A be a 
subcomplex, and let X -+ B be a pointed homotopy fibre bundle with each fibre 
homotopy equivalent to a finite complex of dimension :::; 1. Suppose that, in 
the situation described in diagram (2.17), the homotopy groups of the fibres 
of Y and CB(g) vanish in dimensions less than c and d, respectively. Then 
the fibrewise map f induces a map 

f* : 7rU;,A) [X; FB(g)] -+ 7rU;,A) [X; f}B(CB(g»] = 7rU;;A\[X; CB(g)] 

which is surjective for i :::; c+d-2-(m+1), bijective for i < c+d-2-(m+1). 

The assertion follows, by Proposition 2.15, from the classical Blakers­
Massey theorem, deriving from the Serre spectral sequence. It allows us to 
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substitute terms in the fibre exact sequence (Proposition 2.7) to obtain, in a 
range of dimensions: i ~ N := c + d - 3 - (m + l), an exact sequence which 
we shall call the Serre exact sequence: 

7ritA)[X; Y'j-+ 7ritA) [X; Yj-+ 7r<:'A)[Xj CB(g)j -+ '" (2.19) 

for the fibrewise cofibre sequence Y' -+ Y -+ CB(g). (Of course, the original 
Serre exact sequence relates the homology of the fibre, total space and base 
of a fibration.) 

We have already met these methods in the proof of Proposition 19.23 in 
Part 1. 

Change 01 base 

The main results of this section have been stated for pointed homotopy fi­
bre bundles X and Y. This condition on X, whilst a natural one for the 
exposition, can often be relaxed by rephrasing the problem. Suppose that 
X, as space, is a compact ENR. The closed basepoint subspace B is then a 
sub-ENR of X. Now associated to a fibrewise pointed map 1 : X -+ Y over 
B there is a fibrewise pointed map j : X x So -+ X X B Y over X, namely, 
j(x, -1) = (x,/(x)), j(x,l) = (x, b), for x E Xb. Moreover, j is zero over 
the subspace B ~ X. This construction gives a bijection: 

(2.20) 

The pull-back X XB Y of a pointed homotopy fibre bundle Y over B is a 
pointed homotopy fibre bundle over X. 

There is a corresponding formal description of the relative groups: 

7rU;,A)[Xj Yj-+ 7r~,BUXA)[X X So; X XB Yj. (2.21) 

For this to be useful (and to fit our conventions), B U XA should be a closed 
sub-ENR of X. This will often be the case in practice, but B U XA is not 
automatically an ENR. If the restriction XA is an ENR, as, for example, 
when X -+ B is a fibrewise ENR (Corollary 5.9) then it does follow that 
B U XA is an ENR, but in that case X will be a homotopy fibre bundle, by 
Proposition 5.19. 

Homotopy-commutativity 01 fibrewise Hop! spaces 

As an application of some of the ideas introduced in this section we prove a 
theorem on fibrewise Hopf spaces over a compact ENR B. 

We begin with a preliminary discussion of torus bundles. Let L -+ B be a 
bundle of free Abelian groups of (finite) rank l. Associated to L is the torus 
bundle T = (L ® &")/L (the group-theoretic quotient of bundles of groups), 
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which is the fibrewise classifying space BBL. Conversely, the torus bundle T 
determines L. 

The fibrewise homotopy classes of maps between torus bundles can be 
described completely. 

Proposition 2.22 Let T and T' be torus bundles over B associated with 
bundles Land L' of free Abelian groups. Then 

7I"~[T; T'] = f(Hom(T, T')) = f(Hom(L, L')). 

In other words, every fibrewise map is homotopic to a unique fibrewise homo­
morphism. 

Here, and throughout Part II, f is used for the space of sections of a 
bundle. The homomorphism bundles Hom(T, T') and Hom(L, L') have fibres 
at b E B the spaces of continuous homomorphisms n -+ Tt and Lb -+ L~ 
respectively. The proposition is easily proved by a Mayer-Vietoris argument. 
Since any compact ENR is a retract of a finite polyhedron, we may assume 
that B is a finite complex and argue inductively cell by cell. 

Now let X -+ B be a pointed homotopy fibre bundle over B with each 
fibre of the pointed homotopy type of a connected finite complex. In each fibre 
of X we can form the fundamental group 71"1 (Xb) and assemble these to form 
a locally trivial bundle of (finitely generated) discrete groups lIB(X) -+ B. 

Lemma 2.23 There is a unique fibrewise pointed map X -+ BBlIB(X) (the 
fibrewise classifying space) which induces the identity map on the fundamental 
group of fibres. 

One first checks uniqueness if X = B x F -+ B is trivial. Global existence 
and uniqueness are again established by a Mayer-Vietoris argument. The 
crucial point, which ensures uniqueness, is that 7I"B 1 [X; T] is trivial for any 
torus bundle T. 

Let us write LB(X) for the bundle of finitely generated free Abelian 
groups obtained by Abelianizing the fibres of lIB (X) and factoring out the 
torsion subgroup. Thus the fibre at b E B is Hom(H1 (Xb; Z), Z). There is a 
map of fibrewise classifying spaces 

We shall call this torus bundle the Albanese bundle AlbB(X) and write 
p : X -+ AlbB(X) for the induced map. It enjoys a universal property for 
maps from X to a torus bundle. 

Proposition 2.24 For any torus bundle T -+ B there is a natural equiva­
lence: 

7I"~[X; T]-+ 7I"~[AlbB(X); T] = f(Hom(AlbB(X), T)). 
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Remark 2.25. We can also interpret 7r~[X; T] as cohomology with twisted 
coefficients HI(X, B; p* L). 

Remark 2.26. Suppose that X, in language to be explained in Section 11, 
is a fibrewise smooth fibre bundle with fibre a (connected) closed manifold. 
Then we can give an explicit representation of p in differential geometric 
terms. Choose a fibrewise Riemannian metric on X. We define p in the fibre 
at b E B. Let x E Xb and choose a smooth path 'Y from the basepoint of 
Xb to x. Any element of HI (Xb; JR) has a unique harmonic representative w. 
Mapping w to JI' w we obtain a linear map HI (Xb; JR) -+ lR. A different choice 
of path 'Y changes this linear map by a map which is integral (at least, up 
to a normalizing factor 27r) on the lattice HI(Xb; Z). We thus obtain a well­
defined map to the torus Hom(Hl(Xb; JR),JR)jHom(HI(Xb; Z),Z), which is 
the fibre of AlbB(X) at b. The maps so defined on fibres fit together to give 
the fibrewise map p. 

Assume now that X has a fibrewise Hopf structure, as in Proposition 1.31. 
Then p is a fibrewise H-map. This is now an easy calculation. For, by Propo­
sition 2.22, 7r~[X XB X; AlbB(X)] is r(Hom(LB(X) EEl LB(X), LB(X))). 

We can now describe completely the homotopy-commutative fibrewise 
Hopf spaces with fibre a finite complex, simply by applying Hubbuck's the­
orem [76] in each fibre and using Dold's theorem to recognize a fibrewise 
homotopy equivalence. Such fibrewise Hopf spaces are bundles of tori (up to 
equivalence). 

Proposition 2.27 (Hubbuck's theorem). Let X be a fibrewise Hop! space 
with each fibre homotopy commutative and of the homotopy type of a con­
nected finite complex. Then the natural map X -+ AlbB(X) is an equivalence 
of fibrewise Hopf spaces. 

3 Stable homotopy theory 

In this section we shall follow the naive approach to stable homotopy theory, 
without introducing the machinery of spectra. Our account does not follow 
any particular source, but like the whole of Part II owes much to the seminal 
papers of Becker and Gottlieb [10] and Dold [47]. 

The base space B is supposed to be compact, unless explicit indication to 
the contrary is given. We work with fibrewise pointed spaces over B; these 
will normally be pointed homotopy fibre bundles. 
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Finite-dimensional real vector bundles over B will be denoted by Greek 
letters: {, 1], (. Recall that {~ is the fibrewise one-point compactification of 
~, the fibrewise pointed sphere-bundle obtained by adding a basepoint at 
infinity in each fibre. (Notation such as S1, generalizing the classical sn for 
the sphere"is widely used. We prefer to avoid the proliferation of superscripts 
which this would entail.) The fibrewise smash product ~~ /\B 1]~ is canonically 
identified with (~E9 1])~. (See Part I, Proposition 10.3.) A vector bundle 
isomorphism a : ~ --t e determines, on compactification, a fibrewise pointed 
topological equivalence a* : ~~ --t (Ii. 

Stable maps 

Let us fix fibrewise pointed spaces X and Y over B. Although we shall give a 
formal definition of a stable fibrewise map from X to Y without imposing any 
restrictions on the spaces considered, the notion is unlikely to be useful unless 
X satisfies some finiteness condition. (The fibrewise space X will usually be 
a pointed homotopy fibre bundle with fibres of the pointed homotopy type 
of compact ENRs.) 

A fibrewise stable map X --t Y over B will be determined by a pair (f, ~), 
where ~ is a finite-dimensional real vector bundle over Band f is a fibrewise 
pointed map 

f : (~~) /\B X --t (~~) /\B Y. 

We introduce the equivalence relation on such pairs generated by: 

(i) (Homotopy) (f,~) ,..., (f',~) if f and I' are homotopic as fibrewise 
pointed maps. 

(ii) (Stability) If ( is a vector bundle over B then (f,~) ,..., (1/\ f, ( E9 ~). 
(iii) (Vector bundle isomorphism) If a : ~ --t e is a vector bundle isomorph­

ism, then (f,~) ,..., (I', ~') where I' is the composition 

~'t /\B Xa;l,,} ~~ /\B X ~ ~~ /\B Y a.,,\ ~'t /\B Y. 

A fibrewise stable map X --t Y over B is defined to be an equivalence class 
of such representatives (f, ~). 

There are, of course, set-theoretic niceties which require some attention -
but not too much. We should, perhaps, stipulate that each vector bundle ~ 
considered is a sub-bundle of one of the trivial bundles: 

The definition which we have given fits well into the conceptual framework 
of fibrewise homotopy theory (and, as we explain briefly at the end of this 
section, has the advantage of carrying through virtually unchanged to the 
equivariant theory). In fact, there is no loss of generality in taking all the 
vector bundles in the definition to be trivial, indeed of the form B x IRn. 
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Lemma 3.1 Every pair (I,~) is equivalent to a pair (g, B x IRn) lor some 
integer n . Moreover, two pairs (g, B x IRn) and (g', B x IRn') are equivalent 
il and only il 

1 /\ 9 ~ 1 /\ g' : (B x IRN)~ /\B X --+ (B X IRN)~ /\B Y, 

lor some N ;?: n, n'. 

The statement contains the implicit identification of IRN -n EB IRn with 
IRN. The first assertion is clear, because any finite-dimensional bundle over 
a compact base is isomorphic to a direct summand of a trivial bundle. The 
second depends upon the following elementary fact from K -theory. 

Lemma 3.2 Let a : ~ --+ ~ be a vector bundle isomorphism. Then 

a EB 1 and 1 EB a : ~ EB ~ --+ ~ EB ~ 

are homotopic through vector bundle isomorphisms. 

To see this, consider the homotopy 

from 

(J = [cOS(7rt/2) 
t sine trt /2) 

sin(7rt/2) ] 
- cos(7rt/2) , O~t~l 

(JO = [~ _ ~ ] to (Jl = [~ ~ ] 
in 0(2). Tensor this with the identity on ~ to get a bundle isomorphism. Then 
(Jt(a x l)Ot1 is a homotopy from a EB 1 to 1 EB a. 

Definition 3.3 We write w~{X; Y} for the set of fibrewise stable maps from 
X to Y over B. 

According to the discussion above, 

wO {X' Y} - lim 7r0 [En X' Eny] B, ---+BB'B 

n~O 

is the direct limit of the iterated fibrewise suspension maps, just as in the 
classical theory. The set of stable maps thus has a natural Abelian group 
structure derived from the group structure on the 7r"Bi, i ;?: l. 

By construction, we have, for any vector bundle ( over B, a suspension 
isomorphism 

1/\- : w~{X; Y} --+ w~{(~ /\B Xj (~ /\B Y}, 

given by the fibrewise smash product on the left with identity on the sphere­
bundle (13. We use this isomorphism to identify the two groups without com­
ment. In particular, we can make the identification 
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for any integer N ~ O. 
We define wk{Xj Y} for any i E IE to be w~{(JRN)+ "BXj (JRN+i)+ "B Y} 

for any N ~ 0 with N + i ~ O. (Two such groups for different N are, as we 
have just observed, canonically identified by the suspension isomorphism.) 

The extension of the definitions to the relative and locally compact theo­
ries presents no problem. Suppose that A is a closed sub-ENR of the compact 
base B. Then a stable map over (B, A) will be represented by a pair (f, (), 
where f is zero over A. Making the evident modifications, we arrive at the 
definition of the relative groups 

wtB,A){Xj Y}. 

When defining stable maps with compact support over a locally compact 
base B, we need to restrict attention to pairs (f, () where ( is of finite type, 
that is, such that there exists a finite covering of B by open sets over which 
( is trivial. This ensures that ( is a direct summand of a trivial bundle. (And 
such a bundle is necessarily of finite type, because it is the pull-back of the 
canonical bundle over a Grassmann manifold.) We denote the groups of stable 
maps with compact support by 

When the base B is a point we normally omit it from the notation. Thus, 
if E and F are pointed spaces, with E of the homotopy type of a compact 
ENR, wO {Ej F} means the set of stable maps from E to F, traditionally 
written as {Ej F}. We write 

c:;i(E) := wi{Ej SO} 

( = wO{Ej Si} when i ~ 0) 

for the reduced stable cohomotopy of the pointed space E and 

wj(F) := w-j{SOj F} 

( = WO{sjj F} when j ~ 0) 

for the reduced stable homotopy of F. The unreduced stable cohomotopy and 
homotopy groups of spaces P and Q (without basepoint) are defined by 
adjoining a basepoint: 
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Stable maps to a trivial bundle 

Suppose that Y is the trivial bundle B x F, where F is a pointed space. A 
fibrewise map X -+ B x F over B is prescribed by its second component, 
which is a map X -+ F taking the basepoint section B to the basepoint of F. 
Hence, we have a correspondence between fibrewise pointed maps X -+ B x F 
and pointed maps X/ B -t F. This evidently extends to stable maps. 

Proposition 3.4 There is a natural equivalence: 

w'B{X; B x F} -+ w*{X/B; F}. 

Note that, because X is well-pointed, the inclusion of B in X is a 
homotopy-cofibration and the pointed space X/ B is well-pointed. 

As a special case we have the identification: 

Products 

The stable homotopy groups have a composition/product structure exactly 
as in the classical theory. To describe composition of stable maps we consider 
another fibrewise pointed space Z -+ B. Given a stable map Y -t Z repre­
sented by (g, 'TJ) and a stable map X -t Y represented by (f, ~), we can form 
the composition X -+ Z represented by 

(We use the canonical identification of ~ EB 'TJ and 'TJ EB ~.) The construction is 
compatible with the equivalence relation on representatives of stable maps 
and gives: 

o : w~{Y; Z} ®w~{X; Y} -+ w~{X; Z}. (3.5) 

We obtain a category of fibrewise pointed spaces over B with morphisms 
from X to Y the fibrewise stable maps over B. 

The composition extends to the graded groups: 

o : w1{Y; Z} ® w~{X; Y} -t wtj {Xj Z}. (3.6) 

One has to be a little careful about the order. This can be fixed by describing 
the composition of honest fibrewise maps 9 : (B x lRi)~ /l.B Y -+ Z and 
f: (B x IRj)~ /l.B X -+ Y, where i, j ~ 0, as go (1/1. I): 

(BxlRi+j)~/l.BX = (BxlRi)~/l.B(BxlRj)~/l.BX lAf)(BxlRi)~/l.BY~Z, 

There are two variants of the composition involving the relative groups, 
on the left and on the right: 
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o : wh{Y; Z} ® w[B,A){X; Y} --? W~~~A){X; Z}, 

o : wtB,A){Y; Z} ® w1{X; Y} --? W;~~A){X; Z}, 

(which can, of course, be combined with the restriction map w(B,A) --? wB)' 
Now we turn our attention to the closely related (smash) products. Let 

X' --? B and Y' --? B be fibrewise pointed spaces over B. The fibrewise 
smash product X AB X' is homotopy well-pointed (Part I, Section 16). If X 
and X' are pointed homotopy fibre bundles, then X AB X' is also a pointed 
homotopy fibre bundle. 

The smash product in stable homotopy theory is in some respects analo­
gous to the tensor product in the category of finite-dimensional vector spaces 
over a field. We shall pursue this analogy in the discussion of duality in 
Section 10. For the present we just note the canonical equivalence between 
X AB X' and X' AB X: [X,X/]t-+ [X',X]. It is an identification that we shall 
often make without further comment. 

The smash product 

A : wh{X; Y} ® W1{X'; yl} --? wk+i' {X AB X'; Y AB yl} (3.7) 

is constructed in the obvious way (preserving the order of the indices). In 
particular, if (I,~) and (1',0 are representatives of fibrewise stable maps 
X --? Y and X' --? yl, then (I A f',~ (f) 0: 

(~EB ot A (X AB X') =(~~ AB X) AB (~'t AB X') 11\1') 

((}; AB Y)AB(e~ AB yl) = (e EB e')~ A (Y AB yl) 

is a representative of the product. 
Again there is a variant of the smash product with one factor a relative 

group over (B,A). 
The smash product and composition are related as follows. 

Lemma 3.8 Let x E wh{X; Y}, x' E W1{X'; yl}. Then the smash product 
x A x' E wk+i' {X AB X'; Y AB yl} is equal to the composition 

(x A ly,) 0 (Ix Ax') = (_l)ii' (ly Ax') 0 (x A Ix') E wk+i' {X AB X'; Y AB y/}. 

The graded ring w*(B) is (super-) commutative. As a special case of the 
smash product we obtain, using the interpretation of wh{B x So; B x SO} as 
the stable cohomotopy group wi(B) of the base, a graded (left) w*(B)-module 
structure on w(B,A){X; Y}: 

wi(B) ®W[B,A){X; Y} --? wt~~A){X; Y}. 

The corresponding right module structure is given by an appropriate change 
of sign: 
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x·r = (-1)ij r · x for r E wi(B), x E WfB,A){Xj Y}. 

The graded smash and composition products are w*(B)-bilinear (in the 
super-commutative sense). In particular, the tensor products in (3.5) and 
(3.6) can be read as tensor products over wO(B), rather than over Z. 

We conclude this description of the formal structure of fibrewise stable 
homotopy theory by singling out the defining suspension isomorphism. 

Proposition 3.9 (Suspension isomorphism). For any finite-dimensional real 
vector bundle ( over B, the smash product on the left with the identity 1 E 
w~ { (jj j (jj} gives a suspension isomorphism: 

11\ : wtB,A){Xj Y} -+ wtB,A){(jj I\B Xj (jj I\B Y}. 

The cofibre exact sequences 

We shall say that a sequence 

X'~X~X" 

of fibrewise pointed spaces over B is a cofibre sequence if we are given a fibre­
wise pointed homotopy equivalence GBU) -+ X" from the homotopy-cofibre 
of f such that the composition X -+ GBU) -+ X" with the structure map of 
the homotopy-cofibre is homotopic to g. The standard map GBU) -+ EBX' 
determines a stable map 8 E w1{X"j X'}. 

The cofibre exact sequences on the left and right in classical stable homo­
topy theory generalize routinely to the fibrewise theory. The first sequence 
is the direct limit of exact sequences (Proposition 2.4) in unstable homotopy 
theory. 

Proposition 3.10 Let X' -+ X -+ X" be a cofibre sequence over B. Then 
for any fibrewise pointed space Y over B we have a long exact cofibre sequence 
on the left: 

... -+wtB,A){X"j Y} -+ wtB,A){Xj Y} -+ wtB,A){X'j Y} 

~wi+l {X'" Y} -+ ... (B,A) , 

of w*(B)-homomorphisms. 

The derivation of the second sequence is not so immediate. 

Proposition 3.11 Let Y' -+ Y -+ Y" be a cofibre sequence over B. Then for 
any fibrewise pointed space X over B we have a long exact cofibre sequence 
on the right: 
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... -twtB,A){X; Y'} -t wtB,A){X; Y} -t WtB,A){X; Y"} 

~Wi+l {X, Y'} -t ... (B,A) , 

0/ w*(B)-module homomorphisms. 

We shall indicate only the key ingredient in the proof of exactness. (The 
ideas have already appeared in our discussion of the Serre exact sequence 
(2.19).) Let the maps in the cofibre sequence be denoted by / : Y' -t Y and 
9 : Y -t Y". Since the composition is null-homotopic, the composition 

7r?B,A)[X; Y'] ~7r?B,A)[X; Y] ~ 7r?B,A) [X; Y"] 

is zero. Working in the opposite direction, consider a map h : X -t Y such 
that go h is null-homotopic (over (B,A)). We show that the fibrewise sus­
pension of h: EBX -t EBY lifts to a map EBX -t EBY'. The map h lifts 
to the homotopy-fibre: X -t FB(g), by the construction (Definition 2.5) of 
the homotopy-fibre. Now we have a (homotopy) commutative diagram: 

----+ Y -!!.-t Y" 

1 
DBEBY' ----+ B ----+ EBY' 

given by the naturality of the construction. For 8 0 9 is null-homotopic and 
DBEBY' is the homotopy-fibre of the inclusion of the basepoint: B -t EBY'. 
Composing the lift of h with the map FB(g) -t DBEBY' so constructed, we 
obtain a map X -t DBEBY'. Its adjoint EBX -t EBY' lifts the suspension 
of h. 

By passage to the direct limit, this argument establishes exactness at Y. 
Since Y -t Y" -t EBY' and Y" -t EBY' -t EBY are also cofibre sequences 
(Part I, Section 12), exactness at Y" and at Y' follows. 

The relative exact sequence 

The relative exact sequence and Mayer-Vietoris sequence for pointed ho­
motopy fibre bundles arise as direct limits of the corresponding unstable 
sequences (Propositions 2.11 and 2.14). 

Proposition 3.12 Let X and Y be pointed homotopy fibre bundles over a 
compact ENR B, and let A be a closed sub-ENR 0/ B. Then there is a long 
exact sequence 0/ graded w*(B)-modules 

... -tWlB,A){X; Y} -t wk{X; Y} -t w~ {XA; YA} 
6 '+1 ----+w(B,A){X; Y} -t ... 
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As one would expect, there is generalization to a triple B 2 A 2 A', 
where A' is a closed sub-ENR of A. The groups over B and A are replaced 
by relative groups over (B, A') and (A, A'). (See Proposition 15.6.) 

The Mayer- Vietoris sequence 

Proposition 3.13 Let BI and B2 be closed sub-ENRs of the compact ENR 
B, such that BI U B2 = B and A := BI n B2 is a sub-ENR. Then, for 
any pointed homotopy fibre bundles X and Y over B, there is a long exact 
Mayer- Vietoris sequence 

... -twk{X; Y} -tWk1{XB1 ; YB1}EBwk2{XB2; YB2 } -tW~{XA; YA} 

~wk+1{X; Y} -t ... 

of graded w*(B)-modules. The first homomorphism is the direct sum of the 
two restriction maps, and the second is the difference of the restriction maps 
on the two factors. 

Again there is a generalization involving relative groups over (B, A'), 
(BI' A'), (B2' A') and (A, A'), where A' is a closed sub-ENR of A. 

Nilpotence 

The technology developed for the relative and Mayer-Vietoris exact sequences 
can be used, as in the classical theory, to establish various nilpotence results. 
We suppose in this subsection that X o, ... , Xn are pointed homotopy fibre 
bundles over B. 

Lemma 3.14 Let B I , ... , Bn be closed sub-ENRs of the compact ENR B 
with union equal to B. Let Xk E W~{Xk; Xk-d, for 1 ~ k ~ n, be a class 
which restricts to zero on B k . Then the (composition) product 

Xl . X2 ..... Xn E w~+··+in {Xn; Xo} 

vanishes. 

By Proposition 3.12, Xk lifts to (B,Bk)' The product of the classes lifts 
to the pair (B, BI U ... U Bn) and is, thus, clearly zero. 

From this lemma and Proposition 2.8 we obtain: 

Proposition 3.15 Suppose that B is the union of n closed sub-ENRs B k, 
such that each inclusion Bk -t B is homotopic to a locally constant map (that 
is, a map which is constant on each component). Let Xk E W~{Xk; Xk-d, 
for 1 ~ k ~ n, be a class which restricts to zero in each fibre. Then 

Xl . X2 ..... Xn = O. 
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Note that if B is connected, then a class x E wk{X; Y} which restricts 
to zero in the fibre Wi{Xb; Yb} at one point b E B restricts to zero at every 
point of the base. 

It is possible to write any finite complex B as a union of closed sub-ENRs 
as in Proposition 3.15 for some natural number n. Recall that B has category 
::; n if it can be written as the union of n open subsets Uk such that each 
inclusion Uk -+ B is homotopic to a constant map. In that case, one can find 
closed sub-ENRs Bk ~ Uk with union equal to B, by Proposition 5.3. 

A relative version of this nilpotence result can be established in a similar 
fashion. 

Proposition 3.16 Let A be a closed sub-ENR of a compact ENR B. Suppose 
that B is a union of n closed sub-ENRs B I , ... , B n , such that each inclusion 
Bk -+ B is homotopic to a map into A. Further, suppose that, for some k, 
A ~ Bk and the inclusion of pairs (Bk' A) -+ (B, A) is homotopic to a map 
into (A, A). Then the product Xl' .... Xn of classes Xk E wt~,A) {Xk; Xk-d 
is zero. 

The suspension theorem 

For the remainder of this section we assume that both X and Yare pointed 
homotopy fibre bundles over B and that the fibres of X have the pointed 
homotopy type of finite complexes. (To develop a satisfactory stable theory 
without some such finiteness condition on the codomain of a stable map, one 
cannot avoid a systematic treatment of fibrewise spectra.) 

Freudenthal's suspension theorem tells us that there is a stable range: 
that is, that stabilization 

(3.17) 

is an isomorphism if the dimension of the vector bundle ~ is sufficiently large. 

Proposition 3.18 Let B be a finite complex of dimension::; m and let A be a 
subcomplex of B. Suppose that each fibre of X is pointed homotopy equivalent 
to a finite complex of dimension::; 1 and that the connectivity of each fibre of 
Y is ~ c. Then, for any real vector bundle ~ over B, the smash product with 
the identity on e~: 

7l'~B,A)[X; Y] -+ 7l'~B,A)[e~ I\B X; e~ I\B Y] 

is surjective if m ::; 2c - 1 + 1 and bijective if m < 2c - I + 1. 

This follows by applying the obstruction theory, Proposition 2.15, to the 
fibrewise suspension map: 
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f: Y -+ mapE(~~'~~ I\B Y). 

Here maPE denotes the pointed homotopy fibre bundle of pointed maps, with 
fibre at b E B the space map* (~t, ~t 1\ Yb ) of pointed maps of fibres. (For 
more details see Section 15 of Part I, where the notation map~ is used.) By 
the classical suspension theorem, fb is at least (2c + I)-connected, that is, 
satisfies the hypothesis of Proposition 2.15 with n = 2c + 1: for a pointed 
finite complex P, 

[Pj Yb] -+ [(~b)+ j (~b)+ 1\ Yb] 

is surjective if dim P ~ 2c + 1, bijective if dim P < 2c + l. 
By replacing X and Y by their fibrewise smash products with ~~ we 

deduce: 

Corollary 3.19 (Stability). Let X and Y be as in the statement of Proposi­
tion 3.18. Then the stabilization map 

7r(B,A)[~~ I\B Xj ~~ I\B Y]-+ W(B,A){Xj Y} 

is surjective if dim ~ ~ 1 + m - (2c + 1), bijective if dim ~ > 1 + m - (2c + 1). 

These results have been obtained under the assumption that the base B 
is a finite complex, but any compact ENR is a retract of a finite complex. 
Given a compact ENR pair (B, A), one can find a finite complex B' and 
sub complex A' together with maps t: (B,A) -+ (B',A') and p: (B',A') -+ 
(B, A) such that pot = 1 : (B, A) -+ (B, A). The reader is again referred to 
Section 5. From these considerations, we see, using Proposition 2.8, that the 
statement that the stabilization map in Corollary 3.19 is an isomorphism for 
~ of sufficiently large dimension holds in full generality. 

Serre's theorem 

One of the foundations of stable homotopy theory is Serre's theorem that 
the homotopy groups of spheres are finitely generated. By the suspension 
theorem, the stable homotopy groups of spheres are also finitely generated. 
From the relative exact sequence and induction over cells of the base, when 
the base is a finite complex, we obtain: 

Proposition 3.20 Let X and Y be pointed homotopy fibre bundles over a 
compact ENR B. Suppose that the fibres of X and Yare pointed homotopy 
equivalent to finite complexes. Then the stable homotopy groups 

wtB,A){Xj Y} 

are finitely generated Abelian groups. 
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The equivariant theory 

We close this section with a few remarks about the equivariant fibrewise the­
ory, which has proved to have important geometric applications (notably in 
the theory of differential equations). Let G be a compact Lie group. We have 
already observed that the formal side of fibrewise stable homotopy theory 
readily extends to a G-equivariant theory. The base B should be a G-ENR. 
This means that B is an equivariant retract of an open G-subspace U of 
some finite-dimensional real G-module E. Thus the inclusion i : B ~ U and 
retraction r : U ~ B are required to be G-maps. 

Suppose that B is a compact G-ENR. To specify a G-equivariant fibrewise 
stable map X ~ Y between fibrewise pointed G-spaces over B we need a pair 
(f, ~), where ~ is a finite-dimensional real G-vector bundle over Band f is a 
fibrewise pointed G-map. Fibrewise G-equivariant stable homotopy groups 

Gwk{X; Y} 

indexed by integers i E Z are defined just as in the non-equivariant the­
ory. These groups are stable in the equivariant sense that, for any finite­
dimensional real G-vector bundle (over B, the smash product with the iden­
tity gives an isomorphism: 

Most of the constructions to be described in later sections can be pushed 
through, with little difficulty, in the equivariant setting. 

4 The Euler class 

Throughout this section ~ will be a finite-dimensional real vector bundle 
over a compact ENR B. There is no loss of generality in assuming that ~ is 
equipped with a positive-definite inner product. (For two such inner products 
90 and 91 : ~ ® ~ ~ B x IR are homotopic: 9t = (1- t)90 + t91· Moreover, one 
has vector bundle automorphisms at : ~ ~ ~ such that 9t(U, v) = 90(atU, atv), 
for u, v E ~b.) We write S(~) and D(~) for the unit sphere and disc-bundles 
in ~. The one-point compactification of the zero vector space 0 is identified 
with So (with basepoint 1), and the fibrewise one-point compactification of 
the zero vector bundle B x 0 is likewise identified with B x So. 

The Gysin sequence 

There is a fibrewise pointed homeomorphism: 
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from the fibrewise quotient to the fibrewise one-point compactification given 
by the map tv I-t ¢(t)v, for v E S(~), 0 ::5 t < 1, where ¢ : [0, 1) ~ [0,00) 
is any homeomorphism with ¢(O) = O. The fibrewise pointed homotopy class 
of c is independent of the choice of ¢ and gives a natural fibrewise pointed 
homotopy equivalence between the two bundles. 

One can verify from first principles that the inclusion S(~) ~ D(~) 
is a fibrewise cofibration. (Alternatively, use the fact that the bundles are 
fibrewise ENRs (Proposition 5.11).) Hence, making the identification of 
DW+B/BS(~)+B with D{~)/BS{~) and, up to homotopy, with ~jj, we have 
a cofibre sequence: 

over B. Now the zero-section z : B x 0 ~ D(~) is a fibrewise homotopy 
equivalence, and the associated pointed map z+ : B x So ~ D(~)+B is 
a fibrewise pointed homotopy equivalence. So we can rewrite the sequence 
above, in the homotopy category, as: 

(4.1) 

where the first map is induced by the projection S{~) ~ B and the second 
by the inclusion of the zero-section B x 0 ~ ~. 

The long exact sequences arising from the cofibre sequence (4.1) are often 
referred to as Gysin sequences: 

... ~WB{X; S(~)+B} ~ WB{X; B x SO} ~WB{X; ~jj} ~ .. . 

... ~WB{~jj; Y} ~wB{B x So; Y} ~ WB{S(~)+B; Y} ~ .. . 
(4.2) 

(for fibrewise pointed spaces X and Y over B). 

The Euler class 

The classical cohomology Euler class of a vector bundle, the archetypal char­
acteristic class, is the Hurewicz image of a stable cohomotopy class. (To be 
precise, the classical Euler class is defined for an oriented vector bundle and 
the identification of the Hurewicz image involves the Thorn isomorphism.) 
The definition which follows emphasizes the fibrewise nature of the Euler 
class. 

Definition 4.3 The zero-section of ~ determines, as above, a fibrewise 
pointed map B x So ~ ~jj. Its stable class 

'Y(~) E w~{B x So; ~jj} 

is called the stable cohomotopy Euler class, or simply Euler class, of the vector 
bundle ~. 
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The maps z* and z* in the Gysin sequences (4.2) are thus given by mul­
tiplication by the Euler class 1'(~). 

The basic properties of l' are elementary consequences of the definition. 

Proposition 4.4 (Properties of the Euler class). Let ~ be a vector bundle 
over B. 

(i) Let 0: : B' -+ B be a map from a compact ENR B'. Then 

(ii) Let e be a second vector bundle over B. Then 

(iii) Let a : f}; -+ ~~ be a fibrewise pointed map preserving the zero-section, 
that is, with a(O) = 0 in each fibre. Then 

where [aJ E wO(B) is the stable class defined by a. 

In (iii) we have used the suspension isomorphism (Proposition 3.9) be­
tween w~{~~j ~~} and wO(B) = w~{B x SOj B x SO}. 

The third property has some interesting consequences. The restriction 
ab : ~: -+ ~: of the fibrewise map a to the fibre at b E B is a self-map of a 
sphere and characterized by its degree d E Z. This fibre degree is constant on 
components of Bj if it is constant on B we say that a has fibre degree d. (In 
general, the fibre degree will be an element of HO(Bj Z).) Suppose that this 
is the case. Then, by Proposition 3.15 (applied to a finite complex of which B 
is a retract), x := [aJ - d E wO(B) is nilpotent. Suppose that xN = O. Then, 
since (d -1)-y(x) = -x· 1'(~), we deduce that (d -1)N1'(~) = O. 

Multiplication by (-1) : ~ -+ ~ determines a map (-1)+ : ~~ -+ ~~ with 
fibre degree (-1) if ~ has odd dimension (+ 1 if the dimension is even). So we 
obtain: 

Proposition 4.5 Suppose that dim ~ is odd (or, more generally, that ~ con­
tains a sub-bundle of odd dimension). Then 1'(~) is a 2-primary torsion class. 

Here is another example. 

Example 4.6. Let A be a complex line bundle over B with multiplicative order 
a power of a prime p. Then the Euler class 1'(A) is p-primary torsion. 

Suppose that the pM th tensor power of A is trivial. Write d = pM + 1. 
Then we have an isomorphism 
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Composing this with the tensor power map: 

A -+ A ®d : Z H zd, 

we obtain a fibrewise map A -+ A which compactifies to give a map 
a : XJj -+ At with fibre degree d. The result follows from the discussion above. 

The relative Euler class 

The Euler class is an obstruction to the existence of a nowhere-zero cross­
section. 

Proposition 4.7 Suppose that ~ admits a nowhere-zero cross-section s. Then 
'Y(~) = o. 

Without loss of generality we may take s to be a section of the unit 
sphere-bundle S(~). It is homotopic, by the linear homotopy ts, 0 ~ t ~ 1, 
through sections of D(~) to the zero-section. But s determines the zero map 
B x SO -+ D(~)/BS(~) = ~~. 

To investigate the obstruction to existence of a nowhere-zero section more 
carefully, we introduce the relative Euler class. 

Definition 4.8 Let s be a nowhere-zero section of ~ I A defined over the 
closed sub-ENR A of B. We first replace s by a homotopic section of S(~) 
over A. Then s extends to a section s of D(~) over B. We now follow the 
construction of the Euler class from the zero-section. The map s : B -+ D(~) 
determines a pointed map 

which is zero over A. Its stable class will be called the relative Euler class 

of the nowhere-zero section s over A. This is well-defined, since any two 
extensions 80 and 81 of s are homotopic (as sections extending s) by a linear 
homotopy St = (1 - t)so + tS1. 

From the construction it is evident that 1'(~; s) H 1'(~) under the restric­
tion homomorphism 

W~B,A){B x So; ~~} -+ w~{B x So; ~~}. 

The relative Euler class 1'(~; s) depends only on the homotopy class ofthe 
nowhere-zero section s over A and vanishes, clearly, if s extends to a nowhere­
zero section over B. In a stable range, 1'(~; s) is the precise obstruction to 
extension. 
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Proposition 4.9 Let A be a subcomplex of a finite complex B, and let ~ be 
a real vector bundle of dimension n over B. Suppose that dimB < 2(n - 1). 
Then a nowhere-zero section s of ~ defined over A extends to B if and only 
if the relative Euler class 

vanishes. 

The difference class 

To explain the proof of Proposition 4.9, we introduce the difference class of 
two nowhere-zero sections. 

Definition 4.10 Let So and Sl be nowhere-zero sections of ~ over B coin­
ciding on the sub-ENR A. Consider the pull-back of ~ to B x [0,1] by the 
projection 7r to B. A section s of 7r*~ is defined over B x {O, I} U A x [0,1] 
by So on B x {O}, Sl on B x {I}, and their common value on A x {t}. The 
relative Euler class "y( 7r*~; s) lies in the group 

W?B,A)X([O,l],{O,l}){(B x [0,1]) x So; 7r*~~X[O,11}' 

which we can identify with 

w~,A){B x So; ~~}. 

The element corresponding to "Y(7r*~; s) will be called the difference class 

a(so, sd E w~,A){B x So; ~~}. 

Remark 4.11. The definition can be extended to define the difference class of 
sections So and Sl with a (given) homotopy between their restrictions to A. 

It is immediate from the definition that, if So, Sl and S2 are three sections 
agreeing on A, then 

The difference class is related to the Euler classes in the following way. 

Lemma 4.12 Let So and Sl be nowhere-zero sections of ~ I A over A. Then 
a(so, Sl) maps to "y(~, so) - "y(~, sd under the coboundary map 

wA"l{A x So; (~~)A}~W?B,A){B x So; ~~} 

of the relative exact sequence. 
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Proposition 4.13 Let A be a subcomplex of a finite complex B, and let ~ be 
a real vector bundle of dimension n over B admitting a nowhere-zero section 
so. Then the map 

SI ~ 8(so, SI) 

from the set of homotopy classes of nowhere-zero sections of ~ coinciding with 
So on A to w(i,A){B x So; ~~} is surjective if dimB < 2(n - 1), bijective if 

dimB+l<2(n-l). 

The basic obstruction-theoretic results, Propositions 4.9 and 4.13, are first 
established when B is a disc Dm and A is its bounding sphere sm-l. Both 
then reduce to the suspension theorem. Proposition 4.9 can then be estab­
lished by induction over the cells of B - A. Suppose that A' ~ B is obtained 
by adding a disc D to A: A' = Au D, A' n A = aD. The relative Euler class 
'Y(~ I A'; s), assumed to be zero, corresponds by excision to the obstruction 
'Y(~ I D; s I aD) to extending s over D. Let So be one such extension, and 
consider the exact sequence of the triple (B, A', A): 

w(1f,A){AI x So; (~~)Af} ~ w(i,8D){D x So; (~~)D} 

6 1 
wrB,Af){B x So; ~~} 

1 
wrB,A){B x So; ~~} 

The relative Euler class ,(~, so) is equal to 8(x) for some x. From Proposi­
tion 4.13 for the disc, there is a section SI, agreeing with So on A, such that 
8(80,8d = x. By Lemma 4.12, 'Y(€; 8d = 0 and the induction can proceed. 

The proof of Proposition 4.13 is similar. It is instructive to relate this 
obstruction theory to the stabilization map, a say, 

A section s of S(~) --+ B gives a splitting of the Gysin sequence 

WB1{B x So; ~~} --+ w~{B x So; SW+B}~w~{B xSo; B xSO} = wO(B). 
s. 

Classes in the image of a map to 1 E wO(B); and if So and S1 are two sections 
the difference (so)*(I) - (sd*(I) is (the image of) 8(so, SI). 

An example 

As a generalization of the basic obstruction theory, taking up ideas explored 
in Section 19 of Part I, we establish the following result. 



184 An Introduction to Fibrewise Stable Homotopy Theory 

Proposition 4.14 Let el, ... , er be finite-dimensional real vector bundles 
over a finite complex B and let e = 6 EB ... EB er denote their direct sum. Sup­
pose that dimB < 2(n - 1), where n = dime. Then the following conditions 
are equivalent. 

(i) There is a covering of B by closed sub-ENRs B l , ... , Br such that the 
stable cohomotopy Euler class of the restriction of ei to Bi vanishes: 
'Y(ei IBi) = 0, for 1 ~ i ~ r. 

(ii) The stable cohomotopy Euler class of e is zero: 'Y(e) = o. 
(iii) The vector bundle e admits a nowhere-zero section. 
(iv) There is a covering of B by closed sub-ENRs B l , ... , Br such that ei I Bi 

has a nowhere-zero section for 1 ~ i ~ r. 

The implication (i) ~ (ii) follows from Lemma 3.14 and the multiplica­
tivity of the Euler class (Proposition 4.4(ii)). Condition (ii) follows from (iii), 
and (i) from (iv), since the vanishing of the Euler class is necessary for the 
existence of a nowhere-zero section. 

The conditions (iii) and (iv) are easily seen to be equivalent. If s = 
(S1, ... ,sr) is a nowhere-zero section of e, then the open sets Ui ~ B where 
si(b) ¥ 0 cover B and, as the base is assumed to be a finite complex, we can 
find a covering by closed sub-ENRs Bi with Bi ~ Ui. 

Finally, since we are in the stable range, (ii) implies (iii). 

Fibrewise coHopf structures on sphere-bundles 

In this paragraph, which is based on the work of Sunderland [130), we sketch 
an application of the methods of this section to the existence and classifica­
tion of fibrewise coHopf structures on sphere-bundles. Recall that a fibrewise 
coHopf structure on the sphere-bundle e~ is a lifting JL of the diagonal .1 in 
the diagram: 

e~VBe~ ~ e~XBe~ ~e~t\Be~ =(eEBe)~ 

1.1 
~~ 

The horizontal line is a cofibre sequence over B. The composition map 
7r 0 .1 : ~~ -t (~EB ~)t is the fibrewise one-point compactification of the diag­
onal vector bundle inclusion ~ -t ~ EB ~ and is clearly fibrewise homotopic to 
the fibrewise one-point compactification of the inclusion of the first factor. 
So the stable class 

[7r 0.1) E w~{~~; ~~ t\B ~~} 

is the fibrewise suspension 1 t\ 'Y(~) of the Euler class. 
We have shown: 
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Proposition 4.15 The vanishing of the stable cohomotopy Euler class 'Y(~) 
is a necessary condition for ~~ to admit a fibrewise coHopf structure 

In a stable range we have the following more precise result. 

Proposition 4.16 Let ~ be an n-dimensional real vector bundle over a finite 
complex B. 
(a) Suppose that dimB < 2n - 2. Then the following are equivalent. 

(i) The stable cohomotopy Euler class 'Y(~) is zero. 
(ii) The sphere-bundle S(~) -+ B admits a section. 
(iii) The pointed sphere-bundle ~~ admits a fibrewise coHopf structure. 

(b) Suppose that dim B < 2n - 4 and that 'Y(~) = O. Then there is a 1-1 cor­
respondence between the set of homotopy classes of sections of S(~) and 
that of fibrewise coHopf structures on ~~. The group WB1{B x So; ~~} 
acts transitively and /reely on both sets. 

For (a), note that if S(~) admits a section, then ~~ is a fibrewise suspen­
sion EBTJ~, where TJ is the sub-bundle of ~ orthogonal to the section, and so 
has a fibrewise coHopf structure. Proposition 4.9 completes the proof. 

For (b), we use the Serre exact sequence (2.19). Since the fibre of ~~VB~~ 
is (n - I)-connected and that of (~EB ~)~ is (2n - I)-connected, in the range 
dim B < 2n - 4, we get an exact sequence of groups: 

1I'B1[~~; ~~ VB ~~] -+ 1I'B1 [~~; ~~ XB ~~] -+ 1I'B1[~~; (~EB ~)~] 

-+ 11'~[~~; ~~ VB ~~] -+ 11'~[~~; ~~ XB ~~] -+ 11'~[~~; (~EB ~)~]. 

Now the first homomorphism (of Abelian groups) is a split epimorphism, for 
the inclusion nB(~~ VB~~) -+ nB(~~ XB~~) is a fibrewise homotopy retrac­
tion. It follows that the group 1I'B1[~~; (~EB ~)~] acts freely and transitively 
on the set of elements lifting Ll E 11'~ [~~; ~~ X B ~~]. The rest of the argument 
is straightforward. 
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5 Fibrewise Euclidean and Absolute Neighbourhood 
Retracts 

In this somewhat technical section we look at the theory of fibrewise ENRs 
and ANRs. The results are mostly due to Dold [47]. Our restriction to base 
spaces which are ENRs allows us to simplify the exposition at several points. 
We begin with a discussion of some of the properties of ENRs and ANRs 
which we have already used in earlier sections. 

Properties of ENRs 

The results which follow are formulated in the notation which we have re­
served for base spaces, but are, of course, not restricted to that context. 

We look first at uniform local contractibility. 

Lemma 5.1 Let B be an ENR. Then there is an open neighbourhood W 
of the diagonal L1(B) in B x B and a homotopy Ht : W ~ B such that 
Ho(a, b) = a, H1(a, b) = band Ht(b, b) = b, for all (a, b) E W, 0 S; t S; 1. 

Indeed, if we embed B as a retract of an open subset U of a Euclidean 
space E: i : B <-t U, r : U ~ B, r 0 i = 1B, then we can define H by 
Ht(a, b) = r((l - t)i(a) + ti(b)) on the subset W consisting of those points 
(a, b) such that the (compact) line segment joining i(a) to i(b) lies inside U. 

One can show by an induction on cells that every finite complex is a 
compact ENR. In the opposite direction, it follows easily from the definition 
that a compact ENR is a retract of a finite polyhedron. 

Lemma 5.2 Let (B,A) be a compact ENR pair. Then there is a finite 
polyhedral pair (B', A') together with maps £ : (B, A) ~ (B', A') and 
p: (B', A') ~ (B,A) such that po £ = 1: (B,A) ~ (B,A). 

Indeed, one can embed B as a retract of an open subspace U of some 
Euclidean space ]Rk+l in such a way that A is the intersection of B with 
]Rk. Choose f > 0 so small that no cube of side f in ]Rk+l intersects both 
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B and the complement of U. Take B' to be the union of all cubes of side 
f with vertices in (Zf)k+l which are contained in U, and take A' to be its 
intersection with IRk. 

It is a theorem of West [133] that every compact ENR B (and, more 
generally, any compact ANR) is homotopy equivalent to a finite complex. 
More precisely, if the homology of B vanishes above dimension m, then B 
is homotopy equivalent to a finite complex of dimension less than or equal 
to max{m,3}. (See, for example, the exposition [116].) The proof when B 
is simply connected is relatively elementary; hence, so too is the result that 
a pointed compact ENR is equivalent in the stable homotopy category to a 
(desuspension of a) finite complex. 

While the theory to be explored in this chapter fits most naturally into 
the ENR setting, these remarks indicate that for most purposes we can work 
with finite complexes rather than ENRs. The topology of finite complexes 
(including finite polyhedra and compact smooth manifolds) has an important 
feature which is not enjoyed by general ENRs. (See Chapter VI, Section 4, 
of [18].) 

Proposition 5.3 Let B be a finite complex. Suppose that K is a compact 
subspace of an open subset U in B. Then there is a compact sub-ENR A in 
B such that K ~ A ~ U. 

For a finite polyhedron B, one can find such a sub-ENR A by subdivision. 
A similar argument works for a general complex. For a manifold B, one can 
construct A as a submanifold ¢-l[c, 00) of codimension zero, where c is a 
regular value, 0 < c < 1, of a smooth function ¢ : B --+ IR which is 1 on K 
and 0 outside U. 

ANRs 

We shall say that a space M is an absolute neighbourhood retract (ANR) if 
it can be embedded as a retract of an open subspace U of a normed (real) 
vector space E: i : M --+ U, r : U --+ M, with r 0 i = 1M. (The absolute neigh­
bourhood retracts which we are considering are, technically, the metrisable 
ANRs.) 

The proof above for ENRs extends immediately to show that an ANR is 
uniformly locally contractible. 

Function spaces 

Lemma 5.4 Let P be a compact Hausdorff space and Q be an ANR. Then 
the space map(P, Q) is an ANR. 

Choose an embedding Q ~ U of Q as a retract, r : U --+ Q, of an 
open subset of a normed vector space E. The compact-open topology on 
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map(P, Q) coincides with its topology as a subspace of the normed vector 
space map(P, E), with the supremum norm. The subspace map(P, U) is open, 
and it retracts onto map(P, Q) by: f ~ r 0 f. 

Fibrewise ENRs and ANRs 

Definition 5.5 A fibrewise space Mover B is said to be a fibrewise ANR 
(Absolute Neighbourhood Retract) if there is an open covering U of Band, 
for each U E U, a normed (real) vector space Eu, an open subspace Wu of 
UxEu,andfibrewisemapsiu: Mu ~ Wu,ru: Wu ~ Mu,withruoiu = l. 
IT each normed vector space Eu may be taken to be finite-dimensional we 
say that M is a fibrewise ENR (Euclidean Neighbourhood Retract). 

As a basic example of a fibrewise ENR we have a finite-dimensional real 
vector bundle over B. (Our definition is slightly more general than that in 
[47]. The vector bundle over B = N with fibre JRn at n is not an ENRB in 
Dold's sense.) A bundle of normed vector spaces is a fibrewise ANR. More 
generally, a fibre bundle whose fibres are ANRs (or ENRs) is a fibrewise ANR 
(or ENR). 

It is immediate from the definition that, if Ct : B' ~ B is a map of ENRs 
and M ~ B is a fibrewise ANR (or ENR), then the pull-back Ct* M ~ B' 
is a fibrewise ANR (or ENR, respectively). In particular, each fibre Mb of a 
fibrewise ANR (or ENR) is an ANR (or ENR). 

Several further properties are readily checked. An open subspace W ~ M 
of a fibrewise ANR (or ENR) over B is itself a fibrewise ANR (or ENR). The 
product M XB N ~ B of two fibrewise ANRs (or ENRs) M and N over 
B is a fibrewise ANR (or ENR). A fibrewise retract of a fibrewise ANR (or 
ENR) is a fibrewise ANR (or ENR). (We say that M is a fibrewise retract 
of N if there exist fibrewise maps i : M ~ N and r : N ~ M such that 
roi=l:M~M.) 

Lemma 5.6 Let M be a fibrewise ANR over B. Then there is a fibrewise 
embedding M ~ B x E as a closed subspace of a trivial vector bundle with 
fibre some normed vector space E. If M is a fibrewise ENR and B is compact, 
then E may be taken to be finite-dimensional. 

We use the notation from Definition 5.5. When B is compact we can take 
the open covering U to be finite. (It can always be taken to be countable.) 
Let (¢u) be a partition of unity subordinate to the covering. 

We begin by embedding Wu as a closed subspace of U x (JREBEu). Choose 
a metric d on U x Eu and define p : Wu ~ [0, 00) to be the reciprocal of the 
distance to the complement of Wu: p(x) = sup{l/d(x, y) I y ¢ Wu} (zero 
if the complement is empty). Then Wu ~ U x (JR EB Eu): x ~ (b, (p(x) , x» 
in the fibre at b E B is the required closed embedding. Composing this map 
with iu, we obtain a fibrewise closed embedding 
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i~ : Mu -t U x E~, 

where Eh = IR EB Eu· 
The maps i~ are assembled using the partition of unity to construct the 

required fibrewise closed embedding i : M -t B x E, where 

E:= EBEh 
UEU 

(with the £i-norm: lI(vu)1I = EUEU IIvulD. In the fibre at b, i is the (effec­
tively finite) sum EUEU ¢u(b)i~. 

It follows that the total space M of a fibrewise ANR is metrisable. 
At the root of the theory of ANRs is the extension of Tietze's theorem to 

functions with values in a normed vector space. See [67J. 

Proposition 5.7 Let P be a closed subspace of a metric space Q, and let 
E be a normed vector space. Then any map f : P -t E extends to a map 
9 : Q -t E: g(x) = f(x) for x E P. 

We use this to show: 

Lemma 5.8 Let M -t B be a fibrewise ANR embedded as a closed subspace 
M ~ B x E, where E is a normed vector space. Then there is a fibrewise 
retraction r : W -t M of an open neighbourhood W of M onto M. 

Again we use the notation of Definition 5.5, and assume that U is finite or 
countable. Without loss of generality we can assume that U is locally finite, 
that is, that any point is contained in a neighbourhood which meets only a 
finite number of sets of the covering, and that there exist functions 

1/Ju : B -t [0, 1J such that 1/Ji/1 (0, 1] ~ U 

with the property that, for each b E B, there is a U E U with 1/Ju(b) = 1. 
Consider the closed subspace Mu of the metric space U x E. By Tietze's 

theorem, there is a map fu : U x E -t Eu such that iu(x) = (b, fu(x)) for 
all x E Mb , bE U: 

Mu ~ Wu~UxEu 

UxE -----t 
fu 

1 
Eu 

Define W& ~ B x E to be the set of points x = (b, v) such that 
(b, fu(b, v)) E Wu where 1/Ju(b) > 0. It is an open subset of B x E con­
taining M. We define a map qu : W& -t B x E by 

{ (b, v) if 1/Ju(b) = 0, 
qu(b, v):= 1/J(b )ru(b, fu(b, v)) + (1 -1/J(b)) (b, v) if 1/Ju(b) > 0. 
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Notice that qu is the identity on M and maps into M in those fibres where 
1jJu(b) = l. 

Now we enumerate the elements of U as U1 , U2 , •.• and make the abbre-
viations WI = WUi ' qi = qUi. The subset 

W:= {x E B x E I x E W{, q1(X) E W~, q2(q1(X)) E W~, . .. } 

is open in B x E, by the local finiteness condition, and T : = ... 0 S2 0 Sl : W -t 
M is a retraction onto M. 

Corollary 5.9 Let M -t B be a fibrewise ANR. Then the total space M is 
an ANR. If M -t B is a fibrewise ENR over a compact base, then M is an 
ENR. 

For if M is a retract of an open subset of B x E and B is a retract of an 
open subset of a finite-dimensional vector space E /, then M is a retract of 
an open subset of E' EB E. 

As an immediate generalization of Lemma 5.8 we obtain: 

Proposition 5.10 Let M -t B be a closed fibrewise sub-ANR of a fibrewise 
ANR N -t B. Then M is a fibrewise retract of an open subset of N, that 
is, there exist an open neighbourhood W of M in N and a fibrewise map 
T : W -t M such that r(x) = x for all x E M. 

We can assume that N is a closed subspace of B x E for some normed 
vector space E, by Lemma 5.6. This embeds M as a closed subspace of B x E. 
Apply Lemma 5.8, and then intersect with N. 

In fact we can do better: we can find an open neighbourhood W and a 
homotopy Tt : W -t N, 0 ~ t ~ 1, with ro(x) = x for x E W, rt(x) = x for 
x EM, and T1 (W) = M. For let W' be an open neighbourhood of M in N 
and r : W' -t M a retraction, and let W" be an open neighbourhood of N 
in B x E and s : W" -t N a retraction. Then we can define 

W := {x E W' I (1 - t)x + tr(x) E W" for all t E [0, I]} 

and Tt(X) := s((1 - t)x + tr(x)). 
Choose a function 1jJ : N -t [0,1] with zero-set 1jJ-1(0) equal to M and 

taking the value 1 on a neighbourhood of the complement N - W. Then we 
can give a retraction q : N x [0, 1]-t N x {OJ u M x [0,1] by 

{ 
(x,O) 

q(x, t):= (r(2,p(Z)-t)/(2-t) (x), 0) 
(ro(x), t - 21jJ(x)) 

We have proved: 

for x ¢ W, 
for x E W, t < 21jJ(x), 
for x E W, t ~ 21jJ(x). 

Proposition 5.11 Let M -t B be a closed fibrewise sub-ANR of a fibrewise 
ANR N -t B. Then the inclusion M y N is a fibrewise cofibration over B. 
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Remark 5.12. The converse of thi~ proposition is also true. Let N be a fibre­
wise ANR and let M be a closed subspace such that the inclusion M y N 
is a fibrewise cofibration. Then M is a fibrewise ANR. 

For let q : N x [0,1] -+ N x {OJ U M x [0,1] be a fibrewise retraction. 
Set W = {x E N I q(x,l) E M x (0, In and define r : W -+ M by taking 
r(x) to be the first factor of q(x, 1). Thus, M is a fibrewise retract of an open 
subspace of a fibrewise ANR, and hence a fibrewise ANR. 

It follows that a fibrewise pointed space X -+ B which is a fibrewise 
ANR is automatically well-pointed, provided that the inclusion B -+ X of 
the basepoints is closed. For the identity map B -+ B is clearly a fibrewise 
ENR. 

Local characterization 

The arguments used in Lemma 5.6 to embed a fibrewise ANR Mover B as a 
closed subspace of a trivial vector bundle B x E and in Lemma 5.8 to show 
that M is then a fibrewise retract of an open neighbourhood require only 
minor modification to establish: 

Proposition 5.13 Let M -+ B be a fibrewise space, where the topology of 
M is metrisable. Suppose that each point of M has an open neighbourhood 
which is a fibrewise ANR over B. Then M is a fibrewise ANR. 

In other words, subject to the metrisability condition which guarantees 
the existence of partitions of unity, M is a fibrewise ANR if each point of 
M is contained in an open subspace which is a fibrewise retract of an open 
subspace of some trivial vector bundle B x E. When we consider fibrewise 
manifolds in Section 11 we shall take a local property of this type as our 
starting point. 

Extension properties 

Fibrewise ANRs inherit the following extension property from normed vector 
spaces. 

Proposition 5.14 Let M and N be fibrewise spaces over B, with the total 
space M metrisable and N a fibrewise ANR. Let f : C -+ N be a fibrewise 
map defined on a closed subspace C of M. Then f extends to a fibrewise map 
on an open neighbourhood of C in M. If N is a vector bundle (of normed 
vector spaces), then f extends to the whole of M. 

For let i : N -+ W be a fibrewise embedding of N in an open subset W 
of a trivial vector bundle B x E and r : W -+ N be a retraction. By Tietze's 
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theorem i 0 I, defined on C, extends to a fibrewise map g : M ~ B x E. On 
g-I(W), the map r 0 g extends I. 

When N is a vector bundle extensions of I defined over the open sets of 
a covering U of B, such that N is trivial over each U E U, can be pieced 
together using a partition of unity. 

The germ of the extension of I in Proposition 5.14 is unique up to homo­
topy. 

Proposition 5.15 Let M and N be fibrewise spaces over B with the total 
space M metrisable and N a fibrewise ANR. Let Vo and VI be open neigh­
bourhoods of a closed set C in M, and let fo : Vo ~ N and It : VI ~ N be 
fibrewise maps which coincide on C. Then there is an open neighbourhood U 
of C in Vo n VI such that 10 I U and It I U are homotopic through fibrewise 
maps agreeing on C. 

This is a consequence of Proposition 5.14 applied to the closed subspace 
D x {O, I} U ex [0, 1] ~ M x [0,1] for some closed neighbourhood D of C 
in Vo n Vi, But it seems more illuminating to give a direct proof. For this, 
choose i and r as in the proof of Proposition 5.14, put gt = (1 - t)i/o + tilt, ° ~ t ~ 1, on Vo n VI, and set 

U := {x E Vo n VI I gt(x) E W for all t E [0, I]}. 

Then It := rgt is the homotopy sought. 

Uniform local contractibility 

We have already made use of the uniform local contractibility of ENR base 
spaces. Fibrewise ANRs are fibrewise uniformly local contractible in the fol­
lowing sense. 

Definition 5.16 A fibrewise space Mover B is said to be fibrewise uniformly 
locally contractible if there is an open neighbourhood W of the diagonal in 
M XB M and a fibrewise homotopy Ht : W ~ M, ° ~ t ~ 1, such that 
Ho(x,y) = x, HI(x,y) = y and Ht(x,x) = x, for x, y E Mb. 

Proposition 5.17 Let M ~ B be a fibrewise ANR. Then M is fibrewise 
uniformly locally contractible. 

The proof that we sketched for Lemma 5.1 easily adapts. Choose a fibre­
wise embedding i : M ~ V and retraction r : V ~ M, where V is an open 
subset of B x E for some normed vector space E. Let 

W := {(x, y) E M XB M I (1 - t)i(x) + ti(y) E V for all t E [0, I]}, 

and define Ht(x,y) to be r«1 - t)i(x) + ti(y». 
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Fibrewise compactness 

Fibrewise compactness has homotopy-theoretic consequences. 

Lemma 5.18 Let M ~ B be a fibrewise compact ANR over B. Then, for 
each point b E B there is an open neighbourhood U of b, a normed real vector 
space E, an open subspace V of E, and fibrewise maps 

Mu~UxV~Mu 

with r 0 i = 1. 

We may assume that M is afibrewise retract of an open subset W of BxE. 
Let b E B. By compactness, there is an open neighbourhood U of b and open 
subset V of E such that Mu ~ U x V ~ W. (See Part I, Proposition 1.14.) 

The lemma says that Mu is a fibrewise retract of a trivial bundle. It is, 
therefore, a fibration. But any fibrewise retract of a fibration is a fibration. 
Since the property of being a fibration is local, we have proved: 

Proposition 5.19 Let M ~ B be a fibrewise compact ANR over B. Then 
M ~ B has the homotopy lifting property and is, therefore, a homotopy fibre 
bundle. 

In the opposite direction we have: 

Proposition 5.20 Let M ~ B be a fibrewise space over B having the homo­
topy lifting property. Suppose that the space M is an ANR (or ENR). Then 
M ~ B is a fibrewise ANR (or ENR). 

We have an embedding i : M ~ V and retraction r : V ~ M, where V 
is an open subspace of a normed vector space E, finite-dimensional if M is 
an ENR. The uniform local contractibility of the base gives us a homotopy 
H t : U ~ B, defined on an open neighbourhood U of the diagonal in B x B, 
with Ho(a, b) = b, Hl (a, b) = a and Ht(b, b) = b, for a, bE B, ° ~ t ~ 1. 

Choose a function 'IjJ : U ~ [0, I} with zero-set the diagonal ..::l(B). (So 
'IjJ could be a distance function, truncated at 1.) Now define a homotopy 
at: U ~ B by 

{ 
b if 'IjJ(a, b) = 0, 

at(a, b):= HtN(a,b) (a, b) for t ~ 'IjJ(a, b), if 'IjJ(a, b) > 0, 
Hl (a, b) = b for t ~ 'IjJ(a, b), if 'IjJ(a, b) > o. 

Thus, ao(a, b) = a and at(a, b) = b for t ~ 'IjJ(a, b). 
Consider the diagram: 
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M (P,i), B x V :> W ~ M 

1 1 
B --t BxB :> U --t B 

L1 O<t 

in which the projection B x V -t B x B is the map (b,v) f-t (b,p(r(v))), W 
is the inverse image of U, and the map It is yet to be defined. The retraction 
r gives a lift fo of 0:0: (b, v) f-t r(v) EM. Now the homotopy lifting property 
provides the homotopy It-

The map q : B x V -t M given by It at the value t determined by 'IjJ: 

q(b,v) = f1/J(b,pr(v))(b,v), 

is a fibrewise retraction of the inclusion of M in B x V over B. 

Fibrewise mapping-spaces 

The mapping-space construction that we have already noted, in Lemma 5.4, 
extends with only minor modification to the fibrewise set-up. 

Lemma 5.21 Let M -t B be a fibre bundle with compact Hausdorff fi­
bre and let N -t B be a fibrewise ANR. Then the fibrewise mapping-space 
mapB(M, N) -t B is a fibrewise ANR over B. 

For if we embed N as a fibrewise retract of an open subspace W of B x E 
for some normed vector space E, then mapB(M, N) will be a retract of the 
open subspace mapB(M, W) of the vector bundle mapB(M, B x E). 

Corollary 5.22 Suppose that M -t B is a fibrewise compact ENR and N -t 

B is a fibrewise ANR. Then mapB(M, N) -t B is a fibrewise ANR. 

To deduce the corollary, we see from Lemma 5.18, using the fact that E 
there can be chosen to be finite-dimensional for a fibrewise ENR, that M 
is locally a fibrewise retract of a fibre bundle with compact Hausdorff fibre. 
Hence mapB(M,N) is a fibrewise retract of a fibrewise ANR, and so itself a 
fibrewise ANR. 

A homotopy construction 

The construction which we describe next will be needed in the discussion 
(following Dold and Puppe [49]) of duality theory for fibrewise ENRs. 

Definition 5.23 Let M be a fibrewise sub-ENR of a fibrewise ENR N over 
B. Suppose that M is fibrewise compact, and hence closed in N. Then we 
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define CB(N, N - M) to be thE) fibrewise mapping cone of the inclusion 
(N - M)+B -+ N+B. 

Because N - M is an open subspace of N, the fibrewise topological space 
CB(N,N - M) is not particularly pleasant; we are interested more in its 
fibrewise homotopy type. 

Lemma 5.24 Let p : N -+ [0,1] be a continuous function which takes the 
value 1 on a neighbourhood of M and has fibrewise compact support (that 
is, vanishes outside a fibrewise compact subspace). Then CB(N,N - M) is 
fibrewise pointed homotopy equivalent to the quotient of 

(B x {O}) U ({(x,t) E (N - M) x [0,1]1 t ~ p(x)} U (N x {I})) 

by the identification of (x, 0) with the basepoint (p(x) , 0) in the fibre. 

Indeed, the space described is clearly a fibrewise deformation retract of 
CB(N,N - M): retract (x,t) to (x,min{t,p(x)}). 

Remark 5.25. The map N -+ CB(N,N - M) taking x E N to (x,p(x)) is 
trivial outside a fibrewise compact subspace and so extends to the fibrewise 
one-point compactification and determines a homotopy class 

which is easily seen to be independent of the choice of p. 

It follows from this description that the fibrewise homotopy type of 
CB(N, N - M) is determined in a neighbourhood of M. 

Proposition 5.26 In the notation of Definition 5.23, let W be an open neigh­
bourhood of M in N. Then the map 

induced by the inclusions is a fibrewise pointed homotopy equivalence. 

This follows immediately from Lemma 5.24, by choosing a function p 
vanishing outside a compact subset of W. 

In practice one can often find an open neighbourhood W such that the 
closed subspace N - W is a deformation retract of the open subspace N - M. 
(When M and N are fibrewise manifolds, one can take W to be a tubular 
neighbourhood; see Section 11.) 

Proposition 5.27 With the notation of Definition 5.23, suppose that the clo­
sure of W in N is fibrewise compact and that there is a fibrewise deformation 
retraction of N - M onto N - W, that is, a homotopy rt : N - M -+ N - M, 
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with TO = 1, Tt(X) = x for x E N - W, Tl(N - M) = N - W. Then 
CB(N, N - M) is fibrewise pointed homotopy equivalent to the fibrewise one­
point compactification W:. 

The retraction Tl gives a fibrewise pointed homotopy equivalence from 
CB(N, N - M) to the mapping cone of the inclusion (N - W)+B ~ N+B. 
But N - W is a closed fibrewise sub-ENR of N. Hence the inclusion is a 
fibrewise cofibration and the fibrewise mapping cone is fibrewise homotopy 
equivalent to the topological quotient N/B(N - W). By Proposition 10.2 in 
Part I, the quotient W /B(W - W) is homeomorphic to the fibrewise one-point 
compactification of W. 

Remark 5.28. Composition with the map N: ~ CB(N,N - M) of Re­
mark 5.25: 

is the Pontrjagin-Thorn construction which collapses the complement of the 
open subspace W of N to the basepoint at infinity (in each fibre). 

Example 5.29. Let ~ be a finite-dimensional real vector bundle over B with 
a Euclidean metric. We take N to be ~, M to be the zero-section B x ° and 
W to be the interior of the closed unit ball D(~). Then we have a fibrewise 
pointed homotopy equivalence: 

We note, finally, that the construction behaves well under smash prod­
ucts. 

Lemma 5.30 Let M ~ Nand M' ~ N' be inclusions of fibrewise ENRs 
over B, with M and M' fibrewise compact. Then there is a natural fibrewise 
pointed homotopy equivalence: 

To see why this is true, we introduce the abbreviations W and W' for the 
open subspaces (N - M) XB N' and N XB (N' - M') of N XB N'. It is not 
difficult to see that the projection map 

(W x {OJ) u ((Wn W') x [0, I])U (W' x {I}) ~ WUW' 

is a fibrewise homotopy equivalence. Indeed, since the spaces are metrisable 
we can choose continuous functions "p : N ~ [0,1] and "p' : N' ~ [0,1] with 
zero-sets M and M' respectively. Let cP : W U W' ~ [0, 1] be the function: 



198 An Introduction to Fibrewise Stable Homotopy Theory 

¢(x,x') = "p'(x')/('l/J(x) + 'l/J'(x')), 

which takes the value 0 on (N -M)XBM', and 1 on MXB(N'-M'). Then the 
map (x, x') 1-4 (x, x', ¢(x, x')) is an inverse fibrewise homotopy equivalence. 

Now, by definition CB(N XB N', (N xBN') - (M XB M')) is the fibrewise 
mapping cone of the inclusion (W U W')+B -t (N xB N')+B. It is, therefore, 
fibrewise pointed homotopy equivalent to the fibrewise mapping cone of the 
induced map 

((W x {O}) U ((W n W') x [0,1]) U (W' X {1}))+B -t (N XB N')+B. 

This fibrewise space is actually homeomorphic to the fibrewise smash product 
CB(N,N - M) I\B CB(N',N' - M'). 

Change of base: the direct image 

We shall sometimes want to use the fibrewise ENR condition for a map 
a : B' -t B between ENRs B' and B, both playing the role of base spaces. 

Definition 5.31 Given a fibrewise space p : M -t B' over B' we shall write 
a*M -t B for the fibrewise space a 0 p : M -t B over B. So as a space a*M 
is just M. We shall refer to a* M as the direct image of M. 

It is straightforward to check: 

Lemma 5.32 Let a : B' -t B be a fibrewise ENR, where Band B' are 
both ENRs, and let M -t B' be a fibrewise ANR (or ENR) over B'. Then 
a* M -t B is a fibrewise ANR (or ENR) over B. 

As a special case, from a different point of view, we have: 

Lemma 5.33 Let a : B' -t Band !3 : B" -t B' be fibrewise ENRs. Then 
the composition a 0 !3 : B" -t B is a fibrewise ENR. 

The direct image construction a* is evidently functorial. Given a fibrewise 
map! : M -t N over B', a*! : a.M -t a*N is just the map! considered 
as a fibrewise map over B. The terminology 'direct image' (which is not 
well established) for this construct is to some extent justified by its adjoint 
relationship with the pull-back, which is sometimes called the 'inverse image'. 

Lemma 5.34 The functor a* is left adjoint to the pull-back a·. To be pre­
cise, let M -t B' and N -t B be fibrewise spaces. Then there is a natural 
equivalence between fibrewise maps a.M -t N over Band fibrewise maps 
M -t a*N over B'. 
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We shall normally be concerned with the situation in which 0: : B' --+ B 
is fibrewise compact. This means that the map 0: is proper and also, by 
Proposition 5.19, a fibration, so locally homotopy trivial. 

Lemma 5.35 Let 0: : B' --+ B be a fibrewise compact ENR. Suppose that 
M --+ B' is a homotopy fibre bundle over B'. Then o:.M --+ B is a homotopy 
fibre bundle over B. 

This follows from the fact that a composition of fibrations is a fibration, 
but it can also be seen in terms of local homotopy trivializations and this is 
the approach that is needed in the pointed case which we look at next. 

Definition 5.36 Let 0: : B' --+ B be a fibrewise compact ENR. Given a 
fibrewise pointed space X --+ B' over B', we define the direct image o:.x --+ B 
to be the fibrewise pointed space 

o:.X := X/BB' 

over B constructed by collapsing the basepoints B' ~ X to B. Thus o:.X is 
the quotient of XuB by the equivalence relation which identifies b' E B' ~ X 
with o:(b') E B. The construction is functorial. To a fibrewise pointed map 
1: X --+ Y over B' we associate a fibrewise pointed map 0:.1 : o:.X --+ o:.Y 
over B' by passage to quotients. 

Notice that, since X in the definition is fibrewise homotopy well-pointed, 
the inclusion B' ~ X over B is a fibrewise homotopy-cofibration. (See Sec­
tions 4 and 16 of Part I.) So o:.X is, up to homotopy, the fibrewise (unre­
duced) mapping cone, that is, the union of X and the fibrewise cone on B'. 

Again in the pointed category the direct image is left adjoint to the pull­
back. We formulate the property in the homotopy category as 

Proposition 5.37 Let X --+ B' and Y --+ B be fibrewise pointed spaces over 
B' and B respectively. Then there is a natural equivalence: 

1T~/[X; o:·Yj-=--+1T~[O:.X; Yj. 

There is a corresponding stable result; we shall make use of it on several 
occasions. A special case has appeared already, in Proposition 3.4. 

Remark 5.38. It follows formally from the adjoint property that, if X --+ B' 
is a fibrewise coHopf space over B', then o:.X --+ B is a fibrewise coHopf 
space over B. 

As we have already intimated, the construction remains within the cate­
gory of pointed homotopy fibre bundles. 
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Lemma 5.39 Let a : B' ~ B be a fibrewise compact ENR. Suppose that 
X ~ B' is a pointed homotopy fibre bundle over B'. Then a*X ~ B is a 
pointed homotopy fibre bundle over B. 

Remark 5.40. The pull-back and direct image correspond algebraically to 
extension and restriction of scalars. Suppose briefly that B' and B are com­
pact and that X and Y are compact Hausdorff fibrewise pointed spaces over 
B' and B, respectively. Let C(P) for a compact Hausdorff space P denote 
the commutative C*-algebra of complex-valued continuous functions on P, 
and let C(P, Q) for a closed subspace Q be the ideal of functions which are 
zero on Q. A map a : B' ~ B determines a C* -algebra homomorphism 
a* : C(B) ~ C(B'). The projection Y ~ B makes C(Y, B) an algebra (with­
out identity) over C(B). 

Now the C*-algebra of the fibrewise pointed space a*Y is the (appropri­
ately completed) tensor product 

C(a*Y, B') = C(B') ®C(B) C(Y, B) 

obtained by extension of scalars, and the C*-algebra of a*X is just 

C(a*X, B) = C(X, B') 

considered as a C(B)-algebra by restriction of scalars. 

The left adjoint of the pull-back arises naturally in the stable theory. We 
shall not need the homotopy-theoretic right adjoint, which is constructed as 
a fibrewise mapping-space, but include a brief description in the interests of 
completeness. 

The right adjoint of the pull-back 

Let a : B' ~ B again be a fibrewise compact ENR, and let Y ~ B' be a 
fibrewise pointed space over B'. We want to construct a fibrewise pointed 
space *aY ~ B over B such that is a natural equivalence 

7r~' [a* X; Yj ~ 7r~ [X; *aYj 

for any fibrewise pointed space X ~ B over B. 
The fibre of *aY at b E B is defined to be the space of sections 

r(a-1(b); Y I a-1(b)) of Y restricted to the fibre of B' at b. The space is 
topologized as a subspace of the fibrewise mapping-space mapB(B', Y). In­
deed, *aY is the inverse image of B x {1} in the sequence: 

(5.41) 

(We are using 1 here for the identity map on a fibre of B' over B.) This 
sequence is a fibrewise fibration, and *aY is a fibrewise fibre; see Sections 5 
and 8 of Part 1. 
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As a dual of Remark 5.38 we note that the right adjoint .0( sends fibre­
wise Hopf spaces to fibrewise Hopf spaces. This generalizes the elementary 
observation that the space of sections of a fibrewise Hopf space is a Hopf 
space. 

6 Lefschetz fixed-point theory for fibrewise ENRs 

In this section we present Dold's version of fixed-point theory for fibrewise 
ENRs and in the next we shall look more generally at the fixed-point theory 
for fibrewise ANRs. The primary sources are the two papers [47] and [48] of 
Dold. See also Ulrich's account [132] of the equivariant fibrewise theory. The 
definitive account of the classical theory on which the fibrewise generalization 
is based is in [46]. 

The Lefschetz-Hopf fixed-point index 

We are concerned with the following situation. Let U be an open subset of 
a fibrewise ENR Mover B and let f : U -+ M be a fibrewise map. The 
fixed-point set of f is the closed subset 

Fix(f) := {x E U I f(x) = x} 

of U. We say that the map f is compactly fixed if its fixed-point set is compact. 
(Note the stipulation that Fix(f) be compact as a space, which is stronger, 
when B is not compact, than requiring that Fix(f) -+ B be fibrewise com­
pact.) 

The primary Lefschetz-Hopf fixed-point index of such a compactly fixed 
map f is a fibrewise stable map B x SO -+ U+B, with compact supports. 

In defining the index we begin with the case in which M is a trivial vector 
bundle B x E, where E is a finite-dimensional real normed vector space. 
For the moment we assume that B is compact. We choose, first, an open 
neighbourhood V of Fix(f) in B x E such that V is compact and contained 
in U, and then a real number E > 0 so small that IIf(x) - xII ~ E for all 
x E V - V. (To be precise, the norm and the difference are interpreted on 
the second component.) 

Now let 
q : (B x E)~ -+ (B x E)~ I\B U+B 

be the fibrewise map defined on the fibrewise one-point compactification of 
B xEby 

(x) ._ {* (the basepoint) if x ¢ V, 
q .- [c(x - f(x)),x] if x E V, 

where c : E -+ E+ is given by 
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(6.1) 

(Thus c maps the open ball of radius f, centre 0, in E homeomorphically onto 
E and maps the complement to infinity.) The homotopy class of c (or, more 
precisely, of its extension to a pointed map E+ ---t E+), and so of q, is clearly 
independent of the choice of f. It is not difficult to see that the fibrewise 
homotopy class of q does not depend on the choice of V. For let V' ~ V be 
another open neighbourhood of Fix(f). Choose f such that IIf(x) - xII ~ f 

for all x E V - V'. Then the constructions using V and V' produce the same 
result. 

The stable homotopy class of q is the Lefschetz-Hopf fixed-point index 

We shall also need a relative version. Suppose that A is a closed sub-ENR 
of B and that f has no fixed-points over A: Fix(fA) = 0. Then the open 
neighbourhood V used in the construction of the index can be chosen so that 
V lies entirely over the complement of A. The map q is zero over A and 
defines the relative index 

Similar considerations apply when B is possibly non-compact. The com­
pact set V projects onto a compact subset of B. The map q is zero outside 
this compact set and defines the index with compact supports 

- 0 0 cLB(f, U) E cWB{B x S ; U+B}' 

We turn now to the general case, assuming that B is compact and that A 
is a closed sub-ENR. The modifications required for a locally compact base 
and compact supports are straightforward. Let U be an open subset of a 
fibrewise ENR Mover B, and let f : U ---t M be a compactly fixed fibrewise 
map with no fixed-points over A. 

Definition 6.2 Choose a fibrewise embedding i : M ---t W as a fibrewise 
retract r : W ---t M of an open subspace W of B x E for some Euclidean 
space E. Then the Lefschetz-Hopf fixed-point index 

- 0 0 
L(B,A)(f, U) E W(B,A){B x S ; U+B} 

is defined as follows. Consider the map iof or: r-1U ---t B x E. The maps i 
and r restrict to inverse fibrewise homeomorphisms 

Fix(f) ~ Fix( i 0 for) ~ Fix(f). 

So the map i 0 for is compactly fixed and has no fixed-points over A. We 
define £(B,A)(f, U) to be the image of £(B,A)(i 0 for, r-1U) under the map 
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WfB,A){B X Sa; (r-1U)+B} ..... WfB,A){B x Sa; U+B} 

induced by the restriction of r : r-1U ..... U. 

It is not immediately apparent that the index is independent of the choice 
of embedding of M as a neighbourhood retract in B x E. We shall return to 
this point after stating the basic properties of the index and proving them for 
the special case in which M is a trivial vector bundle B x E. The proof will 
appear as a consequence of the commutativity property of the fixed-point 
index. However, a direct proof is not hard, and we give such a proof in the 
next section when dealing with ANRs. 

It is an exercise to verify the following properties in the special case. 

Proposition 6.3 (Properties of the fixed-point index). 
(i) (Naturality). Let a: (B', A') ..... (B, A) be a map of compact ENR pairs. 
Then 

£(BI,AI)(a* f, a*U) = a* £(B,A)(f, U). 

~i) (Localization). Let U: ~ U be an open subset with Fix(f) ~ U'. Then 
L(B,A)(f I U', U') maps to L(B,A)(f, U) under the inclusion map 

WfB,A){B x Sa; U~B} ..... W?B,A){B x So; U+B}. 

(iii) (Additivity). If U is the disjoint union of open sets U1 and U2, then 

£(B,A)(f, U) = (id*£(B,A)(f lUI, Ud + (i2)*£(B,A)(f I U2, U2), 

where i1 : U1 ..... U and i2 : U2 ..... U are the inclusion maps. 

(iv) (Multiplicativity). Let U' be an open subset of a fibrewise ENR M' 
over B' and let f' : U' ..... M' be a compactly fixed map with no fixed-points 
over a compact sub-ENR A'. Then the product f x f' : U x B U' ..... M x B M' is 
compactly fixed and has no fixed-points over A U A' (assumed to be an ENR). 
Its index is 

Homotopy invariance of the fixed-point index is implicit in the fibrewise 
definition. 

Proposition 6.4 (Homotopy invariance). Let ft : U ..... M, 0$ t $ 1, be a 
family of fibrewise maps such that {(x, t) E U x [0,1] I ft(x) = x} is compact 
and empty over A x [0, 1]. Then 

£(B,A)(/t, U) E W?B,A){B x Sa; U+B} 

is independent of t. 
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The property of commutativity is more subtle. 

Lemma 6.5 (Commutativity). Let M and N be fibrewise ENRs over B, and 
let U ~ M and V ~ N be open subsets. Suppose that j : V -+ M and 
g: U -+ N are fibrewise maps such that the restriction oj go j : j-1U -+ N 
is compactly fixed with no fixed-points over the closed sub-ENR A. Then jog: 
g-l V -+ M is also compactly fixed with no fixed-points over A, and 

(f x 1)*£(B,A)(gj I, j-1U) = (1 x g)*£(B,A)(fg l,g-lV) 

E WrB,A){B x So; (U XB V)+B}' 

Notice at once that we have inverse fibrewise homeomorphisms 
f 

Fix(g 0 J) ~ Fix(f 0 g). 
9 

Before looking at the proof of commutativity, we use the result, for the 
special case of open subspaces of B x E, to show that the index is well­
defined. Suppose, in Definition 6.2, that i' : M -+ W' ~ E', r' : W' -+ M, 
is another representation of M as a retract of an open subspace of a trivial 
vector bundle. We apply Lemma 6.5 to the maps 

i'ojor:r-1U-+BxE' and ior':r,-lU-+BxE. 

The composition (i 0 r')(i' 0 j 0 r) is i 0 j 0 r : r-1(U n j-1U) -+ B x E, and 
the composition (i' 0 j 0 r)(i 0 r') is i' 0 j 0 r' : r,-lU -+ B x E'. 

By the localization property, Proposition 6.3(ii), the inclusion of the 
subspace r-1(U n j-1U) in r-1U sends £(B,A)(ijr,r-1(U n j-1U)) to 
£(B,A)(ijr,r-1U). Now from commutativity, ir' sends £(B,A)(i'jr',r,-lU) 

to £(B,A) (ijr, r-1U). Since r(ir') = r', the image of £(B,A) (ijr, r- 1U) under 
r coincides with the image of £(B,A)(i'jr',r'-lU) under r'. This completes 
the proof that the fixed-point index is well-defined. 

It is implicit in the definition of the fixed-point index that it is topologi­
cally invariant, that is, if 9 : M -+ M' is a fibrewise homeomorphism between 
fibrewise ENRs over B, then 

- -1 ° ° L(B,A)(gjg ,gU) E W(B,A){B x S ; (gU)+B} 

is the image under 9 of £(B,A)(f, U). 
Another consequence of commutativity is: 

Corollary 6.6 Suppose that M is a fibrewise sub-ENR oj a fibrewise ENR 
N and that j : U -+ M extends to a fibrewise map (denoted by the same 
symbo~ j : V -+ M on an open subspace V oj N such that V n M = U. Then 

£(B,A)(f: U -+ M, U) E WrB,A){B x So; U+B} 
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maps by the inclusion to the index 

- 0 0 L(B,A)(f : V ~ N, V) E W(B,A){B x S ; V+B} 

of the composition (again denoted by f) V ~ M ~ N of the extension f and 
the inclusion of the sub-ENR. 

This follows easily from Lemma 6.5 applied to the extension f : V ~ M 
and the inclusion 9 : U ~ N of U as a subspace of N. 

It remains to establish commutativity in the Euclidean case M = B x E, 
N = B x F, for some finite-dimensional vector spaces E and F. Consider the 
maph 

(x,y) ~ (f(y),g(x)) : U XB V ~ B x (E x F), 

defined on the open subspace U XB V of B x (E x F). (We make the natural 
identification of (B x E) XB (B x F) with B x (E x F).) Clearly, (x, y) is 
a fixed-point of h if and only if x = f(g(x» is a fixed-point of fog and 
y = g(x) is a fixed-point of 9 0 f, and we have a fibrewise homeomorphism 
x ~ (x,g(x)) from Fix(fog) to Fix(h). The lemma will be proved by showing 
that the fixed-point index of h is equal to (1 x g).L(B,A)(fgl,g-IV). This 
will follow from homotopy invariance in two steps. 

Consider first the linear homotopy kt : g-IV XB V ~ B x (E x F) given 
by 

kt(x,y) = ((1 - t)f(y) + tf(g(x»,g(x», 0::; t::; 1. 

If (x,y) is fixed by kt, then y = g(x) and x = f(y). So Fix(kt) = Fix(h). By 
Lemma 6.4, the fixed-point index of h = ko is equal to the fixed-point index 
of kl : (x,y) ~ (f(g(x»,g(x». 

In the second step we shall deform the second component to a constant 
map. Some care is necessary in order to keep within g-IV XB V. (It is easy 
to write down the deformation in g-1 V x F.) Now we may choose an open 
neighbourhood U' of Fix(f 0 g) in g-1 V and a small open disc D centred at 
o in F such that 

W:= ((x,g(x) +v) I x E U', v E D} 

is a neighbourhood of Fix(h) in U' xB V. Let it : U' x D ~ B x (E x F) be 
embed dings defined by 

it(x, v) = (x, tg(x) + v), 0::; t ::; 1. 

Thus, il is a homeomorphism to the subspace W. We think of each it as the 
inclusion of U' x D as a subspace of B x (E x F) and define on that subspace 
a map It : U' x D ~ B x (E x F) by 

It(x, v) = (f(g(x», tg(x». 

The fixed subspace of It is the subset 
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{(x, v) I It (x, v) = it(x, vn = FixU 0 g) x {a}. 

Now the fixed-point index of it corresponds (under the homeomorphism 
between U' x D and W) to that of kl and is homotopic to the fixed-point index 
of 10 , The index of 10 is easily seen directly to coincide with the index of fog. 
See also Proposition 6.7. This completes the verification of commutativity in 
the special case. 

Having established the various properties in the Euclidean case and so 
justified the general definition of the fixed-point index, it is routine to deduce 
the properties in full generality. 

Finally we record, as a special case of Lemma 6.5 or by inspection of the 
definition: 

Proposition 6.7 Let s : B --+ M be a section of the fibrewise ENR M and let 
U be an open neighbourhood of s(B). Consider the fibrewise map f : U --+ M 
taking the constant value s(b) in the fibre at b E B. Then LBU, U) is equal 
to the stable class s. : B x SO --+ U+B of the section. 

Remark 6.8. Suppose that M is embedded as a fibrewise retract of an open 
subspace of a finite-dimensional vector bundle ~ over B. Then the fixed-point 
index can be constructed by working in ~, instead of the trivial bundle B x E 
used in Definition 6.2, as illustrated below in a special case. See also the 
related definition of the vector field index in Section 12, Remark 12.26. 

Finite coverings 

It is instructive to look at the fixed-point index for a map defined on a finite 
covering. This corresponds in the classical theory to looking at fixed-point 
theory for finite sets. 

Let M --+ B be a finite d-fold covering, and suppose that we have a 
fibrewise embedding M --+ ~ into a finite-dimensional vector bundle ~. (See 
Section 11 for a general discussion of such embeddings.) Let f : M --+ M be a 
fibrewise map. Then we can describe the construction of the fixed-point index 
quite concretely. Choose a Euclidean metric on ~. Then, by the compactness 
of M, there is a real number f > 0 such that distinct points in any fibre of M 
are a distance greater than 2f apart, so that the closed f-discs in ~ centred 
on the points of M are disjoint. Let F denote the set of fixed-points of fj it 
is, of course, open in M. Let V be the set of points of ~ at a distance less 
than f from M. Then LBU, F) is represented by the fibrewise map 

q : ~~ --+ ~~ I\B F+B 

which maps the complement of V to the basepoint (in the fibre) and maps 
the open f disc centred on x E M homeomorphically to the fibre of ~, by 
the map c defined at the beginning of this section, with second component 
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x, when x is fixed by I, and collapses the open disc to the basepoint when 
I(x) ¥- x. 

ENR fixed-point sets 

The fixed-point index gives, by the localization property, a system of com­
patible fibrewise stable maps B x SO -+ V+B for the family of open subsets V 
of U which contain the fixed-point set Fix(f). In general this fixed-point set, 
which again we denote temporarily by F, will be unpleasant as a topological 
space. Let us suppose that F -+ B is actually a fibrewise ENR. 

Choose some open neighbourhood V of Fin U which retracts onto F, say 
by T : V -+ F. Then we define 

(6.9) 

to be the image of £(B,A)(f I V, V) under T. 

This class is independent of the choice of V and T. For, by Proposi­
tion 5.15, two retractions, extending the identity on F, will be fibrewise 
homotopic on some smaller open neighbourhood of F. Moreover, the class 
M(B,A)(f) determines the Lefschetz-Hopf index. 

Proposition 6.10 Suppose that Fix(f) is a fibrewise ENR over B. Then the 
inclusion map sends M(B,A) (f) to £(B,A) (f, U): 

WrB,A){B x So; Fix(f)+B} -+ WrB,A){B x So; U+B}. 

For we can choose some smaller open neighbourhood W of F in V such 
that 

is fibrewise homotopic to the inclusion of W in V. 

The Nielsen-Reidemeister index 

We return to the general situation of a compactly fixed map I : U -+ M 
defined on an open subset of a fibrewise ENR M over a compact ENR B and 
having no fixed-points over a closed sub-ENR A. 

Definition 6.11 The fibrewise homotopy fixed-point set of I is the subspace 
h-Fix(f) of PBU = mapB(B x [0, l],U) with fibre at bE B consisting of the 
paths w : [0,1] -+ Ub such that w(l) = Ib(W(O)), that is, paths joining a point 
of Ub to its image under lb. 

The homotopy fixed-point set h-Fix(f) contains Fix(f) as the space of 
constant paths, and evaluation at 0 defines a map q : h-Fix(f) -+ U. Using 
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the fibrewise uniform local contractibility of M, we shall define the Nielsen­
Reidemeister index of f as a class 

N(B,A)(f, U) E WrB,A){B x So; h-Fix(f)+B} (6.12) 

lifting £(B,A)(f, U). 
Choose an open neighbourhood W of the diagonal in M x B M and ho­

motopy Ht : W -t M, as in Proposition 5.11, such that Ho(x,y) = x, 
H 1(x,y) = y and Ht(x,x) = x, for x, y E M b. Let V ~ U be the inverse 
image of W under the map x ~ (x, f(x)) : U -t M XB M. Then we have 
a fibrewise map V -t h-Fix(f) taking x to the path t ~ Ht(x, f(x)) from 
x to f(x). It extends the embedding of Fix(f) in the homotopy fixed-point 
set. The usual arguments, following Proposition 5.15, show that two fibrewise 
maps constructed in this way will be homotopic on some neighbourhood of 
Fix(f). Hence, the image of £(B,A)(fIV, V) under this map is independent of 
choices. We call it the Nielsen-Reidemeister index (or, more accurately, the 
Lefschetz-Hopf-Nielsen-Reidemeister index). 

The classical indices 

Let us look at the classical situation in which the base B is reduced to a 
point. Consider an ENR M and compactly-fixed map f : U -t M defined 
on an open subspace U. Then £(f, U) is an element of the stable homotopy 
group wo(U) = WO{SO; U+}, which is the free Abelian group generated by 
the path-components of U. The Lefschetz-Hopf index assigns an integer to 
each path-component, with only finitely many non-zero (since only finitely 
many path-components intersect the compact fixed-point set). The sum of 
the integers associated to the components is the classical Lefschetz fixed­
point index. This is traditionally defined via integral homology as an element 
of the cohomology ring HO(*) = Z of a point. (We refer again to [46].) 
From the fibrewise (or equivariant) viewpoint it is better regarded as an 
element of the stable cohomotopy ring WO (*). The Nielsen-Reidemeister index 
N(f, U) E wo(h-Fix(f)) likewise assigns an integer to each path-component 
of the homotopy-fixed-point set and is usually called the Reidemeister trace. 
The classical Nielsen number is the number of components for which the 
corresponding index is non-zero. 

The Lefschetz index 

In the classical situation, the distinction between the Lefschetz-Hopf index 
containing information about the location of the fixed-points and the Lef­
schetz index which is the sum of the local indices is of minor interest; it does 
become significant in the fibrewise theory. Returning now to the general set­
ting we construct the Lefschetz index L(B,A) (f, U) from £(B,A) (f, U) as an 
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element of the stable cohomotopy group wO (B, A) of the base by a procedure 
which reduces in the classical case to adding the local integer indices. 

Definition 6.13 We define the Lefschetz index 

L(B,A)(f, U) E W(B,A){B x So; B x SO} = wO(B, A) 

as the image of £(B,A)(f, U) under the fibrewise map U+B -+ B x SO = B+B 
projecting U to B. 

When A = 0 is empty, the Lefschetz index LB(f, U) lies in the stable 
cohomotopy ring wO(B). When B is non-compact we can define an index 
cLB(f, U) E cwO(B) in the compactly supported group. 

The fixed-point transfer 

Another specialization of the Lefschetz-Hopf index £(B,A)(f, U), which is a 
fibrewise stable map B x So -+ U+ B (which is zero over the subspace A), is 
obtained by collapsing the basepoints B and the subspace A to produce a 
stable map 

BfA -+ U+, 

which is called the fixed-point transfer of the map f. 
In the special case when Fix(f) is an ENR (not necessarily a fibrewise 

ENR over B), the transfer factors canonically through a stable map 

BfA -+ Fix(f)+. 

The reasoning is just as in the definition of M(B,A)(f, U) above. This con­
struction has been exploited by Richter to give a stable splitting of nSU(n). 
See [35], p. 102. 

The transfer construction is particularly important when M is compact 
and f is the identity map (and A is necessarily empty). In that case we refer 
simply to the transfer B+ -+ M+ of the compact fibrewise ENR M -+ B. 

Collapsing basepoints to define the transfer does, however, lose informa­
tion. We next examine more carefully the fibrewise nature of the construc­
tion. 

The fibrewise transfer 

Let a: : B' -+ B be a compact fibrewise ENR over B. The associated transfer 
is a stable map in the opposite direction B+ -+ B~. But the fixed-point index 
£B(I, B') is a fibrewise stable map 

B x SO (= B+B) -+ B~B' 
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which we might call the fibrewise transfer of the map a. Let A ~ B be 
a compact sub-ENR and write A' := a-I (A). Consider fibrewise pointed 
spaces X and Y over B. We shall define a transfer homomorphism 

au: W(B',A,){a* X; a*Y} ~ W(B,A){X; Y}. (6.14) 

We need a generalization of Proposition 3.4. 

Lemma 6.15 There is a natural isomorphism: 

wB,{B' XB X; B' XB Y} ~ wB{B~B I\B X; Y}. 

The essential insight is in the evident equivalence between fibrewise maps 
B' x B M ~ B' x B N over B' and fibrewise maps B' x B M ~ N over B, for 
any fibrewise spaces M and N over B. This is a special case of the adjoint 
property of the direct image, (Proposition 5.37). For B~B I\B X is a*(a* X). 

Now compose with the fibrewise transfer smashed with the identity on X 
to get the required transfer homomorphism 

widB' XB X; B' XB Y} ~ wB{B~B I\B X; Y} ~ w.B{X; Y}. 

The relative case, using the identification of 

W(B',A,){B' XB X; B' XB Y} with W(B,A){B~B I\B X; Y}, 

is scarcely more difficult. 

Proposition 6.16 (Properties of the transfer homomorphism). 
(i) (Functoriality). Let a : B' ~ Band (3 : B" ~ B' be compact fibre­
wise ENRs, and let A be a closed sub-ENR of B. Write A' = a-I (A) and 
A" = (3-1 (A'). Then (a 0 (3)u = aU 0 (3U: 

W(BII,A") {(3*a* X; (3*a*Y} ~ W(B',A,){a* Xj a*Y} -+ W(B,A}{Xj Y}, 

for any fibrewise pointed spaces X and Y over B. 
(ii) (Frobenius reciprocity). Let a: B' ~ B be a compact fibrewise ENR, A 
a closed sub-ENR of B and A' = a-1{A). 

(a) Consider fibrewise pointed spaces X, Y, X' and Y' over B. We have 

aU{a*(x) 1\ y) = x 1\ aU{Y) E W(B,A){X I\B X'j Y I\B Y'} 

for x E w(B,A){Xj Y}, y E wB,{a* Xj a*Y}. 

(b) Consider fibrewise pointed spaces X, Y and Z over B. We have 

aU{a*{x) 0 y) = x 0 aU{Y) E W(B,A){Xj Z} 

for x E w(B,A){Yj Z}, y E wB,{a* Xj a*Y}. 
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In the statement of Frobenius reciprocity - the terminology is adapted 
from the representation theory of finite groups - we have formulated only one 
of several variants: in (b) the order of composition can be reversed, and in (a) 
and (b) we could multiply a class x over B by a class y over (B', A') (with A' = 
a -1 (A) as usual). Verification of (ii) is straightforward j it amounts to checking 
that the equivalence in Lemma 6.15 is compatible with multiplication by 
classes defined over B. 

Functoriality, (i), requires more work. It follows from a special case (f the 
identity, M = B") of the next result. 

Proposition 6.17 Let a : B' ~ B be a compact fibrewise ENR, and let 
M ~ B' be a fibrewise ENR over B'. Suppose that f : U ~ M is a compactly 
fixed fibrewise map over B' defined on an open subset U of M. Let A be a 
closed sub-ENR of B such that f has no fixed-points over A' := a-leA). 

Then a.f : a.U ~ a.M (that is, f : U ~ M considered as a map over 
B via a : B' ~ B) is compactly fixed and its index is given by 

- - 0 0 L(B,A)(a.f,a.U) = au(L(BI,AI)(f,U)) E W(B,A){B x S j (a.U)+B}. 

The proof is just a matter of writing down the definitions of the two 
sides of the identity carefully and comparing the results. The case in which 
B' ~ B is a trivial bundle is straightforward, and is a special case of the 
multiplicativity of the index, Proposition 6.3(iv). 

There is no real loss of generality, because of the way we defined the 
fixed-point index, in assuming that M = B' x F for some Euclidean space 
F. Choose a representation i : B' ~ W, r : W ~ B', of B' as a fibrewise 
retract over B of an open subspace W of B x E, for some Euclidean space 
E. It is convenient to suppose that i is the inclusion of B' as a subspace of 
E. Then the fibrewise transfer au is given by the fixed-point index of r. For 
the purposes of exposition we lose very little by assuming that B is a point. 

Choose an open neighbourhood T of Fix(f) in B' with compact closure 
T contained in U and an open neighbourhood V of B' in E with compact 
closure V contained in W. Then 

S:= ({x,y) E V x F I (r(x),y) E T} 

is an open neighbourhood of Fix(f) = Fix(f 0 (r x 1)) in the intersection 
(r x I)-l(U) n (V x F). And its closure, being contained in V x K, where K 
is the image of the projection if ~ F to the second factor, is compact. Let 
us write f in components as: f(x,y) = (x, f'(x, y)). Using a subscript on the 
norm to indicate the vector space considered, choose € > 0 such that 

IIx - r(x)IIE ~ € for x E V - V, 

lIy - f'(X,y)IIF ~ € for (x,y) E if - T, 

and lI(x,y) - f(r(x),y)IIEXF ~ € for (x,y) E S - S. 
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We use the supremum norm on E x F. 
Now the index L(B',A,)(f, U) is constructed as a map B' x F+ -t U+B' 

over B'. Collapsing the basepoints B' we obtain a map 

given by 

{ * if(x,y)~T, 
(x,y) t-t (J(x,y),X,CF(Y _ f'(x,y))] if (x,y) ~ T. (6.18) 

Remember that we are omitting the base B from the notation, and so think 
of (x,y) as an element of E x F. The subscript 'F' on CF indicates the 
construction C of (6.1), given by the norm on F, in the second factor. 

The transfer au is determined by the map B+ 1\ E+ -t B~ 1\ E+: 

xt-t{* ifx~V, 
[r(x),cE(X - r(x))] if x E V. 

Smashing with the identity on F+ and composing with (6.18), we obtain a 
map: B+ 1\ E+ 1\ F+ -t U+B 1\ E+ 1\ F+ given by 

{ * if x ~ S, that is, x ~ V or (r(x),y) ~ T, 
(x,y) t-t (J(r(x),y),CE(X _ r(x)),cF(y - f'(r(x),y))] if XES. 

Noting that CEXF(U,V) = [cE(U),CF(V)], at least up to homotopy, we see that 
this gives the fixed-point index of f over B as asserted by the proposition. 

7 Fixed-point theory for fibrewise ANRs 

In this section we examine the extension of the Lefschetz fixed-point theory 
from finite to infinite dimensions, that is, from Euclidean to absolute neigh­
bourhood retracts. Our primary source is the paper [67] of Granas. As usual, 
unless otherwise indicated, the base space B is an ENR. 

Compactly fixed maps 

Let M -t B be a fibrewise ANR, U be an open subset of M and f : U -t M 
be a fibrewise map. 

Definition 7.1 We say that f is compactly fixed if the fixed-point set Fix(f) 
is compact and there is an open neighbourhood V of Fix(f) in U, such that 
f(V) has compact closure in M. 

We record a few elementary properties of such a compactly fixed map 
f and open set V. Clearly any open neighbourhood V' ~ V also has the 
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property that the closure of the image f(V' ) is compact. There is, therefore, 
no loss of generality in supposing that V ~ U so that f is defined on V. Now 
f(V) and f(V) have the same closure, and the projection p(V) has compact 
closure in the base B. 

This definition is consistent with our simpler definition for a fibrewise 
ENR: in that case V can be chosen to be itself compact. 

For any metric d on M, the distance d(x, f(x)) is bounded away from 
o on V - V. Indeed, suppose not. Then, by the compactness of the closure 
of f(V), there is a sequence (xn) in V - V such that d(xn, f(xn)) -+ 0 and 
f(xn) converges to some point Y E M. It follows that Xn -+ Y and so that 
f(y) = y. This contradicts the fact that f has no fixed-points in the closed 
set V-V. 

Finite-dimensional approximation 

As in the fixed-point theory for ENRs, we begin with the case that M is a 
trivial vector bundle: M = B x E for some normed vector space E. Let U 
be an open subspace of B x E and let f : U -+ B x E be a compactly fixed 
map over B. The index will be defined via finite-dimensional approximations 
to f. 

Choose an open neighbourhood V of Fix(f) in U such that the closure 
V in B x E is contained in U and f(V) has compact closure. From the 
discussion above, IIf(x) - xII (that is, to be precise, the difference in norms 
of the projections onto E) is bounded away from 0 on V-V. Choose € > 0 
such that IIf(x) - xII ~ € for all x E V-V. 

By the compactness of the closure of f (V), there exist finitely many points 
Yl, ... , Yn in E such that 

f(V) ~ B x U B,(Yj), 
l~j~n 

where B,(y) is as usual the open ball of radius € in E with centre y. Since 
V is metrisable, it is easy to write down, in terms of a metric, a partition of 
unity subordinate to any finite open cover. Let (cPj h ~j ~ n be a partition of 
unity subordinate to the cover by the open sets f-1(B x B,(Yj)), 1 :s: j :s: n. 

Now let F be a (necessarily closed) finite-dimensional vector subspace of 
E containing Yl, ... , Yn. We define h : V -+ F by 

h(x) = El~j~n cPj(x)Yj· 

Because cPj(x) = 0 unless Ilf(x) - (b,Yj)1I < €, we have 

IIf(x) - (p(x), h(x)) II < €, 

where p is, as usual, the projection. 
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Remark 7.2. Incidentally, h maps into the closed convex hull K of the points 
Yb . .. ,Yn in F, and K is a finite polyhedron. 

We can now define the required finite-dimensional approximation to f. 
Let 

g:V-+BxF 

be the map g(x) = (P(x) , h(x)). We have IIf(x) - g(x)1I < dor all x E V. And 
for all x E V - V, IIx - g(x) II > 0 by the choice of € so that IIx - f(x) II ~ €. 

Hence the restriction of 9 to the open subset V n (B x F) of B x F 

gl : V n (B x F) -+ B x F 

is compactly fixed. (For the fixed-point set is closed and contained in the 
compact set p(V) x K.) 

We define the fixed-point indices of f : U -+ B x E in terms of the fixed­
point indices of gl : V n (B x F) -+ B x F. If B is compact and f has no 
fixed-points over a closed sub-ENR A we can choose V so that V A is empty 
and define 

- . - 0 0 
L(B,A)(f, U) = J.L(B,A)(gl, V n (B x F)) E W(B,A){B x S j U+B}, 

the image under the inclusion j : V n (B x F) -+ U. If B is not compact, 

- 0 0 cLB(f, U) E cWB{B x S j U+B} 

is defined as the image under the inclusion map of cLB(gl, V n (B x F)). 
This definition has involved several choices. We must verify that the result 

is independent of the choice of the approximation h (and the vector space F) 
for given V, and then check that it is unchanged if we replace V by any open 
subset V' with Fix(f) ~ V' ~ V. 

Suppose first of all that we replace F by a finite-dimensional subspace F' 
of E containing F. Then the index defined by gl : V n (B x F') -+ B x F' is 
equal to that defined by gl : V n (B x F) -+ B x F, by Corollary 6.6. 

Next, suppose that g' : V -+ B x F is another approximation to f, 
satisfying IIf(x) - g'(x)1I < € for all x E V. We have a linear homotopy 
gt = (1-t)g+tg', 0 ~ t ~ 1, from 9 to g', and IIgt(x)- f(x) II < €, by convexity. 
Hence, IIgt(x) - xII > 0 for x E V-V. This means that we have a compactly 
fixed homotopy gt I : V n (B x F) -+ B x F, and the indices determined by 
gol and gIl are equal, by the homotopy invariance (Proposition 6.4) of the 
Lefschetz index. 

Consider, finally, an open neighbourhood V' of Fix(f) in V. For € suf­
ficiently small, we have IIf(x) - xII ~ € for all x E V - V'. Then we can 
compute the index on V' n (B x F). 

This completes the definition of the fixed-point index for a map defined 
on an open subset of B x E. We turn now to the general case. 
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The definition 01 the fixed-point index 

Let M -+ B be a fibrewise ANR over B and 1 : U -+ M be a compactly fixed 
fibrewise map defined on an open subspace U. To define the fixed-point index 
of f we choose an embedding of M as a fibrewise retract of an open subset 
W of B x E for some normed vector space E: i : M -+ W, r : W -+ M, 
r 0 i = 1. The map ifr : U' = r-l(U) -+ B x E is compactly fixed. Indeed, 
Fix(ifr) = i(Fix(f)) is compact (so closed in B x E), and, if V ~ U is an 
open neighbourhood of Fix(f) such that f(V) has compact closure in M, 
then r-l(V) is an open neighbourhood of Fix(ifr) such that (ifr)(r-lV) 
has compact closure in B x E. 

We define the Lelschetz-Hopl fixed-point index to be 

£(B,A)(f,U) = r.£(B,A)(ifr,r-1(U)), 

in the case where B is compact and f has no fixed-points over a closed sub­
ENRA, and 

- - 1 cLB(f, U) = r.cLB(ifr, r- (U)), 

where B is (not necessarily) compact. 

Verification that the index is well-defined 

In order to show that this is a good definition we need to check that the 
result is independent of the choice of the representation of M as a fibrewise 
retract of an open subspace of a trivial bundle B x E. Homotopy invariance, 
the essential input, is intrinsic to our fibrewise construction. 

We begin by observing that the index depends only on the embedding 
i : M -+ B x E, not on the choice of open neighbourhood W and retraction 
r : W -+ M. First, if we replace W by an open subspace W' containing 
i(M) and use the restriction of r to W' -+ M, we can choose V above 
so that V ~ W', and the outcome is unchanged. Consider next another 
retraction r' : W -+ M. By Proposition 5.15, since i(M) is closed in W, the 
restrictions of rand r' to some open neighbourhood of i(M) are homotopic. 
The construction of the index over B x [0, 1] establishes homotopy invariance: 
the indices defined using r and r' coincide. 

Now let E' be a second normed vector space. We have a fibrewise embed­
ding io : M -+ B x (E X E') with first component i and second component the 
constant 0 E E'. As an open neighbourhood of io(M) we can take W x E', 
with retraction ro given by the composition of the projection W x E' -+ W 
and r : W -+ M. The index defined using io agrees with that defined using 
i, again by Corollary 6.6. 

Finally, suppose that we have a second embedding i' : M -+ W' and 
retraction r' : W' -+ M, where W' is an open subspace of B x E'. Define a 
family of embeddings 
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it : M -t B x (E x E'), ° ~ t ~ 1, 

by it(x) = ((1 - t)i(x), ti'(x)). This determines a fibrewise embedding 
j : M x [0,1) -t (B x [0,1)) x (E x E') over B x [0,1). IT we can show that 
j(M x [0, 1)) is a fibrewise retract of an open neighbourhood, then we can con­
struct the index over B x [0,1) and deduce that the index given by io, which 
according to the preceding paragraph coincides with that defined by i, is the 
same as that given by i1 , or i'. We cannot apply Proposition 5.10 directly to 
see that j(M x [0, 1)) is a neighbourhood retract in B x (E x E'), since it need 
not be a closed subspace. But it is closed in an open subspace, for example in 
the union of the open subspaces {((I - t)x, y, t) 1 x E W, Y E E', ° ~ t < I} 
and {(x,ty,t) 1 x E E, YEW', ° < t ~ I}. 

This completes the proof that the fixed-point indices are well-defined and 
so topologically invariant. 

Properties oj the fixed-point index 

The basic properties of the Lefschetz-Hopf fixed-point index carry through 
by finite-dimensional approximation from the ENR theory to ANRs. We refer 
to Propositions 6.3 and 6.4 for precise statements. 

Proposition 7.3 The LeJschetz-HopJ fixed-point index 

- 0 0 L(B,A)(f, U) E W(B,A){B x 8 ; U+B} 

of a compactly fixed fibrewise map f : U -t M defined on an open subset U of 
a fibrewise ANR M over a compact ENR B and having no fixed-points over 
the closed sub-ENR A enjoys the properties: (i) Naturality, (ii) Localization, 
(iii) Additivity, (iv) Multiplicativity, (v) Homotopy invariance. 

The formulation of a commutativity property requires a little more care; 
the proof proceeds again by finite-dimensional approximation. 

Proposition 7.4 (Commutativity). Let M and N be fibrewise ANRs over 
B, and let U ~ M and V ~ N be open subsets. Suppose that J : V -t M and 
9 : U -t N are fibrewise maps such that the map 

U XB V -t M x N (x, y) t-+ (f(y), g(x)) 

is compactly fixed with no fixed-points over the closed sub-ENR A. Then 

(f x 1)"£(B,A)(gj I, J-1U) = (1 x g).£(B,A)(f9 I, g-1 V) 

E WrB,A){B x 80 ; (U XB V)+B}. 

The compactness condition can be reformulated as follows. The (homeo­
morphic) fixed-point sets Fix(g 0 f) of 9 0 j : j-1U -t N and Fix(f 0 g) of 
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fog: g-1 V -+ M are compact and admit neighbourhoods P ~ f-1(U) and 
Q ~ g-1(V) such that f(P) and g(Q) have compact closure in Nand M 
respectively. 

Observe that we cannot deduce from this commutativity property, as 
we did for ENRs in Section 6, that the index is well-defined, because the 
compactness condition is not, in general, satisfied by the inclusion maps which 
are involved. It is the following contraction property which lies behind the 
definition. 

Proposition 7.5 Let q : N -+ M be a fibrewise map between fibrewise ANRs 
over a compact ENR B, and let k : U -+ N be a fibrewise map defined on 
an open subset U of M. Write V = q-1(U) ~ N, f = q 0 k : U -+ M and 
9 = k 0 ql : V -+ N, as illustrated in the diagram: 

N 

U --+ M 
I 

Suppose that the fixed-point set of f, which is homeomorphic to the fixed-point 
set of g, is compact and empty over the closed sub-ENR A. Suppose that k 
maps a neighbourhood of Fix(f) into a compact subspace of N, so that both 
f and 9 are compactly fixed. 

Then L(B,A)(f, U) is the image under q of L(B,A)(9, V). 

This leads to an effective description of the technique of finite-dimensional 
approximation for a globally defined fibrewise map. 

Proposition 7.6 Suppose that the base B is compact. Let f : M -+ M be a 
fibrewise self-map of a fibrewise ANR M such that f(M) has compact closure 
in M. Then there exist a fibrewise ENR N over B, fibrewise maps q : N -+ M 
and k : M -+ N, and a fibrewise homotopy h : M x [0,1] -+ M from f to 
qok, such that k(M) has compact closure in Nand h(M x [0, 1]) has compact 
closure in M. 

The maps f, qok and 9 = koq : N -+ N in the statement of the proposition 
are automatically compactly fixed, because the fixed-point set is closed in a 
compact subspace. By Propositions 7.3 and 7.5, the fixed-point index of f is 
computed from the finite-dimensional approximation 9 as 

The fibrewise ENR N is constructed by adapting the definition of the 
index. Choose a representation i : M -+ W, r : W -+ M, ri = 1, of M as a 
fibrewise retract of an open subspace W of B x E for some normed space E. 
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We use a metric d1 on B x E ofthe form d1((b, y), (b', y'» = d(b, b') + lIy -y'li 
for b, b' E B and y, y' E E, where d is a metric on the base. 

By compactness, there is an € > 0 such that the closed ball in B x E 
with centre i(f(x» and radius 2€ is contained in U for each x E M. The set 
i(f(M» is contained in the union of a finite number of open balls Bf(i(f(xj», 
1 ::; j ::; n. Let (¢j) be a partition of unity on M subordinate to the open 
cover ((if)-l Bf((if)(xj»). 

We write I(xj) = (bj , Yj) E B x E. Let F be the finite-dimensional vector 
subspace of E generated by Yl, ... , Yn' We take N to be the open subspace 
W n (B x F) of B x F and q : N --+ M to be the restriction of r. Then the 
required map k : M --+ N is defined by 

k(x) = (P(x), E¢j(x)Yj)' 
j 

and the homotopy ht : M --+ M, 0 ::; t ::; 1, by 

ht(x) = r((l - t)(i/)(x) + tk(x», 

the addition taking place in the vector bundle B x F. 
Finally, we verify that the set P of points (1 - t)(if)(x) + tk(x), for 

t E [0,1] and x E M, lies in a compact subset of W. By construction, 
k(x) E Bf((if)(x» and so also (1- t)(if)(x) + tk(x) E Bf((if)(x». Hence C 
is contained in the union of the open balls B2f ((i f) (x j », and the closure of 
C in B x E is contained in W. Since C evidently lies in a compact subset of 
B x E, we have shown that C is compact. 

Remark 7.7. This result can be used to relate the Lefschetz fixed-point index 
for ANRs to the homology trace. Let I : M --+ M be a self-map of an ANR 
M, such that I(M) has compact closure in M. (We are thus considering the 
case in which B = * is reduced to a point.) Then the induced homomorphism 
I. : H.(M; Q) --+ H.(M; Q) has finite-dimensional image and its super-trace 
is equal to the Lefschetz index L(f,M) E wO(*) = z ~ Q. 

Let 9 : N --+ N be a self-map of an ENR as constructed above. We obtain 
the result from the commutative diagram: 

H*(M) ---+ H.(M) 
f. 

The ENR N is an open subset of some Euclidean space F. Let K ~ F be 
a finite polyhedron in F which contains k(M) and is contained in N. By the 
contraction property again, the Lefschetz index of 9 : N --+ N is the same 
as that of 91 : K --+ K. So we reduce the result for 9 to the classical result, 
which we shall generalize in Proposition 15.37, for the self-map 91 of the finite 
polyhedron K. 
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The property stated in Proposition 6.17 also generalizes. Suppose that 
a : B' -t B is a compact fibrewise ENR and that M -t B' is a fibrewise ANR 
over B'. Then a.M = M -t B is a fibrewise ANR. If U is an open subset 
of M and 1 : U -t M is compactly fixed over B, then a.(f) : a.U -t a.M 
is compactly fixed over B, and its index, in the case that B is compact, is 
aU(£B(f, U)). 

The Nielsen-Reidemeister index 

For a compactly fixed map 1 : U -t M over a compact ENR B, with no fixed­
points over the closed sub-ENR A, we can define the Nielsen-Reidemeister 
index 

N(B,A)(f, U) E WfB,A){B x So; h-Fix(f)+B} 

just as in Section 6. 
If the fixed-point set happens to be a fibrewise ANR then, again following 

the theory for ENRs, we have a class 

M(B,A)(f) E WfB,A){B x So; Fix(f)+B} 

lifting £(B,A)(f, U). 

Example 7.S. For example, suppose that s is a section of a compact fibrewise 
ANR M -t B over a compact ENR B. Regard the section, as in Proposi­
tion 6.7, as a fibrewise map s : B -t Mover B, and let 1 : M -t M be the 
compactly fixed map sop. Identifying the fixed-point set s(B) = Fix(f) with 
B, we have 

8 Virtual vector bundles and stable spaces 

In this again rather technical section we look at the formal enlargement of 
two categories: the category of real vector bundles and stable isomorphisms 
over a base B (which in this section will always be a compact ENR), and the 
stable homotopy category over B. 

Stable isomorphisms 01 vector bundles 

Let a and (3 be, first of all, finite-dimensional real vector bundles (of the same 
dimension) over B. We shall define stable isomorphisms in much the same 
way as we defined fibrewise stable maps. A stable vector bundle isomorphism 
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a -t 13 will be given by a pair (f, e)' where e is a finite-dimensional real vector 
bundle over Band f is a vector bundle isomorphism 

An equivalence relation", on such pairs is generated by: 

(i) (Homotopy) If f and f' are homotopic (through vector bundle isomor­
phisms) then (f,e) '" (f/,e). 

(ii) (Stability) (f, e) '" (1 E9 f, (E9 0 if ( is a finite-dimensional vector bundle 
over B. 

(iii) (Isomorphism) (f, e) '" (f/, e) if a : e -t e is a vector bundle isomorph­
ism, where f' is defined by commutativity of the square: 

eE9a ~ eE9f3 

a$11 1a$1 
e E9 a ----t e' E9 13 

I' 
A stable isomorphism a -t 13 is an equivalence class of pairs (f, e). 

It is clear, just as in the discussion of fibrewise stable maps in Section 3, 
that we may take all the vector bundles (e and 0 involved in the definition 
to be trivial. 

Composition of stable isomorphisms is defined in the obvious way. Given 
representatives (f, e) and (g, "1) of stable isomorphisms a -t 13 and 13 -t ,,(, 
the composition is represented by (h, e E9 "1) where h is given by the middle 
row of the diagram: 

e E9 ("1 E9 13) 1$9) e E9 ("1 E9 "() 

= j j= 
(eE9"1)E9a ----t (eE9"1)E9f3 ----t (eE917)E9,,( 

= 1 1= 

Defined even more easily than composition is the direct sum of stable 
isomorphisms a -t 13 and at -t 13' : it is obtained by forming the direct sum 
of representatives. 

The J-homomorphism 

In this framework the J -homomorphism is given by fibrewise one-point com­
pactification. From a representative f : eE9a -t eE9f3 of a stable isomorphism 
a -t 13 we obtain a representative f+ : et fiB a~ -t et fiB f3t of a stable 
fibrewise homotopy equivalence a ~ -t f3t: 
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[/+) E w~{a~; /3~}. 

In the category of vector bundles and stable isomorphisms the automorph­
ism group of any object a is KO-1(B), that is, [B+; 0(00)) (or [B+; O(N)) 
for large N). Indeed, the direct sum with the identity on a gives an iso­
morphism from the automorphism group, KO- 1 (B), of the zero-bundle to 
the automorphism group of a. 

In the stable homotopy category over B, the automorphism group of the 
sphere-bundle a~ is the group of units wO(B)X in the stable cohomotopy ring 
wO (B). And our construction specializes to the classical J -homomorphism 

J : KO-1(B) -+ wO(Br. 

Virtual vector bundles 

Virtual vector bundles arise by application of the Grothendieck construction 
to the category of vector bundles and stable isomorphisms. The isomorphism 
classes of the category will form the Grothendieck group KOO(B) of finite­
dimensional real vector bundles over B. 

Definition 8.1 A virtual real vector bundle a over B is an ordered pair 
(ao, (1) of (finite-dimensional) real vector bundles; it is often denoted by 
the formal difference ao - a1. The dimension of a is the difference dim ao -
dima1· 

A genuine vector bundle a will be identified with the virtual bundle (a, 0). 
We have to give a definition of stable isomorphism between two virtual bun­
dles extending the notion already defined for genuine vector bundles. In fact 
we shall give two, equivalent, definitions. The first is succinct, but a little 
contrived. 

Definition 8.2 (First version). A stable isomorphism 

a = ao - a1 -+ /3 = /30 - /31 

is defined to be a stable isomorphism of vector bundles ao EB /31 -+ /30 EB a1 . 

The composition of morphisms / : a -+ /3 and 9 : /3 -+ "I is given by the 
stable isomorphism h : ao EB "II -+ "1o EB a1 determined by the commutative 
diagram: 

(ao EB "Id EB /31 

= 1 1= 
(ao EB /3d EB "II a1 EB ("(0 EB /3d 

ftJjl 1 11tJj9 

(/30 EB at) EB "II ---+ a1 EB (/30 EB "11) 
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The identity morphism a -+ a is given by the stable isomorphism 
1 EB ( -1) : ao EB al -+ ao EB al. The reason for the sign is that, for any vector 
bundle (, the linear map 1 EB (-1) : ( EB ( -+ ( EB ( is homotopic to the map 
which interchanges the factors. (See Lemma 3.2.) 

The direct sum a EB a' of virtual bundles a and a' is defined to be 
(ao EB ah, al EB a~). Direct sums of morphisms are defined in the obvious way. 

Notice that any virtual bundle ao - a1 is isomorphic to one in which a1 
is a trivial vector bundle. 

Another description of stable isomorphisms is useful and, perhaps, more 
natural than that given by Definition 8.2. We specify a morphism a -+ /3 
by giving two finite-dimensional real vector bundles p and 0' over B and two 
vector bundle isomorphisms 10 : p EB ao -+ 0' EB /30 and II : p EB a1 -+ 0' EB /31 . 
Now introduce the equivalence relation", on such data (p, 0', 10, II) generated 
by: 

(i) (Homotopy) (p, 0', 10, It) '" (p, 0', 10, ID if 10 and 10, II and I{ are, 
respectively, homotopic through vector bundle isomorphisms. 

(ii) (Stability) (p, 0', 10, It) '" (~EB p, ~ EB 0',1 EB 10,1 EB II), for any vector 
bundle ~. 

(iii) (Isomorphism) If a : p -+ p' and b : 0' -+ a' are vector bundle isomor­
phisms, (p, 0', 10, Id '" (p', 0",/0, ID, where 10 and 10 are given by the 
commutative diagrams: 

pEB ao 

aE91 1 
p' EB ao 

/' --4 a' EB /30 /' 
---4 a' EB /31 

Definition 8.3 (Second version). A stable isomorphism a -+ /3 of virtual 
bundles is an equivalence class of data (p, 0', 10, It} as above. 

The two versions (8.2 and 8.3) of the definition are easily seen to be 
consistent. Given a stable isomorphism ao EB /31 -+ /30 EB a1 represented by a 
vector bundle isomorphism I : ~ EB ao EB /31 -+ ~ EB /30 EB a1 for some vector 
bundle ~, making canonical identifications we set p = ~ EB /31, 0' = ~ EB a1, 

10 = I : ~ EB /31 EB ao -+ ~ EB al EB /30 and II = 1 : ~ EB /31 EB al -+ ~ EB al EB /31, 
In Definition 8.3 the identity map 1 : a -+ a is given, more satisfactorily, 

by taking p and 0' to be zero and 10 and II to be the identity maps. 

Extending the stable category 

In the development of ordinary stable homotopy theory, one soon finds it nec­
essary to introduce formal desuspensions of pointed spaces. At an elementary 
level this can be done by considering pairs (E, m), where E is a pointed space 
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and m ~ 0 is a non-negative integer. The space E is identified with the pair 
(E, 0). A stable map from a pair (E, m) to a pair (F, n) is defined to be an el­
ement of wm-n{E; F}, that is, wO{Er-mE; Er-nF} where r ~ max{m,n}. 
Smash products are defined by (E, m) A (F, n) := (E A F, m + n). Then 
8 m A (E, m) is canonically isomorphic to E: (E, m) is the m-fold desuspen­
sion of the pointed space E. At a later stage, this treatment is superseded by 
a full discussion of spectra. In this introductory account we shall be content 
to give the fibrewise version of the elementary theory. 

Definition 8.4 A fibrewise stable space over B is a pair (X, >'), where X is a 
fibrewise pointed space and >. is a finite-dimensional real vector bundle over 
B. The pair (X, >.) will be written symbolically as X AB (->')~. We identify 
the fibrewise space X with the pair (X,O). 

We have to define the morphisms, that is the stable maps, between two 
such fibrewise stable spaces (X, >.) and (Y, f..L). Following the definition (first 
version) for virtual bundles, we define: 

Composition is defined using the suspension isomorphisms again in essen­
tially the same way as we defined composition of stable isomorphisms of 
virtual bundles. We note also that the identity map on (X, >.) is given by 
1 A (-1)+ : X AB >.~ -+ X AB >.~. 

The smash product (X, >.) AB (X', >.') of two fibrewise stable spaces over 
B is defined to be (X A B X I, >. EB >.'), and the smash product of stable maps is 
defined in the natural way. There is a canonical equivalence between the fibre­
wise suspension (X, >.) AB >.~ and X. (To be precise, there are two canonical 
equivalences, a left and a right, differing by the stable map (-1)+ : >.~ -+ >.~.) 

As in the case of virtual bundles there is a variant, second version, of the 
definition. We may specify a stable map (X, >.) -+ (Y, f..L) by giving two vector 
bundles p and a over B together with an isomorphism 9 : p EB >. -+ a EB f..L. 
Then 

w~{(X, >.); (Y, f..L)} = w~{p~ AB X; a~ AB Y}. (8.5) 

(Following the definition of stable isomorphism a little more closely, we could 
describe a stable map by a fibrewise pointed map f : p~ AB X -+ a~ AB Y, 
together with the vector bundle isomorphism g, and introduce an equivalence 
relation on data (f,g,p,a) in the now familiar way.) 

Given a virtual real vector bundle a = (aO,a1), we have an associated 
stable fibrewise space (( ao) ~, ad, denoted according to our convention by 
(ao)~ AB (-a1)~; it will also be written simply as a~. 
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Virtual bundles defined by Fredholm maps 

We conclude this section with a digression on Fredholm maps. For simplicity 
we shall look only at Fredholm maps between Hilbert bundles, that is, locally 
trivial bundles of Hilbert spaces. 

Let A and I-" be Hilbert bundles over B and let d : A -t I-" be a fibrewise 
(linear) Fredholm map. So d is continuous and its restriction to fibres is a 
Fredholm map between Hilbert spaces. We shall associate to d an essentially 
canonical virtual bundle. To be precise we shall give a (non-empty) subcate­
gory of the category of virtual bundles over B having exactly one morphism 
between any two objects. 

Consider a point b E B of the base. Let Kb be the (finite-dimensional) or­
thogonal complement in I-"b of the image of db : Ab -t I-"b, and let ib : Kb -t J..Lb 
be the inclusion. Then db EB ib : Ab EB Kb -t I-"b is surjective. Extend ib to a 
fibrewise (continuous) linear map ib : B X Kb -t 1-". Then, because the set of 
invertible operators in a Hilbert space is open, dEB ib : A EB (B x Kb) -t I-" will 
be surjective over an open neighbourhood Ub of bin B. 

By compactness of B there is a finite subset A such that the sets Ua , 

a E A, cover B. Let E be the finite-dimensional vector space EBaEA Ka 

and let f : B x E -t J..L be the direct sum of the linear maps ia . Then 
dEB f : A EB (B x E) -t I-" is surjective in each fibre and its kernel, aD say, is a 
finite-dimensional vector bundle. Let al be the trivial bundle B x E. 

We associate to the Fredholm map d the virtual vector bundle a = 
(aD, ad· 

The point is that this construction is essentially functorial. For sup­
pose that we have another finite-dimensional vector space F and linear map 
9 : B x F -t I-" such that dEB 9 : A EB (B x F) -t I-" is surjective. Write {30 for 
the kernel of this map and {31 for B x F. Then a natural stable isomorphism 
a -t {3 can be obtained as follows. 

Consider the linear map ht = (1 - t)f EB tg : B x (E EB F) -t J..L for 
o ~ t ~ 1. Then dEB ht gives a surjective linear map A EB (B x (E EB F)) -t I-" 
over B x [0,1] with kernel a finite-dimensional vector bundle ~, say. The 
bundle ~ over B x [0, 1] determines an isomorphism, up to homotopy, from 
the restriction ~o = aD EB (B x F) at t = ° to the restriction 6 = {30 EB (B x E) 
at t = 1. This data, understood in the second version using the natural 
identification al EB (B x F) -t {31 EB (B x E), gives a stable isomorphism 
a -t {3. 

By looking at a third construction and a 2-parameter family it is easy to 
see that we have associated to d a category of virtual vector bundles in which 
there is a unique isomorphism between any two objects. Such a category is, 
for practical purposes, the same thing as a virtual vector bundle. (We are 
used to talking about the field of real numbers lR without worrying about the 
model!) 
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9 The Adams conjecture 

The homotopy-theoretic proof of the Adams conjecture by Becker and Gott­
lieb [9] was a landmark in fibrewise stable homotopy theory. In this section 
we shall look at a closely related, but more elementary, proof which emerged 
soon afterwards in the work of Brown [20], Meyerhoff and Petrie [109] and 
Dold [48]. (The exposition is based in part on an unpublished manuscript 
'Adams trivialization, Im(J)-theory and the codegree of vector bundles' by 
M.C. Crabb and K. Knapp, which was quoted in [33].) 

Throughout this section p > 1 will be a fixed prime and 1 will be an 
integer prime to p. The base space B will be a compact ENR. 

For a real vector space E of dimension n we write a(E) for the 2-element 
set of orientations of E, understood as the sphere S(A n E) (so that, in partic­
ular, a(O) = S(JR)). More generally, a(~) will denote the orientation bundle 
of a real vector bundle ~. 

Fibre degree 

Consider two real vector bundles ~ and TJ over B of the same dimension, 
and let I : f~ -+ TJt be a fibrewise stable map. The restriction to fibres at 
bE B is a stable map of spheres Ib : (~b)+ -+ (TJb)+. A choice of isomorphism 
a(~b) -+ a(TJb) would allow us to define the degree, in Z, of lb. In any case 
the degree is well-defined up to sign and is constant on each component of 
B. If the fibre degree is nowhere zero, then the orientation bundles of ~ and 
'T} are isomorphic and there is a unique isomorphism with respect to which 
the fibre degree is everywhere positive. 

A fibrewise stable map I : ~t -+ TJt is a stable fibrewise homotopy equiv­
alence if and only if its degree in each fibre is ±1. This follows at once from 
Dold's theorem; but in this special case it is easy to give an elementary proof 
by induction over cells of the base as in Proposition 9.1 below. 

Localization at the prime p 

In elementary stable homotopy theory localization is a purely algebraic con­
struction. We shall call an element I of the localized stable homotopy group 
w~{~t; TJthp) a p-local fibrewise stable map. (These algebraically defined 
'maps' can be realized as fibrewise maps of spaces by introducing fibrewise 
localization; see, for example, [105J.) Such maps have a Z(p)-valued fibre de­
gree, defined only up to sign. 

A p-Iocal fibrewise stable map I as above is said to be a p-Iocal equivalence 
ifthere is an inverse map 9 E w~ {TJt; ~t hpj such that log = 1 and go I = 1. 
The local equivalences are characterized by their fibre degree as follows. 
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Proposition 9.1 A p-Iocal fibrewise stable map f E w~{{~j 1]~hp) is a p­
local equivalence if and only if its degree (defined up to sign) in each fibre is 
prime to p. 

As usual we may assume that B is a connected finite complex. (In general, 
we can work over a finite polyhedron in which B is a retract.) 

It is not hard to see that a stable map in wO(B)(p) = w~{{~j {~}(p) is 
invertible if and only if its fibre degree (now defined as an element of Zip») is 
prime to p. For 

(9.2) 

where n is the nilradical, which is finite. (Compare Proposition 4.5.) 
There is no loss of generality in assuming that f has fibre degree ±1 and 

we can fix the isomorphism a({) --t a(1]) for which f has degree 1. 
Suppose that B is obtained by attaching an m-cell to a sub complex A, 

m ~ 1, and that we have constructed a map g over A with fog = 1. The 
obstruction x to extending 9 to B lies in the relative group W[B ,A){ 1]~ j {~hp). 
But fox = 0 and the restriction of f to D is an equivalence. So x = 0 and 
9 extends to a map g over B. Multiplying by the inverse of fog we get the 
inverse of f. 

An alternative proof may be given using a Mayer-Vietoris argument as 
in Proposition 9.4 below. 

Remark 9.3. In more geometric terms, the proposition shows that: if f is a 
stable map {~ --t 1]~ with fibre degree prime to p, then there is an integer k 
prime to p and a stable map 9 : 1]~ --t {~ such that fog = k and go f = k. 

The Adams conjecture gives a precise criterion, in terms of Adams oper­
ations, for such sphere-bundles {~ and 1]~ to be stably fibrewise homotopy 
equivalent at the prime p. In the course of the proof we shall also need to 
take kth roots, as follows. 

Proposition 9.4 Let k ~ 1 be prime to p and let ~ and 1] be real vector 
bundles of the same dimension over B with isomorphic orientation bundles. 
We fix an isomorphism a : a(~) --t a(1]), which determines a kth power 
isomorphism a(k~) --t a(k1]). Suppose that 9 E w~{(k~)~j (k1])~hp) is a p­
local stable fibrewise homotopy equivalence with fibre degree 1 (with respect to 
a). Then there is a unique stable map f E w~{{~j 1]M(p) with fibre degree 1 
(with respect to a) such that r k = f 1\ ... 1\ f = g. 

In the statement we are, of course, identifying (k~)~, where k~ is the direct 
sum of k factors { EB ... EB ~, with the k-fold smash product ~~ I\B ... I\B ~~. 
Notice that, if k is odd, the existence of a fibrewise homotopy equivalence 9 
guarantees that the orientation bundles of { and 1] are isomorphic (and we 
can choose the isomorphism a with respect to which 9 has degree 1). 
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We first show uniqueness of the kth root. If II and h are both kth roots 
of g, then 1:;10 II is a kth root of the identity in w~{~~; ~~hp) = wO(B)(p) , 
with fibre degree 1. But, from (9.2), any element of degree 1 in wO(B)(p) has 
order a power of p, and therefore has a unique kth root. 

The existence proof is again by induction. If the base B is contractible, 
the result is clear. In general, we can express the connected finite complex B 
as a union of contractible closed sub-ENRs with each intersection an ENR 
and use a Mayer-Vietoris argument. 

The inductive step is as follows. Suppose that B1 and B2 are subcomplexes 
of B with intersection the sub complex A. Given kth roots II over B1 and h 
over B2, we show that there is a kth root over B1 U B2. For ease of notation 
suppose that B = B1 U B2. From the uniqueness clause already established, 
II and h agree on A. Let h E w~{~~; 17i}(p) lift II and h Consider the kth 
power map: 

WA1{~~; 17~hp) ----t WA1{(k~)~; (k17)~}(p) 

61 16 
+ Ilk 

W~{~B; 17~hp) ----t w~{(k~)~; (k17)~hp) 

By hypothesis, we have 9 = hk+oy for some y. Now (h+ox)k = hk+khk-1.0X. 
Since k is prime to p and h is an equivalence, there is a unique class x such 
that y = khk- 1.x. Then 1 = h + ox is the required kth root. 

Line bundles 

Let A be a complex line bundle over B. Then the lth power: z t-+ z®z®·· ·®z 
(l factors) defines a fibrewise map of sphere (in fact, circle) -bundles 

which has degree I in each fibre. (We have already used this map in Ex­
ample 4.6 to show that the Euler class is torsion if A has finite order.) By 
extending the map radially (or, if I ~ 1, by taking the lth power on the whole 
of A) we get an associated fibrewise pointed map 

This determines a p-local equivalence, which we denote by the same symbol, 

a(A) E w~p~; (A®l)~hp). 
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Adams operations 

The Adams operation 1/J' is usually defined on elements of the complex K­
group KO(B) in terms of the exterior powers. Here we require the operation at 
the level of virtual complex vector bundles over B. The account of virtual real 
vector bundles in Section 8 translates easily into the complex theory. More 
generally, we can introduce a compact Lie group G and define a category 
of virtual G-vector bundles over (a compact G-ENR) B. Given a complex 
vector bundle ~ of (complex) dimension n over B, we shall define a virtual 
bundle 1/J'~, of the same dimension n, in an (essentially) canonical way; that 
is, we shall define the virtual bundle up to unique isomorphism as we did in 
Section 8 when associating a virtual bundle to a Fredholm operator. 

One way of doing this is to use G-equivariant theory, where G is a com­
pact Lie group. The category of virtual complex G-modules has the pleasant 
feature that the automorphism group Ka1(*) of any object is trivial. A vir­
tual G-module is, therefore, defined up to unique isomorphism by its class in 
the representation ring R(G) = Kg(*). So for any complex G-module E we 
have a well-defined virtual G-module 1/J' E, with character given by 

X1/J'E(g) = XE(gl). 

Now let us take G to be U (n) and E to be the defining representation en. 
The complex n-dimensional vector bundle ~ (with a choice of Hermitian inner 
product, which is immaterial when we work with homotopy classes) can be 
expressed as P Xa E, where P is the associated principal G-bundle. We then 
define 'lji~ to be the virtual bundle P xa t/J' E. 

Another, more explicit, method, due to Atiyah [3], is available when l 
is prime. The group Zil acts on the l-fold tensor product ®' ~ by cyclic 
permutation, and the bundle splits as a direct sum of components 0i indexed 
by the characters of Zll: j t--t wij , where w is a primitive lth root of unity. We 
can take t/J' ~ = (00, 01). In general, one can write l as a product of primes 
and iterate this construction. 

At the heart of the Adams conjecture is the construction of a natural 
p-Iocal equivalence: 

a(~) E w~{~~; (1/J'~)~hp), 
We use transfer methods to reduce to a special case in which the equivalence 
can be written down explicitly using Adams' construction, described above, 
for line bundles. (For a line bundle A we have, of course, 1/J' A = A ®l.) 

A reduction 

Writing G = U(n), let T = ,][,n :::; U(n) be the standard maximal torus 
with Weyl group W = en. Thus W is the quotient Na(T)IT of the nor­
malizer Na(T) of T in G. Choose a Sylow p-subgroup Wp of W, and let 
Np = T ~ Wp :::; T ~ W = Na(T). 
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Remark 9.5. Every finite p-subgroup P of G is conjugate to a subgroup of N p . 

This is most easily seen using equivariant fixed-point theory: P acts on the 
space of maximal tori of G and the Euler characteristic of the fixed subspace, 
that is, the set of tori whose normalizer contains P, is congruent (modp) to 
the Euler characteristic ofthe space G /Na(T), and this is 1. See, for example, 
[43]. But it is not hard to give an elementary proof. We have to show that 
every finite-dimensional unitary representation E of P is monomial. We argue 
by induction on the dimension of E. We may suppose that P is a subgroup 
of the unitary group U(E) and that E is an irreducible P-module. If P is 
Abelian, then E is I-dimensional. If not, then there is a non-central element 
hE P such that the commutator [g, h] E Z(P) (the centre of P) for all 9 E P. 
Let F be an eigenspace of h. Then G permutes the eigenspaces of h, and E 
is identified with the space of sections of the vector bundle P xQ F -+ P/Q, 
where Q is the stabilizer of F. One applies the induction hypothesis to the 
Q-module F. 

Now we have two complex representations of Np: 

E:= CEB ... EBC (Zl, ... ,Zn)· (Xl, ... ,Xn) = (ZlXl, ... ,Znxn), 

F:= CEB ... EBC (Zl' ... ' Zn)· (Xl, ... , Xn) = (Z{Xl, ... , Z~Xn), 

for (Zl, ... , Zn) E T, (Xl, ... , Xn) E cn, with Wp ::; 6 n acting by permutation 
of the factors. 

A check on characters, using the fact that 1 is prime to p, shows that 
F = 'I/}E. Here are the details. Write 9 = (zl, ... ,ZniW), with wE Np • We 
have to show that XF(g) = XE(gl). Since 1 is prime to p, the fixed-points of 
wand wi coincide, and we have 

XF(g) = E z! = E z! = XE(gl). 
w(i)=i w'(i)=i 

(The simplest example, with p = 2 = I, shows why we require 1 and p to be 
coprime.) 

Now the construction of Adams gives an Np-equivariant map 

a(E) : S(E) = S(C) * ... * S(C) -+ S(F) = S(C) * ... * S(C), 

obtained by taking the n-foldjoin ofthe Ith power map Z I-t zl : S(C) -+ S(C). 
It has (non-equivariant) degree In, prime to p. 

This allows us to define, by the balanced product construction, a fibrewise 
stable map 

a(~) E W~{~~i (1/J'~)~hp), 
with fibre degree In, for any complex n-dimensional vector bundle ~ whose 
structure group is reduced from U(n) to Np . 
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The transfer argument 

Consider now an arbitrary n-dimensional complex vector bundle ~ over B, 
and let P ~ B be the associated principal U(n)-bundle. We shall lift from B 
to B' := PjNp and write 7r : B' ~ B for the projection. So 7r*~ = P XNp E 
and 7r*'lj;I~ = P XNp F. (The equality signs indicate canonical isomorphism 
in the category of virtual complex bundles over B'.) 

Now the image 7rU a( 7r*~) of the class defined by a( E) above under the 
transfer map 

7ru : w~/{(7r*~)~/; (7r*'lj;I~)~/hp) ~ w~{~~; ('lj;I~)~hp) 

has fibre degree lnX(GjNp), which is prime to p. (Notice that up to this point 
we could have worked with integral groups; it is the next step which requires 
localization at p.) 

Define 
a(~) := (7rul)-l7rUa(7r*~) E w~{~~; ('lj;I~)~hp). 

It is a fibrewise stable map (at p) with fibre degree In. For 7rU(l) E wO(B) has 
degree X( G j Np ). The existence of such a stable map is the essential solution 
of the Adams conjecture. 

Proposition 9.6 Let p > 1 be a prime and 1 be an integer prime to p. Then 
there is, for any n-dimensional complex vector bundle ~ over a compact ENR 
B a canonically defined p-local equivalence 

of fibre degree In. 

Remark 9.7. It is not obvious that this definition of a(~) is consistent with 
the earlier usage when the structure group of ~ can be reduced to Np- This 
is, in fact, the case. Moreover, the construction a is multiplicative: 

for complex vector bundles ~ and ~' over B. Another property is also import­
ant in the characterization of a. Let 7r : B' ~ B be a p-fold covering. Then 

where the operations S: and P% are defined as follows. Let P ~ B be the 
principal 6 p -bundle associated to the p-fold covering. The vector bundle S~~ 
over B is the quotient 

PX6p(~EB"'EB~), 

by the permutation action of 6 p on the p-fold direct sum ~ EB ... EB ~ lifted 
to P. The power operation 
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P:: w~{(ii; (e)~} -+ W~/{(S~')~/; (S~(')~/} 

is constructed by taking the pth power, with the permutation action of 6 p , 

lifting from B to P, and then taking the quotient by the free group action. 
(See [25].) 

Granted the multiplicativity of a, one can define a natural class of fibre 
degree [dim, for any virtual complex bundle, = (ro"d over B: 

a(,) E w~b~; (1jJl,)~hp) 

as a(ro)' a('Yl)-l. 
For the remainder of this section we assume that [ generates the p-adic 

units Z; if p is odd and is ±3 (mod 8) if p = 2 (that is, generates Z; modulo 
±1). In his original work [1] on the conjecture which bears his name, Adams 
established: 

Proposition 9.8 Let a be a virtual complex bundle of dimension 0 over B 
such that a ~ is stably fibrewise homotopy trivial at p. Then there is a stable 
isomorphism 

for some integer k prime to p and some virtual bundle, of dimension 0 over 
B. 

The proof is K -theoretic and we provide only an outline, using the lan­
guage of fibrewise K-theory from Section 15. For more details see, for exam­
ple, Section 5 of [34]. 

The Bott class u of the complex bundle a generates the K-theory kO(BDI) 
of the Thorn space of a as a free KO(B)-module. We can think of this class 
as a K -theory map over B: 

u E K~{a~; B x SO}. 

Let us now localize the K -theory at p, so that 1jJ1 is defined as a stable op­
eration. Then 1jJl(U) = pl(a)u for some characteristic class plea) E KO(B)(p). 
Now if f E w~{a~; B x S°}cp) (= WO(BDI)(p)) is a p-Iocal equivalence, its 
Hurewicz image in K -theory will be fixed by the operation 1jJ1. Writing the 
Hurewicz image of f as xu for some unit x E KO(B)(p) , we see that 

plea) = 1jJl(x) . X-I. 

Computations in K -theory show that this condition is equivalent to the ex­
istence of an element y E KO(B)(p) such that [a] = 1jJly - y. 

The Adams conjecture asserts the converse to Proposition 9.8. 

Proposition 9.9 (Adams conjecture). Let a be a virtual bundle of dimension 
o over a compact ENR B such that ka is stably isomorphic to , _1jJl, for 
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some integer k prime to p and some virtual bundle 'Y over B. Then otis 
stably fibrewise homotopy trivial at p. 

Indeed, suppose that we have a stable isomorphism v: ka -+ 'Y-'l/;I'Y' From 
this data we can actual construct a stable trivialization (or stable cohomotopy 
Thorn class) 

(9.10) 

using the kth root provided by Proposition 9.4. Such a stable trivialization 
may be called an Adams trivialization. (See [32].) 

10 Duality 

The exposition in this section is strongly influenced by the important paper 
[49] of Dold and Puppe. The general proof of the existence of fibrewise duals 
for homotopy fibre bundles is due to Becker and Gottlieb [10]. We begin with 
a discussion of duality in a purely algebraic setting, taking as our motivating 
example the category of finite-dimensional super vector spaces. 

Duality in the category of finite-dimensional super vector spaces 

A super vector space E over a field k is a Z/2-graded vector space (Eo, El)' 
An element x E Ei has degree deg x = i. A linear map 

of degree 0 is a pair of linear maps fo : Eo -+ Fo and II : El -+ Fl j these are 
the morphisms in the category of super vector spaces. A linear map f : E -+ F 
of degree 1 is a pair of linear maps fo : Eo -+ Fl and II : El -+ Fo. We write 
Homi(E, F) for the vector space of linear maps E -+ F of degree ij thus 
Hom*(E, F) = (Homo(E, F), Homl (E, F)) is a super vector space. 

The direct sum and tensor product of super vector spaces E and E' are 
defined by: 

E tJJ E' = (Eo tJJ E~, El tJJ ED, 

E ® E' = ((Eo ® E~) tJJ (El ® ED, (Eo ® E~) tJJ (El ® E~)). 

The direct sum of linear maps of the same degree is defined in the obvious 
way. In super algebra a minus sign is introduced with every transposition of 
elements of degree 1. Accordingly, the tensor product f ® f' of linear maps 
f : E -+ F and f' : E' -+ F' of possibly different degree is defined by: 

(f ® !')(x ® x') = (_l)(deg !').(deg x) f(x) ® !' (x'). 
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There is a canonical isomorphism t between E ® E' and E' ® E given by 

E ® E' -+ E' ® E : x ® x' I--t (_I)degz.degz' x' ® x. (10.1) 

We can think of any vector space as a super vector space concentrated in 
degree 0, and then identify k with (k, 0). There are natural isomorphisms: 

k ® E -+ E and E ® k -+ E 

given by multiplication by scalars. 
From now on we restrict attention to finite-dimensional vector spaces. 

The dual E* of E is defined to be Hom* (E, k) = (Eo, Ei). There is an 
isomorphism q; : E* ® F -+ Hom*(E, F) given by 

q;(1 ® y)(x) = (_I)degz.degY1(x)y, for 1 E E*, x E E and y E F. 

There are two basic structure maps (that is, morphisms in the category): 

(10.2) 

the first corresponding to the inclusion of the scalar multiples of the identity 
in Hom*(E,E) and the second given by evaluation: 1 ® x I--t l(x). In terms 
of a basis (ej) for E and dual basis (ej) for E*, with ej(ej) = 1, we have 
i(I) = Ej(-I)dege;ej ® ej. The composition eo i : k -+ k is multiplication 
by dim Eo - dimEl . 

It is an elementary exercise to verify the following two basic identities sat­
isfied by i and e, and involving the composition e 0 t : E ® E* -+ E* ® E -+ k. 

Proposition 10.3 The maps i and e have the following properties. 
(i) The composition 

E* = k ® E* i®lE) E* ® E ® E* lE.®e)ot E* ® k = E* 

is the identity on E*, and 
(ii) the composition 

E = E ® k lE®\ E ® E* ® Eeot®lr k ® E = E 

is the identity on E. 

In these two identities is contained the complete duality theory for finite­
dimensional super vector spaces. 

Corollary 10.4 For any finite-dimensional super vector spaces D and F 
there are inverse isomorphisms 

Hom* (D ® E, F)~ Hom* (D, E* ® F) 

defined in terms of i and e as folYows. Let f E Hom*(D ® E,F) and 
g E Hom*(D, E* ® F). Then q;(f) is the composition 

D = D ® k l®i)D ® E* ® E t®l)E* ® D ® E l®/)E* ® F 
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and 1/J(g) is the composition 

D®E 9®1)E* ®F®E t®1)F®E* ®E 1®e)F®k = F. 

We show that 4>(1/J(g)) = 9 using the first identity in Proposition 10.3. It 
is clearly enough to take 9 to be the identity map D = E* ® F -t E* ® F. 
Then 4>(1/J(g)) reduces to the composition: 

E*®F 

= 1 
E* ® F ® k 1®i) E* ® F ® E* ® E 

~ 1 
E* ® F ® E* ® E 1®1®f E* ® F ® k 

1= 
E*®F, 

where the isomorphism 7r interchanges the two factors E*. This is the com­
position (i) of Proposition 10.3 tensored with the identity on F. 

A similar argument using (ii) shows that 1/J(4)(f)) = f. 

Remark 10.5. In the special case D = k, F = E, 

4> : Hom* (E, E) -t Hom* (k, E* ® E) 

maps 1 E Homo(E, E) to i. Since 4> is the inverse of 1/J, which is determined by 
e, the map i, given that it exists, is uniquely determined bye. Symmetrically, 
i determines e. 

The construction of the algebraic dual is, of course, functorial. Let us see 
how the dual r : F* -t E* of a linear map f : E -t F can be described in 
terms of the structure maps i and e for the duals of E and F. 

Lemma 10.6 The dual r of f : E -t F is equal to the composition: 

F* = k ® F* i®1) E* ® E ® F* 1181/181)1 E* ® F ® F* 1®eof E* ® k = E*. 

Expressed in terms of elements rather than arrows, the dual is given by 
the formula 

(f*m)(x) = (_l)(deg f)-(deg m)m(f(x)), for m E F*, x E E. 
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The verification is an elementary exercise. Before turning to stable homotopy 
we note the interpretation of the trace of an endomorphism in terms of the 
dual. 

Proposition 10.7 Let f : E -+ E be a linear endomorphism of degree O. 
Then the composition 

k~E·®E l®f)E·®E~k 

is multiplication by the (super) trace of f, tr(f) = tr(fo) - tr(fd. 

The duality structure which we have just described can be formalized in 
the abstract setting of a symmetric monoidal category; see [49]. We prefer 
not to do this, but take duality in the category of finite-dimensional super 
vector spaces as the model for duality in fibrewise stable homotopy theory. 

Duality in stable homotopy theory 

Throughout this section base spaces are understood to be compact. We dis­
cuss duality in the category <!B whose objects are fibrewise stable spaces 
(X, >.) over B, as in Section 8, where X is a pointed homotopy fibre bundle 
with fibre of the homotopy type of a finite complex. The morphisms are the 
fibrewise stable maps. For convenience of notation, we shall denote objects 
of <!B by single letters X, Y, ... and often speak as if they are spaces rather 
than, possibly, stable spaces. We shall use t for the canonical identification 
of X I\B X' and X' I\B X for any fibrewise stable spaces X and X'. 

Definition 10.8 Let X be a fibrewise stable space over B in the category 
([B. A dual for X is a fibrewise stable space X· in ([B equipped with structure 
maps i and e, which are fibrewise stable maps: 

B x SO~X·I\B X~B x So, 

(of degree 0) such that the compositions (i) 

X* = (B x So) I\B X* il\lx) X· I\B X I\B X* lxol\e)ot X· I\B (B x So) = X· 

and (ii) 

X = X I\B (B x SO) lxl\\ X I\B X· I\B X eotl\lr (B x SO) I\B X = X 

are, respectively, the identity on X· and the identity on X. 

The proof of the next proposition is exactly the same as that of the 
corresponding algebraic result (Corollary 10.4). 



236 An Introduction to Fibrewise Stable Homotopy Theory 

Proposition 10.9 Let (X*j i, e) be a dual of a fibrewise stable space X in 
(£B over B. Then for any fibrewise stable spaces Wand Y in (£B there are 
inverse isomorphisms 

4> 
w:B{W I\B Xj Y} ~w:B{Wj X* I\B Y} 

1/J 
defined as follows. 

For f E wB{W I\B Xj Y}, ¢(f) = (lx- 1\ f) 0 (t 1\ Ix) 0 (lw 1\ i): 

W = W I\B (B x So) 1Ai) W I\B X* I\B X tA1)X* I\B W I\B X 1A/)X* I\B Y. 

For 9 E w:B{Wj X*I\B Y}, 1/;(g) = (ly 1\ e) 0 (t 1\ Ix) 0 (g 1\ Ix): 

gAl * tAl Y * 1Ae ( 0) W I\B X ~X I\B Y I\B X ---t I\B X I\B X ---tY I\B B x S = Y. 

A dual, assuming that it exists, is unique. 

Corollary 10.10 Suppose that (X*ji,e) and (XO'jio,eo) are duals of X. 
Then there is a unique stable fibrewise homotopy equivalence h : XO' -t X* 
such that i = (h 1\ Ix) 0 io and eo = eo (h 1\ Ix). 

Indeed, we have an isomorphism 

'" . wO {X* 1\ X· B x SO} -t WO {X*· X*} '(J. BoB , B 0' 

determined by i. The equivalence h is ifJ(eo). The verification is formal non­
sense. 

We may, therefore, talk about the dual (X*j i, e) of X. The dual of X* is 
then, by the symmetry of the definition, (X j t 0 i, e 0 t). 

Remark 10.11. As in the algebraic case (Remark 10.5), specification of one 
component of the pair (i, e) determines the other. 

It is clear from the definition that duality is compatible with pull-backs: 
the pull-back of an identity map is an identity map. 

Proposition 10.12 Let a: B' -t B be a map of compact ENRs. If (X*j i, e) 
is the dual of X over B, then (a* X*j a*i, a*e) is the dual of a* X over B'. 

The existence of duals 

We shall demonstrate the existence of duals in the category (£B by a gluing 
construction. 

Lemma 10.13 Let B be a union of closed sub-ENRs B1 and B2 with inter­
section an ENR A = B1 n B2 • Suppose that X is a fibrewise stable space in 
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~B' Writing Xj for the restriction of X to B j , suppose that (Xijij,ej) is a 
dual of Xj, for j = 1, 2. Then X has a dual. 

Let h: (Xi)A -t (Xi)A be the unique stable fibrewise homotopy equiva­
lence, whose existence is guaranteed by Corollary 10.10 in the category ~A, 
such that 

(i2)A = (h 1\ 1) 0 (idA and (el)A = (e2)A 0 (h 1\ 1). 

By the gluing construction (Proposition 1.30), there is an object X* of ~B 
equipped with stable fibrewise homotopy equivalences f; : Xi -t (X*)Bi' 
j = 1, 2, compatible with hover A. Replacing Xi by the restriction of X*, 
we may now assume that Xi is precisely the restriction of X* to B j and that 
h is the identity map. We have to construct structure maps i and e over B 
extending those on Bl and B2' 

From the Mayer-Vietoris sequence (Proposition 3.13), there is a (not nec­
essarily unique) class e E w~{X I\B X*j B x SO} extending el over Bl and 
e2 over B2 , since they agree on the intersection A. By the five-lemma applied 
again to Mayer-Vietoris sequences, the map 

1/J : wB{Wj X* I\B Y} -t WB{W I\B Xj Y} 

defined as in Proposition 10.9 in terms of e is an isomorphism. In particular, 
we have an isomorphism 

w~{B x SOj X* I\B X} ~w~{Xj X}. 

Let i be the class mapping to Ix. It restricts to i j on Bj and, by a Mayer­
Vietoris argument again, defines as in Proposition 10.9 an isomorphism cPo 

The verification that (X* j i, e) is the required dual of X is a rather formal 
deduction. 

The proof that duals exist in the category of finite complexes is due to 
Spanier and Whitehead. H (F*j i, e) is a dual for a finite pointed complex F, 
then (B x F*j 1 x i,l x e) is a dual for the trivial bundle B x F. Hence: 

Corollary 10.14 Duals exist in the category ~B of locally trivial fibrewise 
stable spaces over B with fibre of the (stable) homotopy type of a finite com­
plex. 

As in the algebraic model, the dual is functorial. From the uniqueness 
statement, Corollary 10.10, the dual (X*j i, e) of X is a well-defined object 
of the category. Given a fibrewise stable map f E wB{Xj Y} between objects 
X and Y of ~B, we define the dual f* of f to be the composition: 

y* = (B x SO) I\B y* X* I\B (B x SO) = X* 

iAl 1 r lAeot (10.15) 
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Then one can check that (g 0 f)* = (-l)ij f* 0 g* for f E wk{X; Y} and 
9 E w~{Y; Z}; and that, under the identification of X** with X and y** 
with Y, one has f** = f. 

The Lelschetz trace and transler 

The trace in the stable category is related to the Lefschetz fixed-point index. 

Definition 10.16 Let X be an object ofthe category <!:.B and f E wE{ X; X} 
a fibrewise stable map. Then the Lelschetz trace TB(f, X) E w*(B) is defined 
to be the composition: 

B x SO~X* I\B X l/\f,X* I\B X~B x SO 

over B. 

We shall verify that this coincides with the fixed-point index defined in 
Section 6 when both definitions are applicable. The Lefschetz trace has prop­
erties analogous to those of the algebraic trace: 

Proposition 10.17 (Properties of the Lefschetz trace). Let X, X' and Y be 
objects 01 <!:.B. 

(i) TB(f, BxSO) = f E w*(B), lor a stable sell-map f E wE{BxSO; BxSO}. 

(ii) (Multiplicativity). Let I E WE{X; X} and!, E wE{X'; X'}. Then 

TB(f 1\ !"X I\B X') = TB(f,X)· TB(f', X') E w*(B). 

(iii) (Commutativity). Let IE wk{Y; X}, 9 E w~{X; Y}. Then 

TB(f 0 g, X) = TB«(f 1\ g) 0 t, X I\B Y) = (-l)ijTB(g 0 I, Y). 

(iv) (Symmetry). For f E wE{X; X} with dual f* E w*{X*; X*}, we have 

Taken together, (i) and (ii) show that TB : wE{X; X} -+ w*(B) is an 
w*(B)-module map. 

To define the Lefschetz transfer we have to work with genuine fibrewise 
pointed spaces, rather than fibrewise stable spaces. 

Definition 10.18 Let X -+ B be a pointed homotopy fibre bundle with fibre 
of the homotopy type of a finite complex. The diagonal map .1 : X -+ X I\B X 
enters crucially into the following definition. For I E WE {X; X} we define 
the Lelschetz transler fB(f, X) E wE{B x So; X} to be the composition: 
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(B x SO) /\B X = X 

i eAl 

Remark 10.19. The analogue in the category of finite-dimensional super vec­
tor spaces is defined for a linear self-map f : K ~ K of a finite-dimensional 
(super) commutative super algebra K. (To be precise, this is the dual of the 
situation in the stable homotopy category; for an exact analogy we should 
look at a co-algebra.) The multiplication K ® K ~ K replaces the diagonal 
Ll. Reversing arrows in the diagram above we obtain a linear map K ~ k, 
which maps an element x E K to the trace of f composed with multiplication 
by x. When K is an extension field of k and f is the identity, this is familiar 
as the trace map in Galois theory. 

To relate TB(f,X) and TB(f,X) we must specialize further. Suppose 
that M ~ B is a homotopy fibre bundle with fibre of the homotopy type of 
a finite complex. We now take X = M+B' The unique fibrewise map M ~ B 
determines a fibrewise pointed map p+ : X = M+B ~ B+B = B x So. In 
this situation we have: 

(10.20) 

(To pursue the algebraic analogy in Remark 10.19, one needs to consider an 
algebra K with identity, so that k is included as a subring in K. The transfer 
K ~ k restricts to multiplication by the trace: k ~ k.) 

Invertible fibrewise spaces 

Hopkins has explained how many algebraic notions, including the idea of an 
invertible module, can be carried over to stable homotopy theory; see, for 
example, [75]. 

Definition 10.21 We say that an object X of ~B is invertible if its duality 
structure maps i : B x SO ~ X* /\B X and e : X* /\B X ~ B x So are stable 
isomorphisms. Of course, if one of the pair (i, e) is an isomorphism, then so 
is the other. 

In the classical situation that B is a point, it is an elementary exercise to 
see that the invertible objects are the (stable) spheres. From local homotopy 
triviality and Dold's theorem we deduce that X is invertible if and only if 
each fibre Xb is (stably) homotopy equivalent to a sphere. Traditionally such 
fibrewise spaces are called spherical fibrations; the term pointed homotopy 
sphere-bundle conforms better to our terminology. 
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Proposition 10.22 An object X of <tB is invertible if and only if its fi­
bres have the stable homotopy type of spheres. In other words, the invertible 
fibrewise spaces are the pointed homotopy sphere-bundles. 

Duality for fibrewise ENRs 

For the remainder of this section M ~ B will be a compact fibrewise ENR 
over the compact base B. Recall from Lemma 5.18 that such a fibrewise space 
is a homotopy fibre bundle. There is a geometric construction of the dual of 
X = M+B, which we now describe. Choose a fibrewise embedding i of M as 
a closed subspace of ~ for some finite-dimensional real vector bundle ~ over 
B and a retraction r of some open neighbourhood W onto M: 

M~W~M. 

We identify M with the subspace i(M) ~ ~. The construction will depend 
upon the technical results (5.23)-(5.30) from Section 5, and we use the not­
ation employed there. We shall show that Y := (CB(~'~ - M),~) with ap­
propriate structure maps is the dual of X := M+B' It is not obvious that 
CB(~' ~ - M) is stably locally fibre homotopy trivial (with fibres having the 
stable homotopy type of finite complexes). This will only emerge indirectly. 
We shall write down explicit maps 

~~ ~CB(~'~ - M) /\B M+B ~~~, 
determining, by desuspending, stable maps B x So ~ Y /\B X ~ B x So 
satisfying the identities (i) and (ii) of Definition lO.8. Then, given that X has 
a dual X* in the category <tB, we deduce from the argument (Corollary lO.10) 
on the uniqueness of the dual, that Y is stably fibrewise homotopy equivalent 
to X*. 

Recall (Proposition 5.26) that the inclusion of the open set W in M gives 
a fibrewise pointed homotopy equivalence: CB(W, W - M) ~ CB(~'~ - M). 
We shall use this equivalence without comment. 

The structure maps are defined as compositions: 

" .::1 i:B xSo~Y~Y /\BX, 
.::1" 

e :Y/\BX~X~BxSo. 

The symbols p and L1 are used to suggest 'projection' and 'diagonal'; we shall 
see the reason when we look at duality for fibrewise manifolds in Section 12. 
The maps we write down will actually be suspensions, defined on the smash 
products with ~~. 

The simplest is 
p: ~~ /\B (M+B) ~ ~~. 

It is the map induced by the projection M ~ B (for which we have also used 
the symbol p). 
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To define p* we scale the inner product on ~ so that M is contained in the 
closed unit disc-bundle D(~). From Remark 5.28 we have a fibrewise homo­
topy equivalence fJj ~ CB(~'~ - D(~)). The composition with the fibrewise 
map CB(~'~ - D(~)) ~ CB(~'~ - M) induced by the inclusion is 

p* : ~~ ~ CB(~'~ - M) ~ CB(W, W - M). 

The linear map (x, y) t-+ (x-y, y) : ~ XB~ ~ ~ XB~, defined by the differ­
ence in the vector bundle, maps the diagonal to the first factor ~ XB (B x {O}) 
and restricts to a map of pairs 

(~XB M, (~XB M) - (M x M)) ~ (~XB M, (~- (B x {O}) XB M). 

The composition of induced maps is 

.1* : CB(~'~ - M) I\B (M+B) ~ )CB(~ XB M, (~XB M) - (M XB M)) 

~CB(~'~ - (B x {O})) I\B CB(M,0) ~ ~~ I\B (M+B). 

At the last step we have used the equivalence in Remark 5.28 and the obvious 
identification of CB(M, O) with M+B. 

It is only in the definition of .1 that we use the retraction r of W onto M. 
The map of pairs (W, W - M) ~ (W XB M, (W - M) XB M): x t-+ (x,r(x)) 
induces a fibrewise map CB(W, W -M) ~ CB(W, W -M)I\B (M+B), which 
gives 

.1: CB(~'~ - M) ~ CB(~,~ - M) I\B (M+B). 

Having defined i and e, it is not difficult to check the two basic identities. 
The argument involves two further 'diagonal' maps: 

.1 : X ~ X I\B X and .1*: Y I\B Y ~ Y. 

The first is induced by the geometric diagonal map M ~ M x B M. The 
second is the desuspension of the map 

determined by the map of pairs from (W x B W, W X B W - M x B M) to 
(~ XB W,~ XB W - 0 XB M) taking (x,y) to (x - y,y). It behaves like a 
geometric diagonal map in that it commutes with switching the factors. 

Lemma 10.23 In the notation above, we have 

.1* 0 t = .1* : Y I\B Y ~ Y. 

Verification of the identities (i) and (ii) now reduces to establishing the 
commutativity of the following diagrams: 
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and 

y P·I\I) Y AB Y ill\l) Y AB X AB Y 

~. - 1il. 1 11\(il·ot) 

1 ~ il 

Y~YAX 
111\p 

1 

Y 

(Further details can be found in [49] and [99].) 

(10.24) 

(10.25) 

In the classical case in which B is a point, one can verify, by using the 
fact that the homology of the stable dual constructed in this way is dual to 
the homology of the compact ENR M, that the stable dual has the stable 
homotopy type of a finite complex. 

The fixed-point index 

We conclude this discussion of duality theory by relating the fixed-point the­
ory of Section 6 to the Lefschetz trace and transfer defined using duality. 

Proposition 10.26 Let f : M -t M be a fibrewise self-map of a compact 
fibrewise ENR M over a compact ENR B. Then the Lefschetz-Hopf fixed­
point index, LB(f, M), of f and the Lefschetz transfer, TB (f+ , M+B), of the 
induced fibrewise pointed self-map f+ of M+B coincide: 

- - 0 0 
LB(f,M) = TB(f+,M+B) E wB{B x S ; M+B}. 

As a consequence, 

The deduction of the equality of the fixed-point index and the trace is 
immediate, by (10.20). The main statement is proved by expanding the def­
inition of the transfer TB (f+ , M+B) in terms of the explicit duality maps i 
and e constructed above. 



Chapter 3. Manifold Theory 

11 Fibrewise differential topology 

In this section we take up the discussion of fibrewise differential topology be­
gun in Part I, Section 22. As we observed there, fibrewise manifolds appeared 
in the work of Atiyah and Singer [5] on the Index Theorem for families of 
elliptic pseudodifferential operators and were there called manifolds over a 
base. The definition that we give here is rather more general than that given 
by Atiyah and Singer, although their definition covers most of the important 
examples. We broaden the definition in such a way that open subspaces of 
fibrewise manifolds are also regarded as fibrewise manifolds. 

In this section and in the sequel, all manifolds are assumed to be smooth, 
finite-dimensional, Hausdorff, with a countable basis. Unless the contrary is 
indicated, manifolds are assumed to be without boundary. 

Fibrewise manifolds and fibrewise smooth maps 

Fibrewise manifolds over a base B will be modelled on open subsets 

W~BxE, 

of a trivial bundle with fibre a finite-dimensional real vector space E. A 
fibrewise map f : W -+ B x F to another such trivial vector bundle with 
fibre F is said to be fibrewise smooth if the following condition holds. The 
restriction of i to fibres at b E B is a map ib : Wb -+ F from an open subset 
of the vector space E to the vector space F. We require that each map ib 
be smooth (that is, COO), and that for each k ~ 1 the kth derivative should 
define a continuous map 

to the vector space of symmetric k-multilinear maps from E to F. 
We now define a smooth structure on a fibrewise space M -+ B over B in 

the classical way by a family of coordinate charts if! covering M. Each chart 
if; E if! is a fibrewise homeomorphism 

(11.1) 

M. C. Crabb et al., Fibrewise Homotopy Theory
© Springer-Verlag London Limited 1998
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from an open subset WI/> of B x EI/> for some (finite-dimensional) Euclidean 
space EI/> to an open subset MI/> of M. The transition functions are required 
to be fibrewise smooth. To spell this out, suppose that ifJ, 1jJ E ifl. Then 
1jJ-l 0 ifJ : ifJ-l(MI/> n M.p) -t W.p, composed with the inclusion, is a fibrewise 
map from an open subset of B x EI/> to B x E.p. This map should be fibrewise 
smooth in the sense that we have defined above. Such a family of charts 
defines a smooth structure on the fibrewise space M -t B. 

The general notion of fibrewise smooth map is defined in the obvious way. 
Let M -t B and N -t B be fibrewise spaces, each equipped with a smooth 
structure, and let f : M -t N be a fibrewise map. Then f is fibrewise smooth 
if for each chart ifJ, defined on WI/> ~ B x E, for M and each chart 1jJ, defined 
on W.p ~ B x F, for N the map 

1jJ-l 0 f 0 ifJ: WI/> n f-l(W.p) -t W.p ~ B x F 

is fibrewise smooth. 

Definition 11.2 Let M -t B be a fibrewise space (over an ENR B) admit­
ting a smooth structure. We assume that the topological space M is Hausdorff 
and has a countable basis. As in the standard definition of a manifold we re­
gard the smooth structures on M defined by two families of coordinate charts 
as equivalent if the identity map from M equipped with one smooth struc­
ture to the same space equipped with the other smooth structure is fibrewise 
smooth in the sense defined above. We call M -t B with an equivalence class 
of smooth structures a fibrewise (smooth) manifold over B. 

(The reader may consider it prudent to take the vector spaces EI/> allowed 
in the definition of a coordinate chart from some chosen set of vector spaces. 
In that case we may take the manifold structure to be given by a maximal 
atlas of charts.) 

With this definition (which differs from that in Section 22 of Part I) any 
open subspace of a fibrewise manifold is naturally a fibrewise manifold. 

Given a continuous map 0: : B' -t B, the pull-back 0:* M -t B' of a 
fibrewise manifold M -t B has a natural structure as a fibrewise manifold: a 
chart ifJ: WI/> -t MI/> for M lifts to a chart 

o:*WI/> (~ B' x EI/» -t 0:* MI/> (~ 0:* M) 

for 0:* M. A fibrewise smooth map f : M -t N over B pulls back to a fibrewise 
smooth map 0:* f : 0:* M -t 0:* N over B'. 

In particular, each fibre Mb of a fibrewise manifold M -t B is a smooth 
manifold. If each fibre is of dimension n, that is, if the fibrewise manifold 
is modelled on open subsets of B x JRn, we say that M -t B has (fibre) 
dimension n. 

The term fibrewise diffeomorphism is used for an equivalence in the cate­
gory of fibrewise manifolds and smooth maps over a given base. Products exist 
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in the category: the topological product M x B M' of fibrewise manifolds over 
B is given a smooth structure by forming the products of coordinate charts. 

Example 11.3. As a simple example, let us look at dimension O. The fibrewise 
space p : M -t B is a O-dimensional fibrewise manifold if each point of M 
has an open neighbourhood which maps homeomorphically under p to an 
open subset of B. The manifold structure is then unique. In this case it is 
not difficult to show that, if M is fibrewise compact, then M -t B is a finite 
covering space; see Part I, Proposition 1.12. We shall generalize this result to 
higher dimensions in Proposition 11.13. 

Example 11.4. Let M and B be smooth manifolds and let p : M -t B be 
a smooth submersion. Then M -t B has a natural structure as fibrewise 
manifold. 

Indeed, let us say that a coordinate chart ¢, 

in the notation of (11.1), is compatible with the smooth structures on M and 
B if it is a diffeomorphism from the open submanifold W¢ of B x E¢ to the 
open submanifold M¢ of M. The collection of such compatible charts gives 
M -t B the structure of a fibrewise manifold. 

We say that M -t B is a smooth fibre bundle if each point b E B has an 
open neighbourhood U such that there is a trivialization U x Mb -t Mu over 
B compatible with the smooth structures on the product U x Mb and the 
open submanifold Mu of M. 

For the remainder of this section, M -t B is supposed to be a fibrewise 
manifold. 

A function p : M -t lR defined on a fibrewise manifold is said to be 
fibrewise smooth if the associated fibrewise map M -t B x lR is fibrewise 
smooth over B. The assumptions on the topology of M ensure that M admits 
fibrewise smooth partitions of unity subordinate to any open covering. The 
proof proceeds just as in the case of an ordinary manifold. 

Locally trivial fibrewise manifolds 

The most important examples of fibrewise manifolds are locally trivial. If F 
is a (smooth, Hausdorff, with a countable basis) manifold, then the trivial 
bundle B x F -t B, being the pull-back by the map B -t *, has a natural 
smooth structure. We call a fibrewise smooth manifold trivial if it is fibrewise 
diffeomorphic to such a manifold B x F -t B and locally trivial if each point 
of the base has an open neighbourhood over which the fibrewise manifold is 
trivial. We shall also refer to a locally trivial fibrewise manifold over B as a 
fibrewise smooth fibre bundle over B. 
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An important class of examples arises from fibre bundles with structure 
group a Lie group. Let G be a Lie group acting smoothly on a manifold F 
and let P -7 B be a principal G-bundle. Then M := P Xa F -7 B has a 
natural structure as fibrewise smooth fibre bundle with local trivializations 
determined by local trivializations of P -7 B. For example, any real vector 
bundle of dimension n over M is a fibrewise smooth fibre bundle of (fibre) 
dimension n. 

In Section 5 we saw that a fibrewise compact ANR is a homotopy fibre 
bundle. We shall see below that a fibrewise compact manifold is a fibrewise 
smooth fibre bundle. 

The fibrewise tangent bundle 

A tangent vector along the fibres at a point x EM, in the fibre over b E B, is 
a tangent vector to the fibre Mb at x. The fibrewise tangent space (TBM)z 
at x E M is the tangent space (TMb)z to the fibre. These fibrewise tangent 
spaces are the fibres of a vector bundle TB Mover M which we shall call the 
fibrewise tangent bundle of M (or, in more classical terminology, the bundle 
01 tangents along the fibres). 

The topology on TBM is defined by the coordinate charts as follows. A 
chart ¢ as in (11.1) gives a vector bundle isomorphism over B from W4> x E4> 
to the open subset TBM I M4> of TBM: 

4>' 
W4> x E4> ~ TBM I M4> 

1 
W4> ------t 

4> 

1 (11.5) 

Considered as a fibrewise space over B, TB M -7 B has a natural fibrewise 
smooth structure determined by requiring that the map ¢' in the diagram 
above be fibrewise smooth over B when W4> x E4> is given the standard smooth 
structure as an open subspace of B x (E4> tBE4»' The given local trivialization 
(11.5) of TBM is then fibrewise smooth over B. We say that TBM is fibrewise 
smooth as a vector bundle over B. 

The derivative of a fibrewise smooth map I : M -7 N over B, restricting 
on fibres at b E B to the usual derivative It : (TMh -7 (TNh, is a vector 
bundle homomorphism f' : TB M -7 TB N lifting I : M -7 N. It is fibrewise 
smooth over B. 

For the case of a smooth submersion, as discussed in Example 11.4, the 
fibrewise tangent bundle is the kernel: 

0-7 TBM ------tTM ~p*TB -7 0 

of the derivative p' of the projection p: M -7 B. When M -7 B is a smooth 
fibre bundle this is traditionally known as the bundle of tangents along the 
fibres of p and is sometimes written as T(P). 
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Fibrewise submanilolds 

Fibrewise submanifolds may be defined just as in the classical theory. Suppose 
that a fibrewise manifold M -t B is a subspace of a fibrewise manifold 
N -t B. We say that M is a fibrewise submanilold of N if N admits a 
covering by coordinate charts of the form 

where WI/> is an open subset of B x (EI/> E9 FI/» for some Euclidean spaces EI/> 
and FI/>, such that rjJ restricts to a coordinate chart 

WI/> n (B x EI/» -t MnNI/> 

forM. 
The fibrewise normal bundle of the embedding i : M <-t N is the quotient 

lI(i) := i*TBN/TBM. It is a vector bundle over M which is fibrewise smooth 
over B. 

In talking about such a vector bundle II over M there is a potential source 
of confusion in the notation for fibres: for x EM, liz is the vector space fibre 
at x, whilst for bE B, lib is the vector bundle over Mb obtained by restriction 
of II to that subspace. 

Immersions and embeddings 

Definition 11.6 A fibrewise smooth map f : M -t N is said to be (i) a fibre­
wise immersion ifthe derivative f~ : (TBM)z -t (TBN),(z) is injective at each 
point x E M; (ii) a fibrewise embedding if f(M) is a fibrewise submanifold of 
Nand 1 defines a fibrewise diffeomorphism M -t f(M). 

Remark 11.7. Suppose that f~ is injective at each point x of a subspace 
K ~ M. Then, since injectivity of a linear map of finite-dimensional vector 
spaces is an open condition, there is an open neighbourhood W of K in M 
such that f I W : W -t N is a fibrewise immersion. 

As in the classical situation, an embedding is easily seen to be an im­
mersion and with more effort one can show that an immersion is locally an 
embedding: 

Lemma 11.8 Let f : M -t N be a fibrewise immersion over B, and let 
x EM. Then there is an open neighbourhood W 01 x in M such that 
f I W : W -t N is a fibrewise embedding. 

This is essentially a parametrized inverse/implicit function theorem. We 
omit the proof, which follows closely the familiar case in which B is a point. 
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Compact fibrewise manifolds can be embedded as submanifolds of a trivial 
vector bundle B x E by using a finite covering by coordinate charts and a 
partition of unity. More generally, we have: 

Lemma 11.9 Let K be a compact subspace of a fibrewise manifold Mover 
B. Then there is an open neighbourhood W of K in M which embeds in B x E 
for some (finite-dimensiona~ Euclidean space E. 

Let ~, in the notation that we have used before, in (11.1), be a finite 
family of coordinate charts of M covering K. From 4>, defined on the open 
subset M"" we obtain a fibrewise smooth embedding i", : M", ~ B x E",. 

Now let W be an open neighbourhood of K with closure contained in 
U M",. Then we may choose a partition of unity (p",) on W such that the 
closure of the support of p", is contained in M",. Take E to be the finite direct 
sum of the Euclidean spaces E",. Then 

i:= E p",i", : W ~ B x EB E", = B x E 
"'E~ "'E~ 

is the required embedding. (The function p",i"" defined in the first place only 
on M"" is extended over M to be zero outside the support of p",.) 

We shall need the following generalization of Lemma 11.8. 

Lemma 11.10 Let f : M ~ N be a fibrewise immersion, and let K ~ M 
be a compact subspace such that the restriction of f to K is injective. Then 
there is an open neighbourhood W of K in M such that f I W : W ~ N is a 
fibrewise embedding. 

By Lemma 11.9, applied to K and f(K), we may assume that both M 
and N are submanifolds of trivial vector bundles over B and so, in particular, 
are metrisable. We write d for the metric on both. 

It follows from Lemma 11.8, by an elementary compactness argument, 
that there is a positive real number € > 0 such that the restriction of f 
to any open ball of radius 2€ in M centred on a point of K is a fibrewise 
embedding. From the compactness of K and the injectivity of f on K, there 
is a positive ° < € such that d(f(x) , f(y)) is bounded away from 0 on the set 
of pairs 

((x,y) E M x M I d(x,K) ~ 0, d(y,K) ~ 0, d(x,y) ~ €}. 

We may take W to be the union of the open balls of radius 8 centred on 
points of K. 
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Fibrewise transversality 

Let M, Nand Q be fibrewise manifolds over B, and let f : M -t N and 
s : Q -t N be fibrewise smooth maps. We write 

P:= ((x,y) E Q XB M I s(x) = f(y)} ~ Q XB N 

for the fibre product Q XN M. The maps f and s are said to be transverse if 
for each (x,y) E P, with s(x) = z = f(y) E N, the sum of derivatives 

(11.11) 

is surjective. 
The first assertion of the next lemma is local and is a consequence of the 

generalized inverse/implicit function theorem. 

Lemma 11.12 Suppose that the fibrewise smooth maps f and s as above are 
transverse. Then P has a natural structure as a fibrewise manifold over B 
and for each (x, y) E P, there is a shori exact sequence of vector spaces: 

'(fjJ' o -t (TBP)(x,y) -t (TBQ)x EB (TBM)y ~ (TBN)z -t 0, 

where s(x) = z = f(y). 
If M is fibrewise compact and s : Q -t N is proper, then P is a fibrewise 

compact submanifold of the product Q XB M. 

The condition that the fibrewise map s : Q -t N over B be proper means 
(in the present context of locally compact Hausdorff spaces) that the inverse 
image of a fibrewise compact subspace is fibrewise compact. 

Fibrewise compactness 

Proposition 11.13 Let M -t B be a fibrewise compact manifold over B. 
Then M -t B is locally trivial as a fibrewise manifold. 

Since the problem is local, there is no loss of generality in assuming that 
B is compact. (Indeed, we could simply take B to be a closed disc.) The 
space M is then compact and, by Lemma 11.9, we may suppose that M is 
a fibrewise submanifold of B x E for some Euclidean space E. We may also 
assume that M is connected and so of constant dimension. Fix a E B. We 
shall produce a trivialization in a neighbourhood of a. 

Each fibre Mb is a closed submanifold of E. The normal bundle Vb of 
Mb '-+ E is the restriction of the fibrewise normal bundle V over M of the 
embedding M '-+ B x E. Using the Euclidean metric, we identify v with the 
orthogonal complement of TBM in the trivial bundle M x E. 

We define j : v -t B x E as follows. A point x E M may be written as 
(b, u) E B x E, and an element y of Vx is then described as (x, v) E M x E. 
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We define j(y) := (b,u + v) and write the length of the normal vector as 
lIyll = IIvll· The map j is a fibrewise immersion: its derivative is essentially 
the identity map at each point. By Lemma 11.8, j embeds an open neighbour­
hood of M in v into B x E, and using compactness again we may take this 
neighbourhood to be of the form B,(v) := {y E v Illyll < €} for some € > o. 
We have thus constructed, rather explicitly, a fibrewise tubular neighbour­
hood of M in B x E. (We shall look at the general construction of tubular 
neighbourhoods shortly.) 

Let us writei: M <-+ W for the inclusion of M in the open tubular 
neighbourhood W := j(B,(v)) and r : W -+ M for the fibrewise retraction 
given by collapsing the disc-bundle to its zero-section: r(j(y)) = x if y E V z , 

x EM. We have established: 

Corollary 11.14 A fibrewise compact manifold over B is a fibrewise ENR. 

Consider the fibres Mb and Wb as subspaces of E. By compactness of Ma , 

there is an open neighbourhood U of a in B such that Ma ~ Wb for b E U. 
So over U we have an embedding of U x Ma in Wu. The composition with 
the retraction r: 

U x Ma -+ Wu~Mu, 

which is the identity on the fibre at a, will give the sought-for trivializa­
tion over a (possibly) smaller neighbourhood of a. By Remark 11.7 and 
Lemma 11.8 its restriction to a neighbourhood of a is a fibrewise embed­
ding. Since the fibres are manifolds of the same dimension, Ma is embedded 
as a union of components of Mb for b close to a. To see that the map is 
surjective, near a, delete the image of the trivial bundle with fibre Ma to get 
a fibrewise compact manifold with empty fibre at a. Because of compactness 
fibres must be empty in a neighbourhood of a. This completes the proof of 
Proposition 11.13. 

Fibrewise smooth Euclidean metrics 

In our discussion of fibrewise tangent and normal bundles we have already 
met the idea of a fibrewise smooth vector bundle ~ over a fibrewise manifold 
M -+ B. The (total) space ~ is a fibrewise manifold over B, and as a vector 
bundle over M admits, in a neighbourhood of any point, a local trivialization 
which is fibrewise smooth over B. We shall need to equip such a vector 
bundle with a fibrewise smooth Euclidean metric. The meaning should be 
clear. A metric is, in particular, a section of the fibrewise smooth vector 
bundle (~0~) *; it should be fibrewise smooth over B as a map M -+ (~0~) * . 
Equivalently, the Euclidean vector bundle should admit fibrewise smooth 
local trivializations. The existence of fibrewise smooth metrics is established 
in the usual way with the help of a fibrewise smooth partition of unity on M. 
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Tubular neighbourhoods 

For the rest of this section we shall take the base space B to be compact. 
Let M ~ B be a compact fibrewise manifold and let i : M ~ N be 

a fibrewise embedding with fibrewise normal bundle v = v( i). Choose a 
fibrewise smooth Euclidean metric 9 on v and write the length of a normal 
vector y as lIyll. Let DE(v) := {y E v I lIyll ~ f} denote the disc-bundle 
of radius f (> 0) in v. The fibrewise manifold M is embedded in v as the 
zero-section with normal bundle (naturally identified with) v. 

Definition 11.15 In the situation described above, a tubular neighbourhood 
of i is a fibrewise embedding 

j:W~N 

of an open neighbourhood of the disc-bundle DE(V) of radius f in v, for some 
f > 0, which extends i on M and whose derivative j' induces the identity 
map from the normal bundle v of M in DE (v) to the normal bundle v of M 
in N. 

In this definition we are only interested in the embedding of the disc­
bundle DE(v), but require that j be defined on an open neighbourhood to 
provide differentiability on the bounding sphere-bundle 8E (v) = 8DE(V). 

For dimensional reasons, j gives a diffeomorphism between Wand the 
open subset j (W) of N. 

The existence of tubular neighbourhoods is an essential ingredient in Dif­
ferential Topology. 

Proposition 11.16 Let i : M ~ N be a fibrewise embedding of a compact 
fibrewise manifold M in a fibrewise manifold N over a compact ENR B. Then 
i admits a tubular neighbourhood. 

The standard construction, using a Riemannian metric on a neighbour­
hood of i(M) in N and the exponential map which it defines, carries through 
with only minor modifications. 

There is no loss of generality in assuming that M is a submanifold of N 
and that N is covered by a finite number of charts. Choose a fibrewise smooth 
Riemannian metric on N, that is, in the terminology above, a Euclidean 
metric on TBN. We use the metric to identify v = v(i) with the orthogonal 
complement of TBM in (TBN) I M. The restriction of the exponential map, 
defined on a neighbourhood of the zero-section in (TB N) 1M, gives a fibrewise 
smooth map 

j:W~N 

on an open neighbourhood of M in v. And the derivative of j on M is, by con­
struction, the identity map. By Lemma 11.8, we may replace W by a smaller 
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open neighbourhood on which j is an embedding. Again by compactness W 
will contain the disc-bundle D£(v) for f > 0 sufficiently small. 

This establishes the existence of tubular neighbourhoods. We also need 
the uniqueness up to homotopy. 

Proposition 11.17 Let i : M ~ N be a fibrewise embedding of a compact 
fibrewise manifold M in a fibrewise manifold N over a compact ENR B. 
Let jo and h be tubular neighbourhoods of i of the same mdius f in possibly 
different metrics. Write 7r : B x [0, 1] ~ B for the projection. Then there is 
a tubular neighbourhood j : W ~ 7r* N of the pull-back 7r*i : 7r* M ~ 7r* N of 
i : M ~ N to B x [0,1] which restricts to jo and h at the ends B x {O} and 
B x {I}. 

In describing the tubular neighbourhoods jo and h we use the notation 
g, 11.11 and W of Definition 11.15 with distinguishing subscripts 0 and 1. 

The basic idea is to deform jo linearly into h by defining, for 0 ~ t ~ 1, 
jt(Y) = jo«I- t)y + tjr;l (jl (y))), where this makes sense. The addition takes 
place in the convex disc-bundle D£(v) in the go-metric. 

To deal more carefully with the end-points, let p : [0, 1] ~ [0,1] be 
a continuous function which takes the value 0 on [0,1/3] and the value 1 
on [2/3,1]. Write U for the open disc-bundle {y E v I IIYllo < fl. Then 
V := Un jll (joU) is an open neighbourhood of M in Wo n WI ~ v. Let W' 
be the open subset (Wo x [0,1/3)) U (V x [0,1]) U (WI X (2/3,1]) of 7r*V. We 
define a fibrewise map j : W' ~ N x [0,1] over B x [0,1] by: 

{ 
jo (y) for 0 ~ t ~ t, 

j(y,t)= jo«I-p(t))y+p(t)jr;l(jl(Y))) foryEV, 
h (y) for ~ ~ t ~ 1. 

By the standard argument, there is an open neighbourhood WIt of M x [0,1] 
in W' on which j is a fibrewise embedding. And we may certainly arrange 
that WI' coincides with Wi = Wo for t in a neighbourhood of 0 and with 
W; = WI in a neighbourhood of 1. This allows us to rename WIt as the 
required open subset W of 7r*V. 

It remains to define a metric g on 7r* v, extending go and gl, such that the 
closed f-disc lies in W. This is easily done by taking gt = o(t)gO + f3(t)gl for 
suitably chosen functions 0, f3 : [0, 1] ~ [0,00). 

The diagonal embedding 

An important example of a fibrewise embedding is the diagonal inclusion 

L1:M~MxBM. 

The restriction of TB(M XB M) to M is the direct sum TBM E9 TBM, into 
which the derivative ,1' includes TBM as the diagonal. The normal bundle 
v(L1) can, therefore, be identified with TBM by the composition: 
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TBM lEBO) TBM E9 TBM ---+ v. (11.18) 

We make this choice of isomorphism, taking the first rather than the second 
factor, once for all. 

The group 71./2 acts on M XB M by interchanging the factors, with fixed 
subspace Ll(M). If we choose a Riemannian metric on M and use the expo­
nential map defined by the product metric on M x B M to construct a tubular 
neighbourhood of the diagonal, then everything will be automatically equi­
variant. 

Let L denote the Z/2-module IR with the non-trivial action of the gen­
erator as -1. Then L ® TBM is just the vector bundle TBM with the an­
tipodal action of 71./2. The equivariant tubular neighbourhood embeds the 
disc-bundle 

D.(L®TBM) ~ M XB M 

into the square M x B M. 

Local triviality of fibrewise embeddings 

(11.19) 

In the differentiable category we have the following analogue of the local ho­
motopy triviality of maps between homotopy fibre bundles (Proposition 1.2). 

Proposition 11.20 Let i : M -+ N be a fibrewise embedding of a compact 
fibrewise manifold M into a fibrewise smooth fibre bundle N over a compact 
ENR B. Then for each b E B there exists an open neighbourhood U of band 
fibrewise diffeomorphisms ¢ : Mu -+ U X Mb and'IjJ : U x Nb -+ Nu over U 
such that iu = 'IjJ 0 (1 x ib) 0 ¢. 

The key idea is familiar as the statement that, for any v E IRn , there is a 
diffeomorphism of IRn which is the identity outside a compact set and maps 
o to v. It implies, for example, that the diffeomorphism group of a connected 
manifold acts transitively on the manifold. The constr.uction generalizes easily 
in the following way. 

Lemma 11.21 Let ~ be a smooth vector bundle, equipped with a smooth 
Euclidean metric, over a manifold A. Let s be a smooth section of ~ with 
IIs(b)1I < 1/2 for all bE A. Then there is a smooth fibrewise diffeomorphism 
() : ~ -+ ~ over A such that, for all b E A, ()b(O) = s(b) and ()b(V) = v for 
v E ~b with IIvll ~ 1. 

Choose a smooth bump function p: [0,00) -+ IR such that 0 ~ p(t) ~ 1 
for all t, while pet) = 1 for t ~ 1/4 and p(t) = 0 for t ~ 1. For b E A consider 
the vector field Vb on the Euclidean space ~b given by 
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This has compact support contained in the unit disc D('b) and Vb(X) = s(b) 
for Ilxll ~ 1/2. Take (h to be 8b(1), where 8b is the flow determined by the 
vector field Vb. Since the section s is smooth, the diffeomorphism Ob will vary 
smoothly with b. 

This completes the proof of the lemma and we can proceed to the proof 
of Proposition 11.20. We may assume that M = B x F and N = B x F' are 
trivial. Embed F in F' by ib with normal bundle v. Let D2(V) <-t F' be a 
tubular neighbourhood of radius 2 for some Euclidean metric on v. We shall 
think of the disc-bundle as a subspace of F'. For a sufficiently close to b, say 
a E U where U is an open neighbourhood of b, ia will map F into the open 
disc-bundle of radius 1/2 and composition with the projection onto F: 

F~D2(V)--+F 

will be a diffeomorphism ¢a. To simplify notation we may now suppose that 
the fibrewise diffeomorphism ¢ is the identity. The embedding ia is then 
described by a section Sa of v: ia(x) = (x, sa(x)), where sa(x) E Vx and 
Ilsa(x)11 < 1/2. 

We are going to use the lemma to construct a fibrewise diffeomorphism 
'¢ : U x F' -t U x F' such that '¢a is the identity outside the tubular 
neighbourhood Dl (v) of radius 1. To do this we can work entirely on the 
bundle v. 

Write A for the open disc-bundle of radius 1/2 in v and let' be the pull­
back of v to A. We take the canonical section of, to be s: s(x) = (x, x). The 
required fibrewise diffeomorphism '¢ of U x v is obtained by pulling back the 
diffeomorphism 0 of Lemma 11.21 by the map 

U x F -t A: (a,x) foot (x,sa(x)). 

Remark 11.22. As an example we apply the result to a special case mentioned 
earlier. Given a closed manifold B, consider the trivial smooth fibre bundle 
p : N = B x B -t B, the projection onto the first factor. The diagonal 
map gives a fibrewise embedding M = B -t B x B = N over B. Then 
Proposition 11.20 establishes the result claimed in Proposition 1.13, at least 
for a smooth manifold. But it is easy to see that the proof in this case uses 
only the existence of a tubular neighbourhood of a point, and for that it 
suffices that B be a topological manifold. 

Fibrewise manifolds with boundary 

We shall not deal at length with fibrewise manifolds with boundary. In any 
case it is only fibrewise compact manifolds with boundary which we shall 
meet. We extend the class of coordinate charts to include homeomorphisms 
over B to open subsets of B x (E x [0,00)) for some Euclidean space E. 
Given a fibrewise space M -t B, a local trivialization Mu -t U x F where F 
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is a compact manifold with boundary supplies such a smooth structure over 
U. Local trivializations are compatible if the transition functions on charts 
are fibrewise smooth. A family of compatible local trivializations defines on 
M ~ B the structure of a fibrewise manifold with boundary. The boundary 
of M is a fibrewise manifold 8M ~ B which is closed, that is, fibrewise com­
pact and without boundary. By gluing two copies of M along their common 
boundary one obtains a fibrewise compact manifold N ~ B without bound­
ary containing 8M as a fibrewise submanifold of co dimension 1 (with trivial 
normal bundle). A tubular neighbourhood 8M x (-1,1) <-t N provides a 
collar neighbourhood of 8M in M. 

Existence and classification of fibrewise embeddings into vector bundles 

We have already (in Lemma 11.9) established: 

Proposition 11.23 Let M ~ B be a fibrewise manifold over a compact ENR 
B. Suppose that M is compact. Then there is a fibrewise smooth embedding 
M <-t ~, where ~ is a finite-dimensional real vector bundle over B. 

In fact the vector bundle ~ that we constructed was trivial. 

Remark 11.24. The fibrewise compactness of M is not essential. If M has 
constant (or bounded) fibre dimension one can still use a fibrewise smooth 
partition of unity to embed M in a finite-dimensional trivial bundle. 

Given a compact fibrewise manifold M of constant (fibre) dimension m 
and a vector bundle ~ of dimension n over B, we now investigate the existence 
and classification of fibrewise embeddings as in Proposition 11.23 of Minto 
N = f (It is the affine structure of N, with the action of ~ by translation, 
which we shall actually use.) 

Consider a fibrewise embedding i : M ~ N. We define an associated map 
h( i) : M x B M - M ~ S (~) from the complement of the diagonal in M x B M 
to the sphere-bundle of~, thought of as the quotient ofthe complement of the 
zero-section by the action of the positive reals (or, alternatively, as the unit 
sphere-bundle with respect to a chosen Euclidean metric), mapping (x, y) to 
the class of i (x) - i (y ). Interchanging x and y changes the sign of i (x) - i (y ) . 
We regard h(i) as a fibrewise Z/2-equivariant map 

h(i) : M XB M - M ~ S(L ®~) (11.25) 

over B. Here, as earlier in this section, the group Z/2 permutes the factors 
of M XB M and L is the Z/2-module IR with the antipodal action. 

We observed above that one may choose a Z/2-equivariant tubular neigh­
bourhood 
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of the diagonal. Let us write b for the complement of the open disc-bundle. 
The inclusion of D into M x B M - M is clearly a Zj2-equivariant fibrewise 
homotopy equivalence. For we can retract the complement of the zero-section 
in D(L ® TBM) onto the bounding sphere-bundle S(L ® TBM). The space D 
has the advantage that it is compact; it is a fibrewise manifold with boundary: 
aD = S(L ® TBM). 

Let D denote the quotient of D by the free Zj2-action. It is again a 
fibrewise manifold with boundary; its boundary is the real projective bundle 
P(TBM). The real line bundle over D associated to the double covering D 
will be denoted by A = b XZ/2 L. The Zj2-map h(i) determines, by passage 
to the orbit spaces, a section, denoted by h(i), of the sphere-bundle S(A ® e) 
over D. 

A necessary condition, therefore, for the existence of a fibrewise embed­
ding M --t N is that the vector bundle A ® e over D should admit a nowhere­
zero cross-section. The theory developed by Haefliger [70] and Dax [39] shows 
that in a certain metastable range this condition is also sufficient. 

To state their result we need to formulate an obstruction theory. Suppose 
that A is a closed sub-ENR of B and that i, now, is a fibrewise embedding 
MA --t NA over A. The construction just explained gives a section h(i) of 
the restriction of S(A ® e) to the subspace D A of D. If the embedding i is to 
extend to an embedding over B, then the section h(i) must extend from DA 
to D. The relative Euler class 

(11.26) 

of Definition 4.8, is a stable homotopy obstruction to extending i. 

Proposition 11.27 Let A be a subcomplex of a finite complex B. Let M --t B 
be a compact fibrewise manifold of dimension m and e --t B be a real vector 
bundle of dimension n, where the dimensions satisfy: 

dim B + 3m < 2n - 2. 

Suppose that i : MA --t eA is a fibrewise embedding over A. 
Then i extends to a fibrewise embedding M --t e if and only if the associ­

ated section h( i), as described above, of the sphere-bundle S (A ® e) over D A 

extends to a section over D. This condition is equivalent to the vanishing of 
the relative Euler class -Y(A ® e; h(i)) in (11.26). 

Since dim D = dim B + 2m is less than 2(n - 1), the equivalence of the 
two statements follows from Proposition 4.9. 

The basic case in which B is a point (and A is empty) is the original 
theorem of Haefliger. The general case is a consequence of the work of Dax, 
although the translation is not immediate. We shall not describe the proof, 
but explain how to reduce the result to a statement about homotopy groups 
of spaces of embeddings. 
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Before doing so, we obtain at once from Proposition 11.27 a range of 
dimensions in which fibrewise embeddings exist, namely: 

Corollary 11.28 Suppose, in the situation set out in Proposition 11.27, that 
dim B + 2m < n. Then i extends to an embedding M -+ ~. 

For in this case dimD < dim(A®~). 
By applying Proposition 11.27 to the pull-back to B x [0,1] and the sub­

complex B x {O, I} we deduce an isotopy classification of fibrewise embeddings 
in the range dim B + 3m < 2n - 3. 

For a closed manifold F and Euclidean space E, let us write emb(F, E) 
for the space of smooth embeddings F -+ E, topologized as a subspace of 
the Frechet space of all smooth maps F -+ E. Now the basic topological 
construction h gives a map 

h : emb(F, E) -+ mapz/2(F x F - F, S(L ® E)) 

from this space of embeddings to the space of equivariant maps. The results 
of Haefiiger and Dax show that, if F has dimension m and E has dimension 
n, this map is a (2n - 3m - 3)-equivalence. (See [39], Section 3, Theoreme 
B.) 

For trivial bundles M = B x F and N = B x E over B we define 
embB(M, N) to be the trivial bundle B x emb(F, E). This shows how to 
define the locally trivial bundle embB(M, N) in general and a fibrewise map 

- Z/2 hB : embB(M, N) -+ maPB (M XB M - M, S(L ® ~)). 

Obstruction theory, Proposition 2.15, applied to hB leads to Proposi­
tion 11.27. 

Dimension 0: finite coverings 

Although the general theory of embeddings is difficult, the special case m = ° 
can be treated by elementary methods. (See [72] for the existence result 
(Corollary 11.28).) Let F be a finite set, considered as a compact manifold 
of dimension 0, with cardinality #F = d, and let E be a real vector space of 
dimension n ~ 1. We establish by induction on d: 

Proposition 11.29 For a finite set F, considered as a manifold of dimension 
0, and vector space E of dimension n > 1, the map 

h : emb(F, E) -+ mapz/2(F x F - F, S(L ® E)) 

is a (2n - 3)-equivalence (that is, to be precise, induces a monomorphism 
on homotopy groups up to dimension (2n - 4) and an epimorphism up to 
dimension (2n - 3)). 
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For the proof we introduce the abbreviations A(F) = emb(F, E) and 
B(F) = mapz/2(F x F - F,SJL ® E)). The space B(F) is easily under­
stood: it is just a product of (2) spheres. When d = 1, A(F) = E is con­
tractible and B(F) is a single point. When d = 2, we have a homeomorphism 
A(F) -t E x B(F), given by the mid-point and it. 

Suppose that the result is true for F, where d ~ 2, and write F' for the 
disjoint union of F and a point *. Then B(F') is naturally identified with 
B(F) x map(F, S(E)). 

By restricting from F' to F we obtain the commutative diagram: 

A(F') ~ B(F') 

a 1 lb 
A(F) ~ B(F) 

The map b is a trivial fibration with fibre the product of d spheres S(E)j the 
map a is also a fibration, indeed a smooth fibre bundle, as can be seen from 
Proposition 11.20. (See also Section 23 of Part I.) Over i E emb(F, E) = A(F) 
the fibre of a is E-i(F), which is homotopy equivalent to a wedge of d spheres 
S(E) (with some chosen basepoint). The map it on fibres maps the wedge 
product of d spheres sn-l into the product in the standard way, and so 
induces an isomorphism of homotopy groups up to dimension 2n - 3. The 
result follows from the inductive hypothesis, by the five-lemma. 

12 The Pontrjagin-Thom construction 

The fibrewise Pontrjagin-Thorn construction, which is the subject of this sec­
tion, is closely related to the construction of the fixed-point index that we 
described in Section 6. The fundamental concepts are already in the fourth 
paper [5] in the Atiyah-Singer series on the Index Theorem. After a prelimi­
nary definition, we begin by recalling the ordinary theory before proceeding to 
the fibrewise generalization. Initially, therefore, the underlying base space B 
is a point. Manifolds (and fibrewise manifolds) are understood to be (smooth) 
without boundary unless explicit reference is made to the boundary. 

The fibrewise Thorn space 

Recall that if ~ is a (finite-dimensional real) vector bundle, admitting a Eu­
clidean metric, over a space M, the Thorn space M~ of ~ is usually defined to 
be the pointed space D(~)/S(~). In fact, the Euclidean metric can be avoided 
by thinking of the sphere S(~x) as the space of oriented I-dimensional sub­
spaces of the fibre ~x at x E M and of the disc D(~x) as the cone on the 
sphere. When M is compact, ME. is just the one-point compactification of 
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the total space of the bundle e. But in general the two concepts must be 
carefully distinguished. 

We can also define the (stable) Thorn space MQ of a virtual vector bundle 
a over M, provided that a can be written as e - (M x F) for some trivial 
vector bundle M x F, as a desuspension of M(. Recall that such a virtual 
bundle is said to be of finite type. In practice, a is likely to be the pull-back 
of a virtual bundle over a compact space. 

As is often the case, the only difficulty in extending the definition to the 
fibrewise theory is notation. 

Definition 12.1 Suppose that M ~ B is a fibrewise space over B and that 
e is a vector bundle over M. The fibrewise Thorn space of e is the fibrewise 
pointed space 

over B. 

If M is fibrewise compact over B, then the fibrewise Thorn space can be 
identified with the fibrewise one-point compactification e~ over B or with 
the fibrewise quotient (et)/BM. The definition can be extended, as in the 
classical case, to virtual bundles of finite type over M. 

In general, the fibrewise Thorn space will not be a homotopy fibre bundle. 
But if M is, say, a fibrewise compact ENR over B, so locally homotopy trivial 
with compact fibres, then M1 is also locally homotopy trivial. (Since the base 
B is an ENR, it suffices to look at the case in which B = IRn and M is a 
trivial bundle.) 

The classical Gysin map 

Let M and N be manifolds, with M closed (that is, compact without bound­
ary), and let 1 : M ~ N be a smooth map. We write /1(1) = f*rN - rM for 
the stable normal bundle over M; it is a virtual vector bundle (of finite type, 
since M is compact). Our immediate goal is to define the Gysin map, also 
known as the Umkehr or, when it acts contravariantly on stable cohomotopy 
or cohomology, as the direct image map, 

l' : N+ ~ M,,(f) 

from the one-point compactification of the (possibly non-compact) manifold 
N to the Thorn space of /1(1). 

Suppose first that 1 is a smooth embedding of M as a submanifold of N 
with normal bundle /I = /1(1) in the usual sense, and then we may choose a 
tubular neighbourhood 

j: D(/I) Y N 

extending 1. The Gysin map l' : N+ ~ D(/I)/S(/I) is defined by the 
Pontrjagin-Thorn construction: 
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1'( ) = {[x) . if y = j(x), x E D(v), 
y * if y ¢ j(Dv). 

The homotopy class of J' is independent of the choice of tubular neighbour­
hood since different choices are isotopic. 

Before proceeding to the general case we record an elementary property 
of this construction for embeddings. 

Proposition 12.2 Suppose that f : M '-t N is an embedding with normal 
bundle v. Then the composition J' 0 f*: 

M+ = M+~N+LMv 

is, up to homotopy, the map of Thom spaces MO '-t M V given by the inclusion 
of the zero vector bundle over M into v. 

For the general case we choose a smooth embedding i : M '-t E of Minto 
some Euclidean space E. Then we have an embedding (i, f) : M'-t E x N 
with normal bundle v to which we may apply the Pontrjagin-Thom construc­
tion above to obtain a map 

E+ 1\ N+ = (E X N)+ -t D(v)jS(v) = MV. 

Identifying v(f) with v - (M x E), we get a stable map 

I' : N+ -t Mv(f) 

represented by a map E+ I\N+ -t E+ I\Mv(f). We must check as we have done 
elsewhere (in Sections 6 and 7) that the stable map so defined is independent 
of the choice of embedding i. 

Suppose that i' : M '-t E' is another embedding. Then we have a family 
of embeddings it : M '-t E x E', ° ::; t ::; 1, given by the linear homotopy 

it(x) = ((1 -t)i(x), ti'(x)). 

It is easy to see that the construction above using io rather than i produces 
the same stable Gysin map 1'. By performing the construction fibrewise over 
[0,1) to the fibrewise embedding 

(x, t) f-+ (it(x), f(x)) : M x [0,1) -t ((E x E') x N) x [0,1] 

we see that the stable homotopy class of J' is independent of the choice of 
an embedding in Euclidean space. 
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A refinement 0/ the Gysin map 

The Gysin map t can be lifted to a fibrewise map over N as follows. Let U 
be an open neighbourhood of the graph {(f (x), x) I x E M} of / in N x M, 
which we regard as a fibrewise space over N by projection to the first factor. 
Let q : U -+ M be the projection onto the second factor. We shall define a 
fibrewise stable map 

(12.3) 

with compact supports. Composing with the inclusion, we get a fibrewise 
stable map with compact supports N x SO -+ N x Mv(f) over N, and this 
determines the Gysin map t : N+ -+ Mv(f). (Compare this with the relation 
between the transfer and the fibrewise transfer in Section 6.) 

To describe the construction we begin again with the case in which I is 
an embedding with normal bundle v. We can certainly choose the tubular 
neighbourhood j : D(v) <-t N so that (j(y),x) E U for all x E M, y E D(vz ). 

This gives us a map 

D(v) ---t U : y E D(vz ) t-+ (j(y),x) 

j 1 1 
N = N 

over N. We specify G(f, U) by a fibrewise map N -+ U:;v over N which is 
zero outside the compact subspace D(v). On D(v) it is given by the inclusion 
of D(v) in U and the projection D(v)/S(v) -+ MV: 

y E D(vz ) t-+ [(j(y),x),y]. 

In the general case we proceed again by choosing an embedding i : M <-t E 
and take a tubular neighbourhood j : D(v) <-t Ex N so small that (j(y), x) E 
Ex U for x E M, y E D(vz ). The construction above gives a fibrewise map 
E x N -+ E x UZ;:N with compact supports. We compose this with the 
projection maps E x N -+ N and E x U -+ U to define a fibrewise map 

N x E+ -+ uq*v 
N 

over N, and this gives G(f, U). 
The method already described for t shows that the stable class G(f, U) 

is well-defined. It is then clear, too, that if U' ~ U is a smaller open neigh­
bourhood of the graph of I in N x M then G(f, U') t-+ G(f, U) under the 
inclusion map. As in Lemma 1.5, let us replace I: M -+ N by the homotopy 
fibre bundle MU -+ N, where 

MU = ((x,w) E M x PN I I(x) = w(O)} (x, w) t-+ w(l) E N. 
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We write q again for the projection to the first factor q : MU ---+ M. For U 
sufficiently small there is a natural fibrewise homotopy class U ---+ MU over 
N. In geometric terms, when N is equipped with a Riemannian metric we 
can map (y, x) E U ~ N x M to the appropriately parametrized geodesic 
from f(x) to y. When f is an embedding, this amounts to using the metric 
to construct a tubular neighbourhood j : D(/I) Y N and taking the line 
segment in /Ix to get a path from f(x) = j(O) to Y = j(v), where 0, v E /Ix. 
Alternatively, we may exploit the uniform local contractibility of N, as in the 
definition of the Nielsen-Reidemeister index (6.12). The image of G(f, U) 
under the map U ---+ MU is independent of U; we denote it by 

(12.4) 

Functoriality of the Gysin construction 

We suppose now that the manifold N, as well as M, is closed. Let X ---+ N be 
a pointed homotopy fibre bundle with fibres of the homotopy type of finite 
complexes. The Gysin construction can be extended to define a Gysin map 

l: X/N ---+ (f*X /\N/I(f)"t)/M. (12.5) 

This may be done either by running through the original definition with the 
fibrewise space X as a sort of parameter space or, more illuminatingly, by 
taking the smash product with the identity on X of the refined Gysin map 
G(f, U) defined over N. We shall return to this later; see Proposition 12.35. 
When ~ is a vector bundle over N and X is the pointed sphere-bundle f~ 
the map (12.5) may be written more transparently as a stable map between 
Thorn spaces 

l : Nf. ---+ M r f. ffJlI (f) . 

Better still, if we replace ~ by 0: - TN where 0: is a virtual vector bundle over 
N, we obtain 

l : NO-TN ---+ MrO-™. (12.6) 

The proof of functoriality is now a straightforward exercise. 

Proposition 12.7 (Functoriality). Let f : M ---+ Nand 9 : N ---+ P be smooth 
maps between closed manifolds, and let 0: be a virtual real vector bundle over 
P. Then 

It is routine, too, to establish multiplicativity. 

Proposition 12.8 (Multiplicativity). Let f : M ---+ Nand f' : M' ---+ N' be 
smooth maps between closed manifolds with product 
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f X f' : M X M' ~ N X N'. 

Then, for virtual vector bundles a over N and at over N', we have (I X f')! = 
t 1\ (I')! : 

(N X N,)(Ot$Ot')-r(NXN') 

(fx/')! 1 1 J' /\(f')! 

(M x M,)(fX!')*(Ot$Ot')-r(MXM') = M!*a-rM 1\ M,(f')*a'-rM' 

The Frobenius property 

We revert now to the original situation in which f : M ~ N is a (smooth) 
map from a closed manifold M to a possibly non-compact manifold N. Let Q 
be another (perhaps non-compact) manifold and let s : Q ~ N be a proper 
smooth map, such that f and s are transverse. Then 

P:= Q XN M = ((x,y) E Q x M I s(x) = f(y)} 

is compact. We write r and 9 for the projections P ~ M and P ~ Q in the 
commutative square: 

P ~ M 

Q --7 N 
s 

By transversality, (11.11), the stable normal bundle v(g) of 9 is the pull-back 
r* v(l) of the stable normal bundle of f. 

Proposition 12.9 (Frobenius reciprocity). In the situation described above 
one has a commutative square of stable maps: 

Q+ ~ N+ 

r. 

Let us see, first of all, that we can reduce to the case in which f and so 
also 9 are embeddings. In general, we choose an embedding i : M 4 E into 
some Euclidean space E. Then we have a pull-back diagram: 

P 

(j,g) 1 ~ 
ExQ 

~ M 

~ 1 (i,1) 

--7 ExN 
lxs 
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in which j(x,y) = (i(y),x), for (x,y) E P ~ Q x M. 
Suppose, then, that f is an embedding with normal bundle v = vU). 

The normal bundle of the embedding 9 is the pull-back r*v, and a tubu­
lar neighbourhood D(v) Y N of M lifts to a tubular neighbourhood 
r* D(v) = D(r*v) Y Q of P, by transversality. The Pontrjagin-Thom con­
struction gives a diagram of maps 

1 1 
D(r*v)jS(r*v) ----t D(v)jS(v) 

r 

which is genuinely commutative (not just up to homotopy). This completes 
the proof of Proposition 12.9. 

Remark 12.10. There is also a reciprocity formula for the refined Gysin map 
GU, U) of (12.3). Let V be thepre-imageofU under s x r : Q x P ~ N x M; 
it is an open neighbourhood of the graph of g. Then we have a pull-back di-
agram: 

V ----t s* U -----t U 

1 1 
Q ----t N 

8 

The induced map 

s* : cwRr{N x So; U;.,(f)} ~ cw~{Q x So; (s*U)Q(f)} 

lifts GU, U) to the image of G(g, V) under the map 

VQ(g) ~ (s*U)Q(f) 

determined by 1 x r : Q x P ~ Q x M. (To ease the notation we have not 
distinguished between the stable normal bundles and their pull-backs under 
projection maps.) 

Let us return to the case in which all the manifolds considered are com­
pact. The proof of the following extension of the Frobenius property involves 
no new ideas. 

Proposition 12.11 Let f : M ~ Nand s : Q ~ N be transverse smooth 
maps between closed manifolds, and let 0: be a virtual vector bundle over N. 
Writing P := Q x N M, 9 : P ~ Q and r : P ~ M for the projections, and 
j3 for the virtual bundle over Q defined by j3 - rQ = s* (0: - r N), we have a 
commutative diagram of stable maps: 
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Qf3-TQ ~ NOt-TN 

In order to interpret the diagram one needs to use the identification 
r*(j*rN - rM) = g*rQ - rP, that is, the equality r*v(f) = v(g). 

Remark 12.12. A special case is worth noting. Given a smooth map j : M ---t 
N of closed manifolds we have a pull-back diagram: 

M (J,l» N x M 

N -----+ NxN 
(1,1) 

to which we can apply Proposition 12.11. It follows, in particular, that the 
induced direct image map (f!)*, which we shall write as j" in stable co­
homotopy: 

(12.13) 

obeys the familiar rule: 

Mj*x· y) = x· My), x E w*(N), y E w*(M/*Ot-TM). 

The fibrewise theory 

In the discussion of the fibrewise theory we shall work over a compact ENR 
B. There is, in fact, very little that needs to be done to extend the definitions 
and proofs from the classical theory. Let M ---t B and N ---t B be fibrewise 
manifolds, with M compact, and let j : M ---t N be a fibrewise smooth map. 
Then we have a stable Gysin map 

(12.14) 

from the fibrewise one-point compactification of N to the fibrewise Thorn 
space of the fibrewise stable normal bundle v(f) = j*rBN - rBM. The 
construction proceeds by choosing a fibrewise embedding i : M <.....+ B x E for 
some Euclidean space E and by applying the Pontrjagin-Thorn construction 
fibrewise to a tubular neighbourhood of the embedding 

(i,1) : M <.....+ (B x E) XB N (= E x N). 

When N is compact and a is a virtual bundle over N, we have, more 
symmetrically, a Gysin map 
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(12.15) 

The fundamental properties: functoriality (Proposition 12.7); multiplica­
tivity (Proposition 12.8); and Frobenius reciprocity (Propositions 12.9 and 
12.11) all translate (by affixing a suffix 'B') to the fibrewise theory. 

The construction is evidently compatible with the pull-back. 

Proposition 12.16 Let 0 : B' -t B be a map 01 compact ENRs. Then in 
the setting 01 {12.14} or {12.15} 

(0* f)! = 0*(/,). 

To amplify the formula, we have in the second setting (12.15), for the 
virtual bundle 0 (to avoid a clash of notation), the lifting 

f ! E WO {N-TBN . M-TBM} B B , B 

1 a· 

(a*f)! E w~/{(a*N)~~BI(a·N); (a*M)~TBI(a·M)} 

of !' to (a* f)!. 
As usual in the fibrewise theory, there is an implicit homotopy invariance 

property. 

Proposition 12.17 (Homotopy invariance). Let It : M -t N, 0:::; t :::; 1, be 
a homotopy between fibrewise smooth maps 10, It : M -t N, where M and 
N are fibrewise manilolds over Band M is compact. Using the homotopy to 
give a (homotopy class of) vector bundle isomorphism loTBN -t fiTBN, we 
have 

I! - I! . N+ ----' Mv(fo) - MV(h) 
JO - 1· B ----r B - B . 

Since any continuous homotopy between smooth maps fo and It is homo­
topic to a fibrewise smooth homotopy, there is no need to be precise about 
the nature of the homotopy in the statement above. Moreover, since any con­
tinuous fibrewise map is homotopic to a fibrewise smooth map, the homotopy 
invariance means that we can define the Gysin map!' without requiring I 
to be smooth. We shall see this again from a different point of view when we 
recognize!, as the dual of hB (when N is compact). 
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Duality for fibrewise manifolds 

The stable homotopy-theoretic formulation of Poincare duality is due to 
Atiyah [2]. (The canonical nature of the duality seems to have been 'folk­
lore' for some time and was assumed to be generally understood when [25] 
was written, but the first textbook account of which we are aware is in [99]. 
See also [37].) 

Proposition 12.18 Let M -t B be a compact fibrewise manifold (without 
boundary) over a compact ENR B. Then there are canonical duality maps: 

B x SO ~ MiiTBM /\B M+B ~ B x So, 

defined below. (To be precise, there are two canonical duality maps, a 'left' 
and a 'right '.) 

The reason why there are two such maps can be seen at once. For the 
vector bundle TBM has a canonical antipodal involution, given by multipli­
cation by -1 in each fibre, and this determines an involution of the Thorn 
space Mii TBM . 

The duality structure maps appear as compositions of two factors defined 
in terms of the projection p : M -t B, which we regard as a fibrewise smooth 
map over B, and the diagonal embedding Ll : M -t M x B M. From p we 
obtain first, by adjoining basepoints, 

P. : M+B -t B x SO (= B+B)' 

The Gysin map defined by p is a stable map 

p! : B x SO -t MiiTBMj 

for the tangent bundle of the fibrewise manifold B -t B is B x 0, and the 
associated Thorn space Biio is B x So. 

In the description of the normal bundle II of the embedding Ll we have a 
left/right choice. Writing Tx and "x for the fibres of TBM and II at a point 
x EM, we have a short exact sequence: 

v~(v,v) ~ ° -t Tx ---'---+ Tx EEl Tx ~ "x -t 0. 

There are, up to homotopy, two natural isomorphisms Tx -t IIx given by 
v I--t 1l'(v, 0) and v I--t 11'(0, v). Stably they differ by composition with v I--t -Vj 

see Lemma 3.2. In (11.18) we chose the former. With this choice we have a 
Gysin map 

Ll! : (M x M)[/BMXO = M8 TBM /\B M+B -t M+B = MZ. 

(In the notation of (12.15) the virtual bundle 0: is ° x TBM over M x M.) 
Identifying the restriction Ll*(TBM x 0) with TBM in the obvious way, we 
have an inclusion map 
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Having now assembled the ingredients we define i and e to be the com­
positions 

i : B x SO ~ Mi TBM ~ Mi TBM I\B M+B, 
-TBM ..:1! P. 0 

e : M B I\B M+B ~ M+B --'---+ B x S . 

The verification of the two defining identities, (i) and (ii) in Definition 10.8, 
reduces to the functoriality and Frobenius property of the Gysin construction. 
We have to establish commutativity of the following diagrams, corresponding 
to (10.24) and (10.25). The fibrewise tangent bundle 'TBM is abbreviated to 
'T, and we use t again for the transposition of two factors. 

MiT p!l\\ MiT I\B MiT ..:1.1\\ 

(12.19) 

(12.20) 

MxM ..:1 X 1) MxMxM MxM 1X..:1) MxMxM 

..:1 j j 1x..:1 ..:1j j ..:1x1 

M ~ MxM M ~ MxM 
..:1 ..:1 

Of course, toLl = Ll. This completes the proof. 

Proposition 12.21 Let f : M --+ N be a fibrewise map between compact 
(closed) fibrewise manifolds over B. Then, under the canonical duality iso­
morphisms, 

f ! • N-TBN M-TBM 
. B --+ B 

is the dual of f+ : M+B --+ N+B. 
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The proof is another commutative diagram. Let {? : M --+ M x N be the 
map x I-t (x, f(x)}. From the definition (1O.15) we see that the dual of f+ is 
the composition from top left to bottom right in the picture: 

M -TBM A N A N-TBN B B +B B B 

!ll\(.:110t) 

MBTBM AN+B 

!lI\P. 
M-TBM 

B 

Again the triangles commute by functoriality. Commutativity of the square 
comes from the pull-back diagram: 

M x N ~Xll M x N x N 

~l 
M 

Duality for a finite covering 

A finite covering M --+ B is a O-dimensional fibrewise manifold, with tan­
gent bundle rBM = M x O. As a special case of Proposition 12.18, we see 
that M+B is self-dual. In fact, the Gysin maps Ll! and p! can be constructed 
quite explicitly, for there is a natural fibrewise embedding of M into a vec­
tor bundle { defined as follows. Let { = 7]* be the vector bundle dual of 
7] := mapB(M, B x lR}, and embed e into M by evaluation. So the fibre eb at 
b E B is the space of measures on the finite set Mb, containing Mb as the 
delta-functions. Alternatively, {b is the free vector space on the set Mb. 

Duality for a bundle of Lie groups 

An important example, to which we shall return at the beginning of Section 
13, is furnished by a bundle M --+ B of compact Lie groups. 

We recall from Part I, Section 2, that a fibrewise space Mover B is a 
fibrewise topological group if each fibre has a group structure such that the 
multiplication (x,y) I-t xy: M XB M --+ M, the inverse x I-t X-l: M --+ M 
and the inclusion e : B --+ M of the identity element 1 in each fibre are 
continuous fibrewise maps. If M is a fibrewise manifold over B and these maps 
are fibrewise smooth then we might call M a fibrewise Lie group. (Notice, in 
passing, that a fibrewise group can be thought of as a groupoid in which the 
base B is the space of objects of the category and the total space M is the 
space of morphisms: Mb is the automorphism group of b and distinct objects 
are non-isomorphic.) 
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Given a topological (or Lie) group G we can give the trivial bundle B x G 
a fibrewise group structure by identifying the fibre at each point with the 
group G. Fibrewise groups of this type are said to be trivial. We say that a 
fibrewise topological (or Lie) group is a bundle of groups if it is locally trivial 
as a fibrewise topological (or Lie) group. 

Remark 12.22. In the world of nilpotent groups it is easy to write down fibre­
wise Lie groups which are locally trivial as fibrewise manifolds but are not 
bundles of Lie groups. For example, let B be the (I-dimensional) space of 
skew-symmetric bilinear forms on JR2 and let Gb be JR x JR2 with the multipli­
cation (x,y)· (x',y') = (x+x' +b(y,y'),y+y'). The group Go is Abelian, but 
Gb is non-Abelian (but nilpotent) if b f:. O. However, compact Lie groups do 
not admit such deformations and a compact fibrewise Lie group is necessarily 
locally trivial. As explanation we offer the following heuristic argument. By 
Proposition I1.I~ we certainly have local triviality as a fibrewise manifold. 
So it suffices to consider a fixed compact Lie group G and look at group 
multiplications m : G x G ~ G close to the given group structure and having 
the same identity element 1. Now we can write m, in terms of the exponential 
map of G, as 

m(x,y) = exp(o:(x,y))xy, 

where 0: : G x G ~ g is a smooth map with values in the Lie alge­
bra g of G. The conditions m(x,I) = x and m(I, y) = y translate into: 
o:(x, 1) = 0 = 0:(1, y). To linearize the problem we treat 0: as an infinitesimal 
deformation. Then the associativity of the multiplication: m(m(x,y),z) = 
m(x, m(y, z)) becomes the cocycle condition: 

o:(xy, z) + o:(x, y) = o:(x, yz) + X· o:(y, z), 

where the action of G is, of course, the adjoint. Now define (3 : G ~ g by 
integration with respect to the normalized Haar measure J.L on G as: 

(3(x) = fa o:(x, z) dJ.L(z). 

It is then an elementary exercise to verify that 

o:(x, y) = X • (3(y) - (3(xy) + (3(x). 

This is a special case of the calculation which shows that the (smooth or 
continuous) cohomology HP(Gj E) of the compact group G with coefficients 
in a finite-dimensional real G-module E is trivial for p > 0 (and equal to the 
invariant subspace EG for p = 0). (See, for example, the early reference [117].) 
Now the coboundary condition above is the linearization of the identity 

m(exp({3(x))x,exp({3(y))y) = exp({3(xy))xy, 

which shows that, at the infinitesimal level, x I-t exp({3(x))x is a diffeomor­
phism of G which relates m to the given group structure. 
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To return to our main subject, we suppose now that M -t B is a bundle of 
compact Lie groups. Let ( = e*TBM be the tangent space (or rather bundle) 
at the identity. Using (left) translation, as in the case of an ordinary Lie group, 
we can identify the fibrewise tangent bundle TBM with the bundle p*(, which 
is trivial on fibres. (We shall look at this in more detail at the beginning of 
the next section.) According to Proposition 12.16 the dual of M+B is the 
fibrewise suspension (or, more accurately, desuspension) (-()~ I\B M+B of 
M+B. 

The duality structure maps admit another description involving the group 
structure. Let n: M XB M -t M be the map (x,y) 1-+ xy-l. 

Proposition 12.23 For a fibrewise compact Lie group M -t N, as described 
above, the canonical duality map e : (M+B)* I\B M+B -t B x So can be 
expressed as the composition 

The Gysin map e! can be thought of as the fibrewise collapse onto the top 
cell; see Proposition 13.1. 

For the proof of the proposition we use the Frobenius property once more. 
From the pull-back diagram: 

MXBM ~ M 

M ---t B 
p 

we obtain a commutative diagram of stable maps: 

(-()~ I\B M+B I\B M+B ~ M+B 

---t B x So 
p. 

Duality for Thom spaces 

Following Atiyah [2], we extend the duality theory to Thom spaces. For 
any virtual vector bundle a over M, the fibrewise Thom spaces M~ and 
Mia- TBM are canonically dual to each other. The structure maps involve 
..1* and ..1!: 

M-TBM ~ M-a-TBM 1\ MQ ---t.;1! M 
B B B B +B, 

whose definition depends upon the fact that the virtual bundle (-a) x a over 
M x M restricts to the zero bundle on the diagonal M. 
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The next proposition relates duality over M, in the special case of sphere­
bundles, to duality of the associated Thorn spaces over B. 

Proposition 12.24 Let a and 13 be virtual vector bundles over the compact 
fibrewise manifold M. Then there is a commutative square: 

o {Ma Mt3} ~ 0 {M-TBM-a. M-TBM-t3} wB B; B ----t wB B , B 
DB 

involving maps whose meaning is explained below. 

The isomorphism DB is duality over B: f t-+ f*, while D M is the sus­
pension isomorphism, which for sphere-bundles is duality over M. The ver­
tical maps p. are given by the quotient construction 'IBM'; a fibrewise map 
a : at ~ 13t gives 

Once more the proof is by inspection of a commutative diagram. Consider 
a fibrewise stable map a : a t ~ 13t over M, and write a. for the associ­
ated maps of Thorn spaces M~-t3 ~ M+B and MB ~ M~ in the following 
commutative diagram. 

M- TBM-t3 
B 

(1 xp)! 1 
MBTBM-t3 /l.B MBTBM 

11\..1. 1 
MBTBM-t3 /l.B MB /l.B MBTBM-a (..1 X1f 

11\al\1 1 
MBTBM-t3 /l.B M~ /l.B MBTBM-a (..1 X1f 

M~-t3 /l.B MBTBM-a 

1 ai\l 

M /I. M -TBM-a 
+B B B 

1 (px1). 

M-TBM-a 
B 

The composition from top left to bottom right is DB(P.a) = p.DM(a). 

Remark 12.25. The duality theory extends, with some notational discomfort, 
to fibrewise manifolds with boundary. Let M ~ B be such a fibrewise com­
pact manifold over B with boundary 8M ~ B, and let a be a virtual vector 
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bundle over M. Then the quotient MlJ/BaM~I, which we might write as the 
relative Thorn space (M, aM)~ is canonically dual to Mi Dl - TBM • 

The Poincare-Hop! vector-field index 

The theorem of Hopf relating the zeros of a generic smooth vector field on a 
closed manifold to the Euler characteristic is one of the fundamental theorems 
of Algebraic Topology. Its generalization to fibrewise manifolds is our next 
subject. The Poincare-Hopf index theory for vector fields which we shall 
describe is very closely related to the Lefschetz fixed-point theory, but there 
is an important conceptual distinction. 

Let M ~ B be a fibrewise compact (closed) fibrewise manifold over an 
ENR B, and let U ~ M be an open subset. A (continuous) section v of the 
fibrewise tangent bundle TBU = TBM I U will be called a vector field on U; 
we refer to a fibrewise smooth section as a smooth vector field. The zero-set 
of v is the closed subspace 

Zero(v) = {x E U I v(x) = O} 

of U. This takes the place of the fixed-subspace in the Lefschetz theory. We 
suppose that Zero(v) is compact. Then we shall define the Poincare-Hop! 
vector field index 

- 0 0 cIB(v, U) E cWB{B x S ; U+B} 

in the general case when B is not necessarily compact, and 

- 0 0 
I(B,A) (v, U) E W(B,A){B x S ; U+B} (12.26) 

when B is compact and v has no zeros over a closed sub-ENR A ~ B. 
(In fact, the ambient manifold M does not play an essential role in the 

definition. It has been included in the description partly to emphasize the 
parallel with the fixed-point theory and partly because this is the situation 
that one normally encounters, in which M is given and the neighbourhood 
U is variable.) 

As in the Lefschetz theory, the definition begins with the case in which M 
is a vector bundle. It would suffice to deal with a trivial bundle B x E, but for 
the sake of variety let us treat directly the case that M = ~ is a general vector 
bundle (of finite type). The fibrewise tangent bundle rBM is then naturally 
identified with the pull-back p*~ of ~ to M. A vector field v on U ~ M is 
thus a section of p* ~ over U, or simply a fibre wise map v : U ~ M = ~ over 
B. The zeros of v are the fixed-points of the fibrewise map 

f:U~M=~ x t-+ x - v(x), 

and we are going to define the vector field index of v to be the fixed-point 
index of f. It is worth repeating the explicit construction in Pontrjagin-Thom 
style. 
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We choose an open neighbourhood V of Zero( v) in U such that the clo­
sure V in U is compact, and choose f > 0 such that the norm in some 
Euclidean metric on ~ is bounded by IIv(x)1I 2:: f for x E V-V. Now define 
q : ~t --7 ~t AB U+B in the usual way as: 

(X).={* ifx¢V, 
q . [c(v(x», x] if x E V, 

where c : ~ --7 ~t is the standard radial extension map which expands the 
open disc-bundle of radius f to ~ and pushes the complement to the point 
at infinity (in each fibre). The map q represents the stable homotopy class 
JB(V, U) (or i(B,A) (v, U». 

Thrning to the general case, we choose an embedding i : M y ~ of the 
fibrewise manifold M in a vector bundle ~, with normal bundle v say, and 
choose a fibrewise tubular neighbourhood j : D(v) Y ~. Let W = j(B(v» 
be the image in ~ of the open unit disc-bundle, and let r : W --7 M be the 
retraction corresponding to the projection B(v) --7 M. Then we can identify 
the tangent-bundle TBW with r*(TBM EI7 v) and extend v to a field ii on 
r-1 (U), with the same zeros, by: 

ii(j(y» = (v(x),y) E {TBM)z EI7 Vz, for y E Vz. 

The vector-field index of (v, U) is defined as the composition of the index of 
(ii,r-1U) with the retraction map r+: (r-1U)+B --7 U+B. 

Remark 12.27. In this general case the vector-field index is related to the 
fixed-point index as follows. Let V be an open neighbourhood of Zero(v) in U 
having compact closure. Choose a fibrewise Riemannian metric on M. Then, 
for all sufficiently small f > 0, the fixed-points of the associated exponential 
map 

f : x I-t expz( -w(x» : V --7 M 

are the zeros of v and the Lefschetz index of (f, V) coincides with the 
Poincare-Hopfindex of (v, V). (Of course, in the first case that we considered, 
when M was a Euclidean vector bundle ~, the exponential map determined 
by the Euclidean metric was just translation in the vector bundle.) 

The verification that the index is well-defined follows the familiar pattern, 
and the details are omitted. We summarize the basic properties for the index 
with compact supports. 

Proposition 12.28 (Properties of the vector field index). Let M --7 B be a 
fibrewise compact fibrewise manifold over an ENR B, and let v be a vector 
field with compact zero-set defined on an open subset U of M. 
{i} (Naturality). Let a : B' --7 B be a proper map. Then 

ciB,(a*v,a*U) = a* ciB(v, U). 
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(ii) (Localization). Let U' ~ U be an open subset with Zero(v) ~ U'. Then 
J B (v I u' , U') maps to J B (v, U) under the inclusion map 

cw~{B x So; U~B} ---+ cw~{B x So; U+B}. 

(iii) (Additivity). If U is the disjoint union of open sets U1 and U2 , then 

JB(V, U) = (id+JB(V lUI, U1 ) + (i 2 )+ci B(V I U2 , U2 ), 

where i1 : U1 ---+ U and i2 : U2 ---+ U are the inclusion maps. 

(iv) (Multiplicativity). Let (v',U',M') be as the data (v,U,M). Then the 
vector field v ED v' defined on U x B U' ~ M x B M' has compact zero-set 
Zero(v) XB Zero(v') and its index is 

JB(V,U) 1\ JB(V',U') E cw~{B x So; {U XB U')+B}. 

(v) (Homotopy invariance). Let Vt, 0 ~ t ~ 1, be a continuous family of 
vector fields on U such that ({x, t) E U x [0,1]1 Vt{x) = O} is compact. Then 

- ° ° cIB{Vt, U) E cWB{B x S ; U+B} 

is independent of t. 

The Euler class of the tangent bundle 

For the next part of the discussion we take the base B to be compact. Any 
vector field v on M is homotopic to the zero vector field 0 and hence, by 
Proposition 12.28{v), iB{v,M) = iB{O,M) E w~{B x So; M+B}. From 
Proposition 12.27 we see that this class coincides with the fixed-point in­
dex £B(I, M) of the identity map 1 : M ---+ M. Recall from Section 4 that 
the Euler class ,(rBM) is the stable map M x SO ---+ {rBMrt over M given 
by the inclusion of the zero-section. We may, as in Proposition 3.4, make the 
identifications 

and we use the same symbol and name for corresponding elements in any of 
the three Abelian groups. The associated map of Thorn spaces, in the second 
interpretation, is the map 

, : MBTBM ---+ M+B 

induced by the 'inclusion' of -rBM in the zero bundle. 

(12.29) 

Proposition 12.30 Let M ---+ B be a compact fibrewise manifold over a 
compact ENR B. Then the Poincare-Hopf index 
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is equal to the composition: 

B x SO~MBTBM~M+B' 

It is, moreover, dual to the Euler class 

1'(TBM) E W~{MBTBM; B x SO} 

of the fibrewise tangent bundle of M. 

To establish the first assertion it is probably simplest just to stare at 
the definitions. We choose a fibrewise embedding i : M y B x E for some 
Euclidean space E, with normal bundle v, and extend it to a tubular neigh­
bourhood D(v) Y B x E. The Gysin map p! is given, up to suspension, by 
the Pontrjagin-Thom construction B x E+ -t D(V)/BS(V) = MB, whereas 
the index class iB(O, M) is obtained by composition with the map 

MB y MffxE = M+B I\B (B X E+) 

given by including v in the trivial bundle M x E. 
The second assertion follows by taking the dual of the composition l' 0 p! . 

By Proposition 12.24, l' is self-dual, and by Proposition 12.21, p! is the dual 
of p+ : M+B -t B x So. The composition p+ 0 l' defines the Euler class of the 
tangent bundle. 

Isolated zeros 

We develop next the fibrewise analogue of the classical computation of the 
index of a vector field with only isolated zeros on a closed manifold. Let 
M -t B again be a compact fibrewise manifold over a compact base, and 
let v be a vector field defined on an open subset U ~ M. Suppose that 
Z ~ U is a compact O-dimensional submanifold, that is, a finite covering of 
B, containing all the zeros of v: Zero(v) ~ Z. The normal bundle v of the 
embedding Z y M is just the restriction TB M I Z of the tangent bundle of 
M. Let j : D(v) y U be a tubular neighbourhood. Pulling back the vector 
field v to D(v) and identifying the tangent bundle of the disc-bundle with 
(the pull-back of) v, we get a map j*v : D(v) -t v, over Z, with zero-set in 
the zero-section Z ~ D(v). The map j*v is non-zero on the sphere-bundle 
S(v), and dividing by the norm we get a fibrewise map S(v) -t S(v), that is, 

S(TBM I Z) -t S(TBM I Z) 

over Z. This extends radially to a pointed self-map of (TBM I Z)~ giving a 
stable class 
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which we might call a local index. 
Looking at a single fibre over b E B we are in the classical situation: Zb 

is a finite set of points, WO(Zb) is a direct sum of copies of Z, one for each 
point, and the component of O(Vb) at a point x is given by the degree of a 
self-map of the sphere S«TZb)z). 

The next lemma reduces to the localization property, Proposition 12.28(ii), 
of the vector field index. Duality for the O-dimensional manifold Z identifies 

wO(Z) = W~{Z+B; B x SO} with w~{B x So; Z+B}. 

Lemma 12.31 Suppose, as in the text, that the zeros of the vector field v 
are contained in the compact O-dimensional submanifold Z of u. Then the 
inclusion z : Z -+ U maps the local index, defined above, to the Poincare­
Hopf vector field index: 

o(v) 1--+ iB(v, U) : wO(Z) = w~{B x So; Z+B} -+ w~{B x SO; U+B}. 

This leads to a fibrewise Poincare-Hopf theorem. As in the Lefschetz 
fixed-point theory we associate to the index iB(v, U) a class 

(12.32) 

by projecting U to B. In particular, 1B(0, M) E wO(B) is the fibrewise Euler 
characteristic, XB (M), of M -+ B. 

Proposition 12.33 Let v be a vector field on a compact fibrewise manifold 
M over a compact base B with zero-set contained in a compact O-dimensional 
submanifold Z ~ M. Then, writing p : Z -+ B for the projection map of the 
finite covering and p! = (p!)* for the direct image map wO(Z) -+ wO(B), we 
have 

Non-degenerate zeros 

Suppose that v is a globally defined smooth vector field on M with non­
degenerate zeros, in the sense that for each x E Zero( v) the derivative 
Dvz : (TBM)z -+ (TBM)z is non-singular. (As this condition is by no means 
generic when we move out of the classical domain in which B is a point, 
the terminology is not perfect.) By transversality, Z := Zero(v) is then a 
O-dimensional submanifold of M. The local index is determined by the auto­
morphism Dv of TBM I Z, which defines an element of the real K-theory 
group KO-l (Z). (In the classical case we take the sign of the determinant in 
KO-1(*) = {±1}.) The class o(v) in stable cohomotopy is its image under 
the J-homomorphism 
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For an application of these ideas see the work of Haibao and Rees [71]. 

The Lefschetz index of an isometry 

The discussion of isolated singularities has exhibited one situation in which 
the vector field index is concentrated on the zero-set of the vector field. An­
other situation is that of a Killing vector field, that is, of an infinitesimal 
isometry. We state first a fixed-point version of the result. 

Proposition 12.34 Let M ~ B be a compact fibrewise manifold over a 
compact base B equipped with a (fibrewise) Riemannian metric. Suppose that 
f : M ~ M is a fibrewise smooth isometry with fixed-point set a submanifold. 
Then the fixed-point index LB(f, M) E wO(B) is equal to the fibrewise Euler 
characteristic XB(Fix(f)) of the fixed-point set Fix(f). 

More precisely, the fixed-point index in w~{B x So; Fix(f)+} of the 
identity map on Fix(f) maps, under the inclusion, to the fixed-point index 
- . ° ° LB(f,M) of fIn wB{B x S ; M+B}. 

In the case B = *, when Fix(f) is discrete, this is a classical result, de­
pending upon the fact that the derivative of an isometry at an isolated fixed­
point has no eigenvalue equal to 1. When B is a point, Fix(f) is necessarily 
a submanifold. For the behaviour of f near a fixed-point x is determined 
by the derivative (Df)x : (rM)x ~ (rM)x, because the exponential map 
commutes with the action of the isometry f (on the tangent space and on 
M). So the +l-eigenspace of (Df)x is the tangent space (rZ)x of the fixed 
submanifold. This fact supplies the essential input for the case of a general 
base B, although we need to include the requirement that Fix(f) is a sub­
manifold. (Consider, for example, the isometry (g,x) t-+ (g,gx) of the trivial 
bundle O(n) x S(JRn ) ~ O(n) to see that this is not automatically the case.) 

We shall give the proof for the vector field version, which we state next. 

Proposition 12.35 Let M ~ B be a compact fibrewise manifold with a 
Riemannian metric over a compact ENR B. Suppose that v is a Killing vector 
field, with zero-set a compact (closed) submanifold Z, defined on an open 
subset U ~ M. Then the Poincare-Hopi index IB(v, U) E wO(B) is equal to 
the fibrewise Euler characteristic XB (Z) 01 the zero-set. 

If v is a Killing vector field (or infinitesimal isometry) then at a zero 
x E Z = Zero(v) the derivative (Dv)x : (rBM)x ~ (rBM)x is skew­
symmetric with kernel equal to the tangent space (rBZ)x. On a small tubular 
neighbourhood D(v) of Z the vector field is, under the usual identification 
of the tangent bundle of D(v) with v, homotopic to the (restriction of) the 



12 The Pontrjagin-Thom construction 279 

identity map D(v) ~ v. The index of this new vector field is, essentially by 
definition, the Euler characteristic of Z. 

Alternatively, if we look at the associated isometry f defined, as in Re­
mark 12.27, by x t-+ expz( -€v(x», we see, from the local description of the 
isometry on the tangent bundle, that f is homotopic, through maps with 
the same fixed-point set Z, to the projection of the tubular neighbourhood 
D(v) ~ Z. Then the result follows from the contraction property (Corol­
lary 6.6) of the fixed-point index. 

Change of base 

We turn now to differentiability conditions on the base instead of the fibre. 
Suppose that B and B' are compact ENRs and that a : B' ~ B is a fibrewise 
manifold over B. Let us revert, in this context, to the standard notation T(a) 
for the bundle of tangents along the fibres TBB'. 

For any pointed homotopy fibre bundles X ~ B and Y ~ B with fibres of 
the homotopy type of finite complexes, we shall construct a Gysin (or direct 
image) map: 

a! : wE,{a* Xj T(a)~, AB' a*Y} ~ WE{Xj Y}. (12.36) 

Consider a as a fibrewise smooth map B' ~ B over B. The associated Gysin 
map a! is a stable map B x SO ~ B,;T(OI) , that is, an element 

a! E w~{B x SOj B,;T(OI)}. 

Now we make the identifications, by desuspension and as in Lemma 6.15: 

wE,{a* Xj T(a)~, AB' a*Y} = WE'{( -T(a»~, AB' a* X; a*Y} 

= wE{X AB B,;T(OI)j Y}. 

Finally, composition with the class a! maps this group to wE{Xj Y}, and so 
the direct image map a! is defined. 

Proposition 12.37 The direct image map a!, (1~.36), and transfer, (6.14), 
are related by multiplication by the Euler class of T{a): 

Thus the transfer aU is the composition: 

* {*X *Y}''Y(T(OI» * {*X ()+ *y} OIl * { } WB' a j a ~ WB' a ; TaB' AB' a ~WB X; Y . 

As for Proposition 12.30, this is best seen by looking directly at the defini­
tions. 
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The properties of the direct image map correspond to those of the transfer 
(Proposition 6.16). We state only the simplest of the several variants of the 
Frobenius property. 

Proposition 12.38 (Properties of the direct image map). Let X and Y be 
fibrewise pointed spaces, as in the text, over B. 
(i) (Functoriality). Let a : B' -+ Band /3 : B" -+ B' be compact (closed) 
fibrewise manifolds, with B a compact ENR. Then ao/3 : B" -+ B is a compact 
fibrewise manifold with tangent bundle r( a 0 /3) canonically isomorphic (up 
to homotopy) to /3*r(a) EB r(/3) , and (a 0 /3)! = a! 0/3!: 

wB,,{(a 0 /3)* X; r(a o/3)t" /\B" (a 0 /3)*Y} 

--+w.8,{a* X; r(a)t, /\B' a*Y} --+W.8{X; Y}. 
/3! aq 

(ii) (Frobenius reciprocity). The direct image map a! is w*(B)-linear: 

a!(a*(x) . y) = x· a!(y) for x E w*(B), y E wB,{a* X; r(a)t, /\B' a*Y}. 

When both B and B' are closed manifolds and a is a smooth submersion 
(so that B' -+ B is a smooth fibre bundle), we obtain by smashing Y with 
(rB)t the more egalitarian: 

a! : wB,{a* X; (rB')t, /\B' a*Y} -+ wB{X; (rB)t /\B Y}. 

We should observe, too, that the two Gysin maps: 

a! E w~{B x So; B'~(cr)} and a! E wO{B+; B,T(cr)}, 

the first defined by regarding a as a fibrewise smooth map B' -+ B over B 
and the second defined by thinking of a as a smooth map between manifolds, 
are compatible; the first determines the second by factoring out the fibrewise 
basepoints by the construction '/ B' . 

Let us return to the original case in which a : B' -+ B is a fibrewise 
manifold over a compact ENR. We change notation and let X now be a 
pointed homotopy fibre bundle (with fibre of the homotopy type of a finite 
complex) over B', instead of B; the symbol Y denotes, as before, a space 
over B. Recall that the direct image a.X (Definition 5.36) is the fibrewise 
pointed space 

(12.39) 

over B. It is a pointed homotopy fibre bundle (with fibre of the homotopy 
type of a finite complex). We have already used, in special cases, the fact that 
the direct image is the left adjoint of the pull-back in the stable homotopy 
category. 
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Proposition 12.40 Let a: B' -+ B be a map between compact ENRs, and 
let X -+ B' and Y -+ B be fibrewise pointed spaces as above. Then there is a 
natural isomorphism: 

widX; a*Y} ~wB{a*X; Y}. 

We are concerned now with a dual isomorphism. 

Proposition 12.41 Let a : B' -+ B be a compact fibrewise manifold over a 
compact ENR, and let X -+ B' and Y -+ B be fibrewise pointed spaces as 
specified in the text. Then there is a natural isomorphism: 

wBI{a*Y; r(a)h' AB' X} ~WB{Y; a*X}. 

Corollary 12.42 In the situation described above, if X* is the dual of the 
fibrewise pointed space X over B', then the dual of a*X over B is 

(a*X)* = a*«-r(a))hl AB' X*). 

In order to see where these results come from, let us look at the special case 
in which X = M+BI for some smooth compact fibrewise manifold M -+ B'. 
Then a*M = M -+ B is a fibrewise manifold too, a*X = (a*M)+B, and 
there is a natural isomorphism (up to homotopy) between rBM (that is, 
rBa*M) and r(a) tBrB,M. The dual X* of X over B' is the fibrewise Thom 

space Mi/BIM and the dual of a*X = M+B over B is 

M -TBM _ M-T(a)-TBIM - «- ( ))+ A X*) 
B - B - a.. r a B' f\B' . 

Having identified the dual in this special case, we can deduce Proposi­
tion 12.40 from the chain of isomorphisms: 

WB{Y; a .. X} = WB{Y AB a*«-r(a))~, AB' X*); B x SO} 

= wBI{a*Y AB' «-r(a))h' AB' X*); B' x SO} 

= wBI{a*Y; rta)l AB' X}, 

the first and last by duality over B and B', the middle isomorphism by 
(12.39). The same chain of reasoning in reverse order establishes Proposi­
tion 12.41, in general, as a corollary of Proposition 12.40. 

The isomorphism in Proposition 12.40 is defined in the following way as 
a composition, A say: 

wB,{a*Y; r(a)h' AB' X}~wBI{(-r(a))hl AB' a*Y; X} 

~wB{B'~T(a) AB Y; a*X} 

~WB{Y; a*X}. 
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Here the first isomorphism is desuspension, the map 0:* collapses B' to B, 
and the map o:! is composition with the Gysin map of 0: : B' -+ B over B. 
We show that A is an isomorphism by constructing an inverse !J of the form 
x t-t U 0 0:* (x), where 

U E w~,{o:*(o:*X)j r(o:)~, "B' X}. 

Now the pull-back 0:* (0: .. X) of o: .. X can be written as the fibrewise quotient 
(B' XB X)/B,(B' XB B'), where B' XB X and B' XB B' are considered as 
fibrewise spaces over B' by projection onto the first factor. The diagonal 

B' ~ B'XBB' 
'), ../ 

1 B' 

is a fibrewise smooth embedding over B' with normal bundle r(o:). We use 
the construction (12.5), extended to fibrewise manifolds, for the fibrewise 
pointed space B' x B X -+ B' x B B' to define a Gysin map: 

(B' XB X)/B,(B' XB B') -+ r(o:)~,. 

This is the required element u. We omit what is once again a rather formal 
verification that the maps A and !J are inverse to one another. 

A manifold as base 

Let us specialize the discussion now to the case in which B = * is a point and 
B' is a closed manifold. To streamline the notation we revert to our standard 
'B' for the base. Then Proposition 12.41 becomes: 

Proposition 12.43 Let B be a closed manifold, let X -+ B be a pointed 
homotopy fibre bundle with fibres of the homotopy type of finite complexes, 
and let F be a pointed finite complex . . Then there is a natural isomorphism 

wB{B x Fj (rB)~ "B X} ~w"{Fj X/B}. 

This result generalizes (as does the fibrewise version) to a manifold with 
boundary, as follows. The details of the proof, which builds on the argument 
given for a closed manifold, are omitted. 

Proposition 12.44 Let B be a compact manifold with boundary A := 8B. 
Then, for X -+ Band F as in the statement of Proposition liLla, there is a 
natural identification of two long exact sequences: 

the relative exact sequence of the pair (B, A) on the left, 
and the exact sequence of the triple (X,XA U B,B) on the right, 

in the following diagram. 
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1 1 
wtB,A){B x F; (TB)~ AB X} "" wi{F; X/B} ~ 

1 1 
widB x F; (TB)~ AB X} "" wi{F; X/(XA U Bn ~ 

1 16 

w~+1{A x F; (TA)1 AA XA} "" wi+l{F; XA/A} ~ 

6 1 1 

In writing the relative sequence in the form above we are using the iden­
tification of T B I A with T A EB JR. 

Finite coverings: an example of Sullivan 

As a concrete illustration of the methods of this section we present an elegant 
result due to Sullivan [129]. We start with an elementary transfer argument. 

Lemma 12.45 Let 11" : iJ --+ B be a finite d-fold covering of a compact 
ENR B, and let e be a finite-dimensional real vector bundle over B whose 
pull-back e := 1I"*e over iJ has vanishing stable cohomotopy Euler class ')'(e). 
Then dN ')'(e) = 0 for N » 1 sufficiently large. 

For the composition 

wO {O+' c+} ~ WC! {O+' i+} ~ wo° {O+' c+} B B'~B B B'~B B B'~B 

is multiplication by 1I"!(1) E wO(B), by the Frobenius property (Proposi­
tion 12.38(ii)). IT B is a point, then 1I"!(1) = d. In general, 1I"!(1) has fibre 
degree equal to d and is equal to d + x, where x is nilpotent. 

The proofis completed like that of Proposition 4.5. Since 1I"*'Y(e) = 'Y(1I"*e), 
we have d')'(e) = -x· ')'(e). IT xN = 0, then dN ')'(e) = 0 as claimed. 

Proposition 12.46 Let P --+ B be a principal GL(n, Z)-bundle over a com­
pact ENR B, and let e denote the associated flat n-dimensional real vector 
bundle P XGL(n,Z) JRn --+ B. Then there exists a finite covering 11" : iJ --+ B 
such that the stable cohomotopy Euler class 'Y( 11"* {) of the pull-back of e van­
ishes. 
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Consider the torus bundle T := P xCL(n,Z) (JRn tiP) over B. For each 
integer I > 1, put SI := {z E T I z ¥ 1, zl = I} ~ T. Thus SI is a fibrewise 
submanifold of T with normal bundle 11"* e. Of course, it is O-dimensional; 
SI -+ B is an (In - I)-fold covering. 

Inverting I, we show first of all that ,(11"* e) vanishes in the localized group 
W~, {SI X So; 11"* (e~) } [1/ I]. Let ml : T -+ T denote the Ith power map: z foot zl. 
Now consider the commutative diagram: 

~ T 
c 

1ml 
B ~ T 

e 

in which e is the inclusion of the identity section, and look at the correspond­
ing diagram of direct image maps: 

WO(SI) = W~{(Sz)+B; B x SO} ~ W~{T+B; eM 
7<! 1 1 (mz)! 

Because mloe = e, we have (ml)!e!(I) = e!(I). Also e! (11"! (1)) = 1I"!(I).e!(1), 
since e! is an wO(B)-module homomorphism. This allows us to deduce that: 

(mIHi!(I) - 1I"!(I).e!(I)) = o. 
We claim that (ml)! : W~{T+B; e~}[I/I] -+ W~{T+B; e~}[I/I] is bi­

jective. As the Z[I/I]-module is finitely generated, it will suffice to show 
that the map is surjective. Now (mIHml)* is multiplication by (miMI), 
according to Proposition I2.38(ii), where (ml)! is the direct image map 
wO(T) = W~{T+B; B x SO} -+ wO(T). So we just have to show that (mz}!(l) 
is invertible in wO(T)[I/I]. We can certainly assume that B is connected, and 
then wO(T) is the direct sum ZI EB n, where n is a nilpotent ideal. Since 
ml : T -+ T is an In-fold covering, (mz}!(I) is equal to In modulo torsion. 

We have established that: i!(I) = 1I"!(I).e!(I) E W~{T+B; e~}[1/l]. But 
i*i!(I) is the Euler class ,(e) E W~, {SI X So; 1I"*(e~)}, by Proposition 12.2, 
and i*e!(l) = 0, by Frobenius reciprocity, because SI and i(B) are disjoint. 

Remark 12.47. It follows from Lemma 12.45 that ,(e) is torsion, and, more 
precisely, that its order divides 1M (In - I)N for M and N sufficiently large. 
Since this is true for any integer 1 > 1, a prime p > 1 divides the order of 
,(e) only if p - 1 divides n. 

If one works in cohomology with integer coefficients, as did Sullivan, one 
sees that the cohomology Euler class e(e)' with coefficients twisted by the 
determinant bundle P xCL(n,Z) Z, has order dividing In(ln -1) for each 1 > l. 
Equivalently, by elementary number theory, in terms of 
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m(n) = I1 pllp(n), 

p:p-11 n 

where vp is the p-adic valuation, p > 1 prime, the order of e(O divides m(n) 
if n is odd, 4m(n) if n is even. 

After this digression we can complete the proof of Proposition 12.46 by 
taking B to be, for example, the fibrewise product 8 2 x B 8 3 . 

13 Miller's stable splitting of U(n) 

The theorem of Miller discussed in this section appeared in [111]. The method 
of proof, using fibrewise techniques, is taken from [26]. A fibrewise general­
ization of the theorem was exploited in [29]. 

We work throughout over a fixed compact base B. 

Bundles of groups 

Let G be a compact Lie group and H a Lie group acting on G by group 
automorphisms. For example, H might be the group of all automorphisms of 
G or H might be the group G acting on itself by inner automorphisms. We 
write 9 for the Lie algebra of G, the tangent space r1 G at the identity 1 E G. 
The tangent bundle of G is trivialized by left translation: the derivative at 
1 of left multiplication G -+ G by an element g E G gives an isomorphism 
9 = rIG -+ rgG. 

Associated to a principal H -bundle P -+ B over the compact ENR B 
there is the bundle of groups M := P XH G -+ B. Let ( be the Lie algebra 
bundle P XH 9 -+ B. 

By left translation on fibres, the fibrewise tangent bundle rBM is identi­
fied with the pull-back of ( from B to M: the bundle of Lie groups is fibrewise 
parallelizable. 

Just as we can split off the 'top cell' of a parallelizable closed manifold, we 
can split off the pointed sphere-bundle (~. Let e : B -+ M be the inclusion 
of the identity in each fibre. We could use this section to make M -+ B a 
fibrewise pointed space, but it is more natural in the present context to add 
a disjoint basepoint and consider M+B. The fibrewise normal bundle of the 
embedding e is (. Choosing an invariant inner product on 9 and using the 
exponential map exp : 9 -+ G, which will embed a small disc in 9 into G, we 
get an explicit fibrewise tubular neighbourhood of B in M. By scaling the 
metric we may arrange that the unit disc-bundle D(() embeds in M. The 
fibrewise Gysin map e! : M+B -+ (~ is the fibrewise collapse 
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onto the 'top cell'. (Here B(() denotes the open unit disc-bundle.) The pro­
jection map p : M -+ B splits e : poe = 1B, and so p! : (13 -+ M+B splits 
e! : e! 0 p! = 1. 

Proposition 13.1 There is a canonical fibrewise stable splitting 

M+B ~B (13 VB N+B, 

where N = M - B((). 

Notice that N is a fibrewise manifold with boundary aN = S((). The 
fibrewise quotient N IBoN is fibrewise homeomorphic to M equipped with 
the basepoint e. The stable splitting just constructed is dual to the splitting 
of M+B as (B x SO) VB M given bye. : B x SO -+ M+B and the pointed 
map M+B -+ M which is the identity on M ~ M+B. 

The geometry of U( n) 

Let E be an n-dimensional ((>vector space equipped with a Hermitian inner 
product. We write U(E) for the unitary group of E. The Lie algebra u(E) of 
U(E) is the space of skew-Hermitian endomorphisms of E. 

Instead of using the exponential map to construct a tubular neighbour­
hood we shall use the Cayley transform. 

Lemma 13.2 The Cayley transform 

1/J : u(E) -+ {g E U(E) 11 - 9 is invertible} 

1/J(v) = (v12 - 1)(vI2 + 1)-1 

is a diffeomorphism mapping 0 to -1. 

The inverse of 1/J can be written as: 

Given a line (that is, a I-dimensional complex subspace) L ~ E and 
complex number). E 1l' of modulus 1, we write pd).) E U(E) for the complex 
reflection which is the identity on the orthogonal complement L1- of Land 
multiplication by ). on L. There is a filtration 

of U(E) by the subspaces Rk(E) consisting of the unitary transformations 
which can be expressed as a product of k complex reflections. By elementary 
linear algebra we see that: 
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Lemma 13.3 The subspace Rk(E) consists of those group elements g E U(E) 
with dim (ker(1 - g».L ~ k. 

We shall need to know that the inclusion Rk-1(E) Y Rk(E) is a closed 
cofibration. This follows from: 

Lemma 13.4 The space Rk(E) is a compact ENR. 

One could quote here the general fact that a real algebraic variety is 
an ENR, but it is easy to give an explicit retraction of a neighbourhood of 
Rk(E) in U(E) onto the subspace. Given 9 E U(E) we may list its eigenvalues 
AI,"" An so that IA1 -11 ~ IA2 -11 ~ ... ~ IAn -11. Write An-k = eia:, where 
-'IT < 0: ~ 'IT, and define 4>k(g) = 10:1 E [0, 'IT]. The function 4>k : U(E) --+ [0, 'IT] 
so constructed is continuous and has zero-set Rk(E). Continuity is clear from 
another description. For any vector subspace F of E, let 11(1- g)FII denote 
the operator (supremum) norm of the restriction of 1 - g: F --+ E. Then 

2 I sin(0:/2) I = . inf 11(1- g)FII, 
dlmF=n-k 

the infimum over the subspaces F ~ E of dimension n - k. 
The open subspace {g E U(E) l4>k(g) < 'IT} can be retracted onto Rk(E) 

by pushing eigenvalues towards 1. More precisely, let 1 : '][' x [0, 'IT) --+ '][' be 
a continuous function such that l(eia:,t) = 1 for 10:1 ~ t and 1(..\,0) = A. 
By the functional calculus for unitary operators, 1 extends to a homotopy 
U(E) x [0, 'IT) --+ U(E). We retract 9 to l(g, 4>k(g». 

The Cayley transform identifies Rn(E) - Rn-1(E) with the vector space 
u( E), and thus the quotient Rn (E) / Rn-1 (E) is identified with the sphere 
u(E)+. 

A fibrewise stable splitting 

Consider, more generally, an n-dimensional complex vector bundle ~ over the 
compact base B, with a Hermitian inner product. Then we can form the 
bundle U(~) --+ B of unitary groups over B, with fibre at bE B the unitary 
group U(~b) of the fibre of ~. The bundle is filtered by sub-bundles 

B = RO{~) ~ ... ~ Rk(~) ~ ... ~ Rn(~) = U(~), (13.5) 

the fibre of Rk(~) at b being the subspace Rk(~b). As a bundle with each fibre 
an ENR, each space Rk(~) is a fibrewise ENR, by Definition 5.5. (But the 
proof of Lemma 13.4 evidently carries through to give an explicit fibrewise 
neighbourhood retraction.) 

The fibrewise quotient Rn(~)/BRn-1{O is identifed by the Cayley trans­
form with the fibrewise one-point compactification u(€)~ of the Lie algebra 
bundle u(~). We think of the complement Rn{~) - Rn-1{~) as the 'top cell' 
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of U(~), centred on -1 in each fibre. As in Proposition 13.1, the collapse 
map U(O+B -t ~~ is the Pontrjagin-Thom construction i! on the inclusion 
i : B -t U (~) of -1 in each fibre, and it is split stably by 

(13.6) 

(where p : U(~) -t B, over B, is as usual the projection). 
We shall exploit this discussion of the fibrewise case to split U(E). Let 

Gk(E), for 0 ~ k ~ n, denote the Grassmann manifold of k-dimensional 
vector subspaces of E, and let 1]k denote the canonical k-dimensional vector 
bundle over G k (E); the fibre of 1]k at a point F E G k (E) is the vector space F. 
The Hermitian structure on E induces an inner product on 1]k. Now consider 
the bundle U(1]k) -t Gk(E). Elements of U(1]k) are pairs (F, h), where F ~ E 
is a k-dimensional subspace and hE U(F). We have a surjective map 

(F, h) I-t hEEl 1 : E = FEEl F1. -t FEEl F1. = E. 

This map is injective on the top cell Rk(1]k) - Rk- 1 (1]k) and restricts to a 
fibrewise diffeomorphism 

U(1]k) = (Rk(1]k) - Rk- 1 (1]k)) -t (Rk(E) - Rk-l(E) 

over Gk(E). The space Rk(E) - Rk-l(E) fibres over Gk(E) by the map: 
g I-t (ker(l- g))1.. Since the quotient Rk(E)/Rk-l(E) is the one-point com­
pactification of Rk (E) - Rk- 1 (E) we have established: 

Proposition 13.7 There is a natural homeomorphism 

between the kth quotient in the filtration of U(E) and the Thom space (or 
one-point compactification) of u( 1]k). 

We shall show: 

Lemma 13.8 The projection 

Rk(E)+ -t Rk(E)/Rk-l(E) -t Gk(E)u(T/k) 

has a stable splitting. 

From this lemma Miller's theorem follows immediately. 

Proposition 13.9 (Miller's stable splitting of U(n)). There is a stable de-
composition 

V Gk(E)u(T/k) ~ U(E)+. 
O::;k$n 
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The lemma itself is a consequence of (13.6), which provides a fibrewise 
stable splitting 

(U(1Jk))~k(E) --+ Rk(1Jk)+Gk(E) 

over Gk(E). Collapsing the fibrewise basepoints to a point and composing 
with q : Rk(1Jk) --+ Rk(E) we obtain the required stable splitting map 

Gk(E)u(llk) --+ Rk(E)+. 

The proof may be conveniently summarized in the diagram: 

U(1Jk)~k(E) ---+ Rk(1Jk)+Gk(E) ---+ U(1Jk)~k(E) 

1= 1= 

The top line is a sequence of fibrewise stable maps over Gk(E) with compo­
sition equal to the identity. The second line is the sequence of stable maps 
obtained from the first by collapsing the fibrewise basepoints; the composi­
tion is then clearly the identity. From commutativity of the two squares it 
follows that the composition in the bottom line is the identity, and this gives 
us the stable splitting. 

A fibre wise version 

We have used fibrewise methods to establish Miller's theorem. The theorem 
itself has a natural generalization giving a fibrewise stable splitting of a bundle 
of unitary groups. Given a complex vector bundle ~ over B, we can form the 
Grassmann bundle Gk(I;,), whose fibre over b E B is the Grassmann manifold 
Gk(t;,b) of k-dimensional subspaces of the fibre t;,b, and over Gk(O we have 
a canonical k-dimensional complex vector bundle 1Jk (which, incidentally, is 
fibrewise smooth over B). 

Proposition 13.10 Let ~ be an n-dimensional complex vector bundle, with 
a Hermitian inner product, over the compact ENR B. There is a fibrewise 
stable decomposition 

VB Gk(~)~llk) ~) U(~)+B. 
09~n 

By collapsing the basepoints in the fibres to a point, we obtain 

Corollary 13.11 There is a stable splitting of spaces: 

V Gk(~)U(llk) ~ U(O+· 
O~k~n 



290 An Introduction to Fibrewise Stable Homotopy Theory 

The proposition may be established by following through the proof of 
Proposition 13.9 at the fibrewise level, a procedure which involves the sys­
tematic consideration of fibrewise fibre bundles. Alternatively, one may use 
equivariant methods, deducing Proposition 13.10 directly from the U(E)­
equivariant extension of Proposition 13.9, which is proved by doing little 
more than inserting the word 'equivariant' at appropriate points. 

The fibrewise Lusternik-Schnirelmann category of U({) 

It is interesting to note, in passing, a generalization of a result of Singhof [123, 
124] on the category of the unitary group, which provides a good illustration 
of the concepts discussed in Section 19 of Part I. 

For>. E 1I', a complex number of modulus 1, let W>. denote the sub­
space of U({) consisting, in each fibre, of the unitary transformations with 
no eigenvalue equal to >.. The Cayley transform gives a fibrewise diffeomor­
phism from u({) to the open subspace Wi of U({). By multiplying by>., we 
obtain a fibrewise diffeomorphism u({) ~ W>. mapping the trivial summand 
B x ilR to B x (1I' - {>.}). So W>. is fibrewise contractible, and if>. # 1 it can 
be contracted to the basepoint 1 in each fibre. Since any n + 1 of these sets 
cover U({), for distinct values of >., we have established most of: 

Proposition 13.12 The fibrewise pointed Lusternik-Schnirelmann category 
of the bundle of unitary groups U(O, with basepoint 1 in each fibre, of an 
n-dimensional complex Hermitian bundle { over B is n + 1. More precisely, 
we have 

catB U({) = wcatB U(O = n + 1. 

Recall that the fibrewise pointed category catB and weak category wcatB 
(denoted by catZ and wcatZ in Section 19 of Part I) are defined as follows. 
We consider fibrewise pointed open subsets W of U({) such that the inclusion 
W ~ U({) is fibrewise null-homotopic; catB U({) is the least number of sets 
in a covering of U ({) by such open sets. The least integer k such that the 
diagonal map 

U({) ~ /\~U({) 

is fibrewise null-homotopic is wcatB U({), and wcatB U({) ~ catB U({) (by 
Part I, (19.8)). The upper bound on catB U({) is supplied by the geometric 
discussion and the lower bound on the weak category is provided by the 
cohomology of a fibre: H*(U(n); Z) is an exterior algebra on n generators in 
degrees 2i - 1, 1 ~ i ~ n. 
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Stiefel manifolds 

The methods of this section can be generalized from the unitary group to the 
complex Stiefel manifolds. Let E and F be two finite-dimensional complex 
Hilbert spaces. We consider the Stiefel manifold U(E; F) of isometric linear 
maps E -t E EB F. Elements can be written as pairs (g, h) with 9 E End(E), 
hE Hom(E,F) such that g*g+h*h = 1. The Cayley transform describes the 
open subspace consisting of the pairs (g, h) with 1 - 9 invertible. 

Lemma 13.13 There is a diffeomorphism 

'IjJ : u(E) EB Hom(E, F) -t {(g, h) E U(E; F) 11 - g is invertible} 

given by 'IjJ(v,w) = (g,h), where 

b = (1 + W*wj4)1/2, 
9 = (a - l)(a + 1)-1, 

a = bvbj2 + w*wj4, 
h = w(l - g)/2. 

Notice that v = 2b- 1(1- g*)-l(g - g*)(I- g)-lb-1 . The transformation 
a + 1 is invertible because (a + 1) + (a + 1)* is positive-definite. 

The formulation and proof of the generalizations to Stiefel manifolds of 
Propositions 13.9, 13.10 and 13.12 are left as an exercise for the reader. 

14 Configuration spaces and splittings 

In this section the base B will be a compact ENR and all the fibrewise spaces 
will be locally homotopy trivial. But we begin with a review of the classical 
theory in which B is reduced to a point (and omitted from the notation). 
The generalization to the fibrewise theory turns out to be rather routine. 

The classical theory 

Let M be a (non-empty) smooth manifold. For a natural number k ~ 0, we 
define the configuration space of k indistinguishable particles in M to be the 
set 

Ck(M) := {Q ~ M I #Q = k} 

topologized as the quotient F k(M)/6k of the space 

Fk(M) := {(Xl, ... ,Xk) E Mk I Xi "# Xj for i"# j} 

(14.1) 

of ordered configurations (already studied in Part I, Section 23) by the free 
permutation action of the symmetric group 6k. (The special case CO(M) is 
understood to consist of a single point, the empty subset of M.) As we have 
seen in Part I, Proposition 23.2, the space Fk(M) is a smooth manifold, and 
so, too, is the quotient Ck(M). 
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Example 14.2. The basic example is the manifold M = lR. We can order any 
k-element subset Q ~ IR as: Xl < X2 < ... < Xk and describe Ck (IR) as the 
contractible space IR x (0, oo)k-l by mapping Q to (x; X2 -Xl, ... , Xk -xk-d, 
where x is the centre of mass (Xl + .. . +xk)jk E lR. The ordered configuration 
space Fk (IR) is correspondingly identified with 6k x (IR x (0,00 )k-l), where 
6 k acts by multiplication on the first factor and trivially on the bracketed 
second factor. 

Example 14.3. Let M be a finite-dimensional Euclidean space E, and consider 
the case k = 2. There is a homeomorphism 

F2(E) = E x E - Ll(E) -+ E x (0,00) x 8(E) 

given by (x,y) I-t (u, IIvll,vjllvll), where u is the centre of mass (x+y)j2 and 
v = (x - y)j2 (say). This map is 62-equivariant if the action on the sphere 
8(E) is by the antipodal involution and the group acts trivially on the first 
two factors. We obtain a homeomorphism: C2(E) -+ E x (0,00) x P(E) and, 
by projection, a homotopy equivalence C2(E) -+ P(E) to the real projective 
space of E. 

These first two examples have been important since configuration space 
models first appeared in homotopy theory; the third example came with the 
advent of cyclic homology. 

Example 14.4. Let M be the circle 8 1, which we regard as IRjZ. Consider first 
an ordered configuration (Xl' ... ' Xk) in which Xl, ... , Xk go anticlockwise 
around the circle. Let (ti)iEZ be the monotone increasing infinite sequence 

... < ti < ti+1 < . . . in IR 

with Xi = ti (mod Z), tHk = ti + 1, and, to fix the indexing, ° ~ tl < 1. Write 
Si = tHl - ti, so that Si > ° and El~i9 Si = 1. The normalized first term 

1 k-l 
Xl := l~yl + t2 + ... + tk) - 2k (mod Z) E IRjZ 

is then well-defined. (If the distances Si are all equal, then Xl will be equal 
to xd Writing A for the subspace of Fk(8 l ) consisting of all such ordered 
configurations (Xl, ... , Xk) and .10 for the open simplex 

{(Sl, ... ,Sk) E IRk lSi> 0, S1 + ... + Sk = I}, 

we obtain a homeomorphism: 

A -+ 8 1 X .10 : (Xl, ... ,Xk) I-t (Xl; Sl, ... ,Sk). 

This homeomorphism is Zj k-equivariant, where the generator 1 of the cyclic 
group acts on A and on .1 ° by cyclic permutation: (Xl, ... , X k) I-t (X2, . .. , Xl), 
(S1> ... ' Sk) I-t (S2' ... ' sd, and on 8 1 = IRjZ by adding Ijk. 
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The action of <5 k on Fk (S1) leads to the description: 

Fk(S1)~(S1 x .dO) XZ/k<5k~S1 XZ/k<5k, 

in which the first arrow is a homeomorphism and the second, given by pro­
jection, is a homotopy equivalence. The configuration space Ck (S1) itself is 
thus homotopy equivalent to the circle S1 j(Z/k). Geometrically, the homo­
topy equivalence pushes a configuration of k particles on the circle until the 
distances between adjacent particles are equal. 

We denote the disjoint union of the configuration spaces for k ~ ° by 

C(M) := 11 Ck(M). 
k~O 

It is a pointed space, with basepoint in CO (M). 
For a compact manifold M with boundary the inclusion of the open sub­

manifold M - aM ~ M induces a homotopy equivalence Ck(M - aM) -t 
ck(M), as is easily checked using a collar neighbourhood aM x [0, 1) ~ M 
of the boundary. In establishing the basic results one also needs a pointed 
space C(M, aM) defined by allowing particles to appear and disappear on 
the boundary. An equivalence relation", is defined on C(M) by: 

Q '" Q' if and only if Q n (M - aM) = Q' n (M - aM), 

and C (M, aM) is the topological quotient C (M) / "'. The space is filtered 
by the subspaces C9(M, aM) given by subsets Q ~ M with #Q ::; k. The 
following example provides a good illustration of the basic ideas. 

Example 14.5. Let M be the closed unit disc D(E) in the finite-dimensional 
Euclidean space E. Then C(M, aM) is homotopy equivalent to the one-point 
compactification E+. 

The assertion is verified by producing a deformation retraction of the con­
figuration space C(M, aM) onto the subspace C9(M, aM) given by subsets 
with at most one particle. This subspace is clearly the quotient D(E)/S(E), 
which is identified with E+ in the usual way. The deformation is defined in 
the following way. Given a finite subset Q ~ D(E), let r > ° be the greatest 
real number ::; 1 such that the open disc of radius r and centre the origin 
contains at most one element of Q. Now push Q out to ~ Q so that excess 
particles fall off the edge of the disc. 

Configuration spaces and spaces of sections 

Let E again be a finite-dimensional Euclidean space. Using the Pontrjagin­
Thorn construction we shall define a map 
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which is canonical up to homotopy. A finite subset Q E Ck(E) of E is a 0-
dimensional compact submanifold. A tubular neighbourhood of Q is a disjoint 
union of discs centred on the points of Q. To be precise, we can take the discs 
to be of radius 

I:(Q):= ~min{lIx - ylll x, y E Q, x # y}. 

The Pontrjagin-Thorn construction, as described in Section 12, gives a 
pointed map ¢(Q) : E+ -+ E+ varying continuously with Q. 

This is clearly already a fibrewise construction (even in the ordinary case, 
B = *, that we are considering). Over the (generally non-compact) ENR 
Ck (M) we have a fibrewise manifold {( Q, x) I x E Q} embedded in the trivial 
vector bundle Ck(M) xE. The map ¢ is given by a fibrewise Pontrjagin-Thom 
construction. 

We now generalize. Let M be a compact manifold with (possibly empty) 
boundary. Recall that (rM)t denotes the fibrewise one-point compactifica­
tion (over M) of the tangent bundle of M with basepoint in each fibre the 
point at infinity. We write r(M,8Mj (rM)t) for the space of sections of 
this bundle which are null (that is, take the value 00) over the subspace 8M. 
It contains as a subspace the space cr(M - 8Mj (rM)t) of sections with 
compact support, that is, sections which are null outside a compact subspace 
of M - 8M. Using a collar neighbourhood of the boundary again, it is easy 
to see that the inclusion 

cr(M - 8Mj (rM)t) '-+ r(M,8M; (rM)t) 

is a homotopy equivalence. 
We construct a canonical homotopy class 

(14.6) 

by a procedure familiar from Section 12. Consider a finite subset Q of M -8M, 
that is, a compact submanifold of dimension O. The normal bundle v of the 
embedding Q '-+ M is the restriction (rM) I Q. A tubular neighbourhood 
allows us to identify a neighbourhood Q in M - 8M with the disc-bundle 
D := D(v), of which the tangent bundle rD is just (the pull-back of) v. 
The projection D(vx) -+ D(vx)/S(vx), identified in the usual way, up to 
homotopy, with (vx )+ for x E Q, gives a section of (rD)j) over D which is null 
on the boundary 8D = S(v). Now extend this section to M - 8M to be null 
outside D. The map ¢ is defined by performing this construction fibrewise 
over Ck(M - 8M). This can be carried out quite explicitly by choosing a 
Riemannian metric on M and using the exponential map. 

Remark 14.7. Suppose that the manifold M is connected. Then the com­
ponents of cr(M - 8M; (rM)t) are indexed by the cohomological degree, 



14 Configuration spaces and splittings 295 

and 4> maps the configurations Ck(M - 8M) of k particles into the com­
ponent of degree k. Indeed, the set of components can be identified with 
wrM,OM){M x SOj (rM)t}, and this group is dual to wo(M) = Z. 

Internal structure 

Let Y, while we continue the discussion of the classical case in which the base 
B is a point, be a pointed compact ENR. To pursue the physical analogy, 
we will now suppose that our particles have some sort of internal structure 
(usually called a 'label') specified by a point of Y. The structure given by the 
basepoint of Y means non-existence. More formally, we consider pairs (Q, I) 
consisting of a finite subset Q of M and a map f : Q -+ Y and introduce the 
equivalence relation ...... : 

fl(Q n Q') = I'I(Q n Q') 
(Q,I) ...... (Q',!') if and only if and 

f-l(y - {*}) = I'-l(y - {*}). 

The set of equivalence classes C(Mj Y) is topologized as the obvious quotient 
of 

11 Fk(M) X6k yk. 
k~O 

It is filtered by subspaces Ck(Mj Y), k ~ 0, consisting of the classes rep­
resented by pairs (Q, I) with #Q ~ k. Thus Ck(Mj Y) is a quotient of 
Fk(M) X6k yk. 

As a trivial, but important, example, for Y = SO we have a natural 
identification: 

Ck(Mj SO) = 11 Ci(M), 
O~i~k 

andCk(Mj SO) =Ck-1(Mj SO)UCk(M). 
For a general space Y, the complement of the closed subspace Ck- 1 (M j Y) 

in Ck(Mj Y) is the space Fk(M) xS k (Y - {*})k, whi<;h fibres over Ck(M). To 
exploit this description of the complement we need to know that Ck-1(Mj Y) 
is included in Ck(Mj Y) as a neighbourhood deformation retract. 

Lemma 14.8 There is a deformation retraction rt : U -+ Ck(Mj Y) of an 
open neighbourhood U ofCk-1(Mj Y) in Ck(Mj Y) onto the closed subspace 
Ck-1(Mj Y). 

We are assuming that Y is a pointed compact ENRj all that we really need 
for the proof is that Y be well-pointed. Let St : V -+ Y be a deformation 
retraction of an open neighbourhood of the basepoint * to the basepoint: 
so(x) = x, Sl(X) = *, and St(*) = *j and let p : Y -+ [0,1] be a continuous 
function which has zero-set {*} and takes the value 1 outside V. We can now 
define a continuous function 'l/J : Ck(Mj Y) -+ [0,1] by setting 
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tf;(Q, f) := min{p(f(x)) I x E Q}. 

The zero-set of tf; is exactly Ck-1(M; Y). Let U be the open subset tf;-l[O, 1). 
We retract U onto Ck - 1 (M; Y) by pushing the internal structure of a particle 
x with p(f(x)) minimal towards the basepoint. To carry this out, choose a 
continuous function h : [0,1] x [0,1) -* [0,1] such that h(I, u) = 0, h(t, u) = t 
for t ~ u. Now define rt(Q, f) to be (Q,g), where 

(x) = {Sh(t,1/J(Q,/))(f(X)) if f(x) E V, 
g f(x) if f(x) ¢ V. 

It follows from the lemma that the inclusion Ck-1(M; Y) ~ Ck(M; Y) 
is a closed cofibration. The quotient Ck(M; Y)/Ck-l(M; Y) is obtained by 
collapsing the basepoints in the pointed fibre bundle 

(14.9) 

We note as a consequence: 

Lemma 14.10 If Y is connected, then the inclusion Ck(M; Y) -* C(M; Y) 
is a k-equivalence (that is, induces an isomorphism on homotopy groups 1l"i 

for i < k and an epimorphism for i = k). More generally, if 1l"i(Y) = ° for 
i < c, then the inclusion is a (k + I)c - I-equivalence. 

For if X -* B is a pointed homotopy fibre bundle with fibres having 
vanishing homotopy groups 1l"i(Xb) = ° in dimensions i < c, then the pointed 
space X / B is (c - 1 )-connected. (Indeed, an inductive argument over cells 
of the base using the relative exact sequence shows easily that the stable 
homotopy groups in dimensions < c are zero. A similar induction using the 
van Kampen theorem establishes simple connectivity.) We apply this result 
to the inclusions Ci-l(M; Y) -* Ci(M; Y) for j > k. 

Combinatorial models of loop spaces 

It is straightforward to introduce the structure space Y into the definition of 
the map ¢ using the Pontrjagin-Thorn construction to define 

¢: C(E; Y) -* map*(E+,E+ A Y) 

for a Euclidean space E and, in general, 

C(M -8M; Y) -* cf(M - 8M; (rM)t AM (M x Y)) 

¢: ~ 1 l~ (14.11) 

C(M; Y) -* r(M,8M; (rM)t AM (M x Y)) 

We shall use the same symbol ¢ for both horizontal maps in the diagram. The 
basic theorem, which provides a combinatorial, configuration space, model of 
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the loop space n L'Y and more generally nn L'ny, was formulated and proved 
over a period of twenty years by numerous authors: from James (1955) [77] 
to McDuff (1975) [107]. 

Theorem 14.12 If Y is connected, then the map <p above, (14.11), is a 
pointed homotopy equivalence. 

The idea of the proof, as conceived by McDuff, is to begin from the basic 
example (Example 14.5): C(D(E}, 8D(E» ~ E+, and use a gluing argument. 

Example 14.13. The special case M = D(R.} reduces to the original theorem 
of [77]. By Example 14.2, the configuration space model C(R.j Y} is homotopy 
equivalent to the reduced product (James) construction 

J(Y} = 11 y k /,..., 
k~O 

described in Part I, Section 20. As a set this is the free monoid on the pointed 
set Y (with the basepoint * as identity)j as a space it is filtered by subspaces 
Jk(y), the quotient of yk, corresponding to Ck(R.j Y). The tangent bundle 
r M is trivial and 

r(M,8Mj (rM)t I\M (M x Y» = map*(D(R.)/8(R.),R.+ 1\ Y) = nL'Y. 

Example 14.14. Taking M = D(R.n), with rM = M x R.n again trivial we 
obtain the model 

for the n-fold loop space an Eny due to May [103]. 

Example 14.15. The case of the closed manifold M = 8 1 was considered 
by Bodigheimer and Madsen [15] following work of Carlsson and Cohen [21]. 
Again the manifold is parallelizable: r81 = 8 1 x R., and we obtain a homotopy 
equivalence 

<p : C(81 j Y) -t map(81 , L'Y) = C(L'Y) 

to the space of free loops on the suspension of Y. 

The fibrewise theory 

As we have already observed, there is very little that needs to be done to 
extend these constructions and the fundamental theorem to fibrewise spaces. 
The combinatorial models will be fibrewise configuration spaces. We work 
over a compact ENR B. Let ~, playing the role of the vector space E, be a 
real vector bundle of dimension n ~ lover B, and let M -t B be a (locally 
trivial) compact fibrewise manifold (possibly with non-empty boundary). The 
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internal structure will be described by a pointed homotopy fibre bundle Y 
over B, with fibre of the homotopy type of a finite complex; we recall that Y 
is homotopy well-pointed. Its pull-back to M is written as p*Y. 

Performing the various constructions fibrewise we obtain pointed homo­
topy fibre bundles: 

C1(M - 8M; Y) and crB(M - 8M; (rBM)t I'M p*Y) 

with respective fibres at b E B 

Ck(Mb - 8Mb; Yb) and cr(Mb - 8M b; (rMb)tb AMb Yb) 

and fibrewise homotopy equivalent to 

C1(M; Y) and rB(M,8M; (rBM)t AM p*Y), 

respectively. And the fibrewise quotient of successive terms in the filtration 
can be expressed as: 

(Here the balanced product is the orbit space of the action of the fibrewise 
group B x 6k over B.) 

Using the fibrewise Pontrjagin-Thom construction we obtain compatible 
fibrewise pointed maps, for k 2: 0: 

"P) C1(M - 8M; Y) --'---t crB(M - 8M; (rBM)t AM p*y) 

(14.17) 

C1(M; Y) ~ rB(M,8M; (rBM)t AM p*Y) 
tf>(k) 

If M -+ B is a disc-bundle D(~), then rB(M,8M; (rBM)t AM p*Y) 
reduces to the fibrewise loop space mapB(~~'~~ AB Y), and we have a map 

(14.18) 

From Dold's theorem we can read off the fibrewise generalization of The­
orem 14.12. 

Theorem 14.19 Suppose that Y -+ B has connected fibres. Then 

¢: CB(M; Y) -+ rB(M,8M; (rBM)t AM p*Y) 

is a fibrewise pointed homotopy equivalence. 

Obstruction theory, Proposition 2.15, leads to a more precise finite ver­
sion. 

Corollary 14.20 Suppose that B is a finite complex of dimension::; m, that 
A is a subcomplex of B, and that X -+ B is a pointed homotopy fibre bundle 
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with fibres of the homotopy type of finite complexes of dimension :::; l. Then, 
if the fibres of Y -+ B have vanishing homotopy groups in dimensions < c, 
where c ~ 1, the induced map 

rjJ(k) : 1r(~.A)[Xj C~(Mj V)] -+ 1r(~.A)[Xj rB(M,8Mj (TBM)t, AM p·Y)] 

is bijective for i < (k+l)c-l-(m+l), surjective for i :::; (k+l)c-l-(m+l). 

Example 14.21. Let us consider the fibrewise form of the reduced product 
(James) construction. Suppose that A is a Euclidean line bundle over B, and 
take M = D(A). The theorem gives a combinatorial model for the twisted 
fibrewise loop space map:B(At, At AB V). Let P denote the principal Z/2-
bundle 8(A) with the involution -1. From Example 14.2 we see that the 
ordered configuration space FMA) is fibrewise homeomorphic to 

(P XZ/2 (Sk x (O,oo)k-l» XB A, 

where the involution in Z/2 acts on Sk as left multiplication by the order­
reversing permutation of {I, ... ,k} and on the (k - I)-fold product by re­
versing the order of the factors. This space is fibrewise homotopy equivalent 
to P XZ/2 Sk, and CMAj Y) is fibrewise homotopy equivalent to a fibrewise 
pointed space, which we shall denote by JMAj V), with fibre Pb XZ/2 Jk(Yb) 
at b E B. Here the involution in Z/2 acts on Jk(Yb) by reversing the order of 
the factors. 

Hence we obtain a concrete combinatorial approximation 

rjJ(k) : JMAj Y) -+ map:B(At, At AB Y) 

(when Y has connected fibres) to the fibrewise loop space. 
When A is the trivial bundle B x IR we omit it from the notation and write 

simply JMY). A detailed study of this case can be found in Part I, Section 
20. 

Example 14.22. Next consider a 2-dimensional Euclidean vector bundle." over 
B, writing P -+ B for the associated principal O(2)-bundle and M for the 
circle-bundle 8(.,,). The fibrewise tangent bundle TBM is the pull-back of the 
determinant line bundle A of." over B. (For the pull-back of 1/ splits as a 
direct sum of TBM and a trivial line bundle.) So we have maps 

rjJ(k) : C~(8(1/)j Y) -+ maPB (8(.,,) , A~ AB V). 

According to the discussion in Example 14.4 the ordered configuration space 
bundle FM8(.,,» is fibrewise homotopy equivalent to 

P XO(2) (81 XZ/k Sk), 

while the bundle CM8(1/» is fibrewise homotopy equivalent to the circle­
bundle P XO(2) (81/(Z/k». 
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A stable splitting of a kth power 

The technique that we describe next is essentially that used by Cohen in [23]; 
see also [25] for the case k = 2. 

Consider, to begin with, a pointed space Y (of the homotopy type of a 
finite complex, say). Let N denote the space Y with the basepoint * forgotten, 
and form a pointed space N + by adjoining a new basepoint. Then we have 
maps of pointed spaces 

p : N+ -+ SO and q: N+ -+ Y, 

the first induced by the projection of N to a point and the second extending 
the identity map on Y = N c N +, and their sum gives a stable equivalence 
p + q : N + -+ So y Y. Indeed, the homotopy equivalence is realized after a 
single suspension: 

(14.23) 
More precisely, there is a commutative diagram of cofibrations and stable 
maps: 

So ~ N+ -4 Y 

= 1 p+q 1 = 1 
SO --+ SOYY --+ Y 

in which j is given by the inclusion of the basepoint * in Y = N. 
The k-fold (smash) power of the map p + q, (14.23), gives an 6k­

equivariant homotopy equivalence 

E+ " (N x ... X N)+ -+ E+ ,,( V Zi), 
0~i9 

where E is the k-dimensional permutation representation of 6k and the ith 
summand Zi is a wedge of m copies of the i-fold product y" . .. " Y indexed 
by the i-element subsets of {I, ... , k}. (In particular, Zo = So.) This gives 
us immediately a fibrewise stable splitting theorem. 

Proposition 14.24 Let P -+ B be a principal 6k-bundle over a compact 
ENR B, and let Y be a pointed space (of the homotopy type of a finite com­
plex). Then, writing N for Y regarded as a space without basepoint, we have 
a fibrewise stable decomposition: 

P xSk (Nk)+B~ V P xSk Zi. 
0~i9 

By collapsing fibrewise basepoints we deduce a stable splitting theorem 
for the total space. 

Corollary 14.25 There is a stable splitting of spaces: 

k ~ V (P xSk N )+~ (P xSk Zi)/B. 
0~i9 
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Remark 14.26. This result, with Y = 1l' the circle group, is used in [30] to 
give a proof of Miller's theorem, Proposition 13.9, by reduction to a maximal 
torus. The product T := N k is a torus of rank k, filtered by the subspaces 

T(i):= {(Zl, ... ,Zk) E T I #{j I Zj:l I} ~ i}, 

with the quotient T(i) /T(i-l) a wedge of (7) i-spheres. We regard T as 
the standard maximal torus of U(k) with normalizer N(T)j the Weyl group 
W(T) = N(T)/T is just the permutation group 6k. Applying Corollary 14.25 
to the principal W(T)-bundle P = U(k)/T -t U(k)/N(T) = B over the space 
of maximal tori in U(k), we obtain a stable splitting of the space U(k) XN(T)T. 
This space is related to U(k) by the standard Weyl map, which is one-to­
one on regular elements and has cohomological degree equal to 1. For the 
derivation of the splitting of U(k) the reader is referred to [30]. 

The stable splitting of configuration spaces 

The notes of Milnor [112], written soon after James's construction of the 
reduced product space, initiated the study of stable splittings of configura­
tion spaces. The main result, however, is due to Snaith [126]. Subsequent 
refinements may be found in [22], [23] and [14]. 

We begin with the case in which the base B = * is trivial. 

Theorem 14.27 Let M be a compact manifold and Y be a pointed compact 
ENR. Then there is a stable equivalence (of spectra): 

V (Fk(M) XSk /\kY)/Ck(M) --=-+C(Mj Y). 
k~l 

Remark 14.28. The reason for the splitting, and the essence of the proof, can 
be seen by looking at the case in which Y = N + for some compact ENR N. 
Then we have a decomposition of the space Ck(Mj Y) as a disjoint union: 

Ck(Mj N+) = 11 Fi(M) xSi Ni. 
O:::;i9 

The theorem is established by showing that each step of the filtration is 
split. 

Lemma 14.29 The cofibration sequence: 

admits a stable splitting (defined after some finite suspension depending on, 
and increasing with, k). 
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The splitting is obtained from Corollary 14.25 with :Fk(M) ~ Ck(M) as 
the principal 6k-bundle P ~ B. (The argument does not actually need the 
base to be compact, but one does need to know that the vector bundle over 
Ck(M) associated to the permutation representation E of 6k is of finite type.) 
In the diagram below, s is the splitting map provided by Corollary 14.25, r 
is given by projecting the k-fold cartesian to the smash product, and q is the 
surjective map appearing in the description of Ck(M; Y). 

(:Fk(M) xs. I\kY)/Ck(M) ~ (:Fk(M) xs. yk)/Ck(M) 

1q =1 .,/ 
r 

The composition q 0 s provides the required splitting: 

Ck(M; Y) ~ Ck(M; Y)/Ck- l (M; Y) 

and establishes the stable decomposition: 

Ck(M; Y) ~) Ck- l (M; Y) V (Ck(M; Y)/Ck- l (M; Y)) . 

When the space Y is connected we may combine Theorem 14.27 with 
Theorem 14.12 to obtain a stable splitting theorem for loop spaces. 

Example 14.30. In the special case M = D(JR) we get Milnor's stable equiv­
alence: 

Example 14.31. More generally, with M = D(JRn), we have Snaith's splitting 
of the n-fold loop space 

V (:Fk(JRn) xs. I\kY)/Ck(JRn) ~) nn Eny, 
k2:1 

and taking a limit as n ~ 00 

V (E6k xs. 1\ kY)/B6k ~) nco ECOY. 
k2:1 

Example 14.32. The case of the closed manifold M = 8 1 leads to the split­
ting theorem of Carlsson and Cohen [21] for the space of free loops on the 
suspension of a connected space Y: 

V I k 1 ~ ) (8 xZ/k 1\ Y)/(8 xZ/k *) ~ C(EY . 
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Fibrewise stable splittings 

The generalization to the fibrewise theory is purely formal and is complicated 
only by the notation. 

Proposition 14.33 Let M -t B be a compact fibrewise manifold over a com­
pact ENR B, and let Y -t B be a pointed homotopy fibre bundle with fibres of 
the homotopy type of a finite complex. Then there are natural fibrewise stable 
splittings: 

V C~(Mj Y)/BC~-l(Mj Y) ~) C~(Mj V). 
1~i9 

Let us apply this in conjunction with the basic theorem, Theorem 14.19, 
when the fibres of Y are connected, to our standard examples. 

We will begin with the fibrewise reduced product (James) construc­
tion: M = B x D(JR). The homotopy fibre bundles JMY), defined in Ex­
ample 14.21, have fibrewise quotients 

Proposition 14.34 There is a natural stable splitting: 

and hence 

Especially interesting is the case of a sphere-bundle: Y = (~, for some 
real vector bundle (. Then we have a stable decomposition of nBEB(~ as a 
wedge of sphere-bundles (k()~: 

VB (k()~ ~ nBEB«(~). (14.35) 
k~l 

The fibrewise homology of this fibrewise Hopf space is investigated in the 
next section (Proposition 15.28). 

For the case that M is a disc-bundle: M = D«(), let us again specialize 
and take Y = (~. 
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Proposition 14.36 Let { and ( be real vector bundles over a compact ENR 
B. Then there is a fibrewise stable splitting: 

V Ck (C)l1k®{ ~ * (c+ c+ r+) 
B B '" B -----t maPB "'B' "'B /\B "'B , 

k~l 

where 'f/k is the k-dimensional real vector bundle over the fibrewise configura­
tion space C1({) associated to the permutation representation of 6k' 

Finally, we consider the example M = D('f/) (Example 14.22), where 'f/ 
is a 2-dimensional Euclidean bundle with associated principal O(2)-bundle 
P -t B. Then one has a fibrewise stable splitting: 

(14.37) 

and the associated stable splitting of spaces obtained by factoring out the 
fibrewise basepoints B. (Here again the balanced product is formed as the 
orbit space of an action of the fibrewise group B x Zjk.) Passing to the 
classifying space B1l' as a limit of complex projective spaces and taking 'fJ to 
be the complex Hopf line bundle and Y to be a trivial bundle B x Z, we 
obtain, following [15], the Carlsson-Cohen stable splitting: 

V (E(Zjk) XZ/k 1\ kY)jB(Zjk) ~) (E1l' Xy .c(EZ))jB1l', 
k~l 

where 1l' acts on the free loop space £(EZ) by rotating loops. 

The fibrewise EHP-sequence 

To conclude this section we discuss the fibrewise generalization of the classical 
EHP-sequence following the approach taken by Milgram [110]. Let X and Y 
be pointed homotopy fibre bundles over a finite complex B of dimension ~ m, 
and let ( be a real vector bundle over B. Suppose that the fibres of X -t B 
have the homotopy type of pointed finite complexes of dimension ~ l. We 
assume, as in Corollary 14.20, that the fibres of Y are connected and, more 
precisely, have vanishing homotopy groups in dimensions < c, where c ~ 1. 

The suspension map 

is traditionally denoted by E in this context, as the initial letter of the Ger­
man Einhiingung. The EHP-sequence is concerned with the obstruction to 
des us pension . 

Now by the main theorem, Theorem 14.19, we may replace the mapping 
space mapB((~'(~ /\B Y) by the configuration space model CB«(; Y). In a 
range of dimensions we can even use the second step of the filtration, since 
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4/2) : 7rBi[Xj e1((j Y)]--+ 7rBi[Xj mapB((~' (~ I\B Y)] 

is, by Corollary 14.20, bijective for i < 3c - 1 - (m + l) (and surjective for 
i = 3c - 1 - (m + l». There is a natural fibrewise homotopy equivalence: 
Y --+ e1((j Y), given by labelling the zero vector in a fibre by an element of 
Y, and the suspension corresponds via ljJ to the inclusion: 

9 : Y --+ e1((j Y). 

We thus reduce the desuspension problem, in low dimensions, to consideration 
of the homotopy exact sequence: 

... --+ 7rBi[Xj FB(g)]--+ 7rBi[Xj Y]--+ 7rBi[Xj e1((j Y)] --+ ... 

involving the homotopy-fibre FB(g) of 9 (Proposition 2.7). 
On the other hand, we have an easy description of the homotopy-cofibre 

CB(g) as the fibrewise quotient e1((; Y)/B eM(; Y), by Lemma 2.2 and 
the fibrewise version of Lemma 14.8. So, using (14.9), we can replace CB(g) 
by the fibrewise pointed space over B obtained from the balanced product 
S(() XBxZ/2 (Y I\B Y), where the '1./2 action is antipodal on the sphere­
bundle and interchanges the two factors of Y I\B Y, by collapsing the subspace 
P(() = S(() XBxZ/2 B. Let us write this fibrewise pointed space as (the 
quadratic construction) Q,(Y). 

Remark 14.38. In the important special case in which Y = '1]~, for some real 
vector bundle '1], is a sphere-bundle, we can identify Q,(Y) with the fibrewise 
Thorn space p(()1EfJ(H~)1j), where H is the Hopf line bundle over the real 
projective bundle P((). 

As we noted in our discussion of the Serre exact sequence, there is a 
natural fibrewise pointed map (2.17) 

f : FB(g) --+ (}B(CB(g)) 

from the homotopy-fibre to the loop-space on the homotopy-cofibre. Accord­
ing to Proposition 2.18, this is an equivalence in a range: 

f. : 7rBi- 1 [Xj FB(g)]--+ 7rBi[Xj CB(g)] 

is bijective if i ~ 3(c - 1) - (m + l). 
Putting the pieces together, we obtain the fibrewise EHP-sequence: 

Proposition 14.39 Under the hypotheses described in the text there is an 
exact EHP-sequence: 

7rBi[X; Y] ~ 7rBi[(~ I\B X; (~ I\B Y] ~ WBi{Xj Q,(y)} 

--+ ... 

~ 7r~[(~ I\B X; (~I\B Y] ~ w~{X; Q,(y)} 

for i ~ 3(c - 1) - (m + 1). 
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Here the Freudenthal suspension theorem (Corollary 3.19) allows us to 
write the term involving Q( (Y) as a stable homotopy group. 

The geometric HopI invariant 

In the treatment just described the maps H( and p( lack geometric content. 
The HopI invariant H(, which gives the obstruction to desuspension, can 
be described more explicitly in terms of Zj2-equivariant homotopy theory 
and a squaring construction. (See, for example, Appendix A in [25]. The 
account which follows is based on an unpublished manuscript by A.L. Cook, 
M.C. Crabb and W.A. Sutherland to which reference is made in [24].) 

Given a class x E 71'~[(itAB; (it AB Y], we shall construct quite explicitly 
the (stable) Hopf invariant Hdx) E w~{X; Q«(Y)}. To begin with, suppose 
that B is a point, so that X and Y are just pointed spaces, and write E, 
instead of (, for a finite-dimensional real vector space (with an inner product). 

Consider a map x : E+ A X ~ E+ A Y. Its square 

is Zj2-equivariant with respect to the involution which switches the factors. 
Here, as elsewhere, we change the order of factors in a smash product in the 
obvious way. Now it is an easy, but fundamental, observation that the Zj2-
module E $ E, with this involution is isomorphic to the module E $ (L ® E), 
where L, as in Section 11, is the module lR. with the involution -1: 

(14.40) 

(We think of L ® EasE with the involution v t-+ -v.) Composing x A x with 
the diagonal inclusion of X in X A X we thus obtain a Zj2-map 

p = (x A x) 0 (1 A Llx) : (L ® E)+ A E+ A X ~ (L ® E)+ A E+ A (Y A Y). 

The smash product of the identity on (L ® E)+ with x, followed by the 
diagonal Y ~ YAY, gives a second equivariant map 

Notice that, if x is the suspension of a map X ~ Y, then p = q. In any case, 
p and q agree on the subspace 0+ AE+ AX fixed by the action of Zj2. For the 
fixed-subspaces in the correspondence (14.40) are the diagonal Ll(E) ~ E61E 
and the subspace E $ 0 ~ E $ (L ® E). The Hopf invariant is defined by a 
difference construction as an obstruction to the existence of an equivariant 
homotopy between p and q which is constant on the fixed-subspace. 

The difference construction is quite explicit. Let us extract the basic struc­
ture. We have pointed spaces V = E+ AX and W = (L®E)+ AE+ A(Y AY), a 
finite-dimensional vector space F = L ® E, and two maps p, q : F+ A V ~ W, 
which agree on the subspace 0+ A V(= V). Their difference class c5(p,q) is 
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a map 17(S(F)+) 1\ V ---+ W. Pictorially, F+ is the join So * S(F). We map 
17(S(F)+) to two copies of the join stuck together along So. To be analytical, 
let ¢ : [0,1) ---+ [0,00) be a homeomorphism (so ¢(O) = 0). The map 

{
P(¢(2t -1)u,v) for ~ :5 t:5 1, 

[O,I]xS(F)xV---+W: (t,u,v)r--+ (( » 1 
q ¢ 1 - 2t u, v for 0 :5 t :5 2"' 

determines 6(p, q) on the quotient. 
In this way we obtain a canonical equivariant homotopy class 

hE(X) : 17(S(L ® E)+) 1\ E+ 1\ X ---+ (L ® E)+ 1\ E+ 1\ (Y 1\ Y). (14.41) 

This is one manifestation of the Hopf invariant. To realize it in a more famil­
iar, non-equivariant, form, we pass to the orbit space P(E) = S(L®E)/(Z/2), 
the real projective space of E. Let us abbreviate P(E) to P and as before 
write H (to be distinguished from the Hopf invariant) for the Hopf line bun­
dle. Let Z ---+ P denote the fibrewise pointed space associated to Y 1\ Y. The 
map hE(X) determines a fibrewise map 

17p(P x (E+ 1\ X» ---+ (H ® E)~ I\p (P X E+) I\p Z 

and so a stable class in 

Wpl{p X Xj (H ® E)~ I\p Z}. 

But the tangent bundle T P is the quotient of H ® E by a trivial line bundle: 
(B x JR) ED T P = H ® E. So, by Proposition 12.43, this group is identified with 

wO{Xj ZIP}. 

Since the quotient ZIP is QE(Y), we have produced finally the stable Hopi 
invariant 

(14.42) 

Remark 14.43. One can perform the implicit duality construction quite ex­
plicitly at the equivariant level. The sphere S(L ® E) is embedded in L ® E 
with trivial normal bundle S(L®E) x IR. By an equivariant Pontrjagin-Thom 
construction we get a duality map 

which is well-defined as an equivariant homotopy class. Composing this with 
hE(X) smashed with the identity on S(L ® E)+ 1\ X, we obtain a canonical 
( unstable) class 

(L ® E)+ 1\ X ---+ (L ® E)+ 1\ S(L ® E)+ 1\ (Y 1\ Y), 

and hence a stable equivariant class in 
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A standard result of equivariant stable homotopy theory identifies this equi­
variant group with the non-equivariant group in (14.42). (Indeed, that equi­
variant result is very closely related to the fibrewise result (Proposition 12.43) 
that we have used here. See, for example, [99].) 

Only minor modifications are needed to construct the fibrewise Hopf in­
variant from a fibrewise map x : (fj I\B X ~ (fj I\B Y. One can write down 
an equivariant fibrewise map 

hdx) : EB(S(L ® ()+B) I\B (fj I\B X ~ (L ® ()~ I\B (fj I\B (Y I\B Y) 

and construct from it a stable class Hdx) E w~{X; QdY)}. The result 
Proposition 12.43 will be replaced by the generalization Proposition 12.4l. 
(Alternatively, one can use the equivariant fibrewise theory.) 

By inspection of the definition, one can see that the geometric Hopf in­
variant H( is compatible with suspensions, that is, there is a commutative 
square: 

~ w~{X; QdY)} 

1 1 
7r~[(77 EB ()~ I\B x; (77 EB ()~ I\B Y] H.,es w~{X; Q1)$«Y)} 

for any real vector bundle 77 over B. The left- and right-hand vertical maps 
are given by the fibrewise suspension and the inclusion Q( (Y) ~ Q1)$dY) 
respectively. 

To show that the geometrically defined Hopf invariant coincides with that 
defined using the configuration space model, it suffices, by exploiting the 
stable splitting theorem and naturality, to check the following special case. 

Lemma 14.44 Let N ~ B be a homotopy fibre bundle with fibres of the 
homotopy type of finite complexes. Write 

X = (S(L ® () XBxZ/2 (N XB N»+B, Y = N+B, 

so that X = Q( (Y), and let x : X ~ map'B «(fj ,(fj I\B Y) be given by the 
basic construction qP), (14.17). Then the geometric Hopf invariant 

is the identity map. 

This computation can be further simplified by a change of base. Lifting 
from B to the projective bundle P( () and using the compatibility of the Hopf 
invariant with the fibrewise suspension, one reduces to the case in which ( is 
a line bundle. 



Chapter 4. Homology Theory 

15 Fibrewise homology 

In this section we present fibrewise homology as a 'bi-variant' theory, for 
which we shall use cohomological indexing, in a way which emphasizes the 
parallel with the description of fibrewise stable homotopy theory given in 
Section 3. The base space B is, unless noted otherwise, a compact ENR, and 
X and Y are fibrewise pointed spaces over B. 

The definition 

Fibrewise homology (and cohomology) groups with coefficients in a commut­
ative ring, with identity, R (probably Z, Q or a finite field) will be defined by 
generalizing the classical definition of homology as a representable theory us­
ing Eilenberg-MacLane spaces, which we write as K(R, n). We write simply 
'H' for homology, leaving the coefficient ring to be inferred from the context. 

Define the R-module of fibrewise homology maps over B from X to Y by 

H~{X; Y} := lim 1l"~[EBX; (B x K(R,n)) AB Y], 
--t 
n~O 

where the maps in the direct system are given by taking the fibrewise sus­
pension and composing with the standard maps EK(R, n) -t K(R, n + 1) 
(adjoint to the homotopy equivalences K (R, n) -t n K (R, n + 1)). Then, just 
as for stable homotopy theory, we can define the Z-graded theory H1 {X; Y}, 
i E Z, by 

H1{X; Y} = H~{(B X IRN)~ A X; (B X IRN+i)~ A Y}, 

for any integer N ~ 0 with N + i ~ O. 
It is immediate that H1{X; B x SO} is the usual (reduced) cohomology 

module iIi (X/B) of the pointed space X / B. More generally, using this not­
ation without the subscript B for the classical bi-variant modules, we have: 

Proposition 15.1 For a fibrewise pointed space X over a compact ENR B 
and pointed space F, there is a natural equivalence: 

HB{X; B x F} -t H*{X/B; F}. 

M. C. Crabb et al., Fibrewise Homotopy Theory
© Springer-Verlag London Limited 1998
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We can, thus, think of HB{Xj B x SO} as the fibrewise cohomology of 
X over B. Now Hj(F) = H-j{SOj F} (= HO{Sjj F} for j ~ 0) is the 
homology of the pointed space F. Passing to the fibrewise theory, we should, 
therefore, consider HB{B x SOj Y} to be the fibrewise homology of Y. We do 
not introduce a special notation for these modules, nor a change of sign in 
the indexing, so that fibrewise homology in this sense is mostly in negative 
dimensions. 

If A ~ B is a closed sub-ENR, then we can define relative homology 
modules 

HtB,A){Xj Y} 
by considering fibrewise maps which are zero over Aj and if B is not neces­
sarily compact, we can define fibrewise homology with compact support 

cH1{Xj Y} 

in terms of fibrewise maps which are zero outside a compact subset of the 
base. 

For a map a : B' -+ B of compact ENRs we have a pull-back homomorph-
ism: 

a* : HB{Xj Y} -+ HB,{a* Xj a*Y}. 

The formal properties of fibrewise homology theory translate directly from 
the properties of fibrewise stable homotopy theory. We state the results ap­
propriate to a compact base Bj the modifications necessary for pairs (B, A) 
or a non-compact base are routine. Given fibrewise pointed spaces X, Y and 
Z over B, there is a composition of homology maps over B: 

o : H~{Yj Z} ®R H~{Xj Y} -+ H~{Xj Z}, 

which extends to a composition product on the graded modules: 

0: H1{Yj Z} ®RHb{Xj Y} -+ H~+j{Xj Z}. 

(15.2) 

For fibrewise pointed spaces X' -+ B and Y' -+ B we have the smash 
product: 

1\ : H1{Xj Y} ® H1{X'j Y'} -+ H}t' {X I\B X'j Y I\B Y'} 

with the usual properties. (Traditionally, different manifestations of these 
products go under the names of 'cup', 'cap' and 'slant' product.) 

In particular, we see that HB{Xj Y} is a graded module over the cohom­
ology ring 

of the base, and that the products are H*(B)-bilinear. 
From the composition we obtain a category whose objects are the fibrewise 

pointed spaces over B with morphisms from X to Y the (module) of homology 
maps H~ {X j Y}. We refer to this category as the homology category over B. 
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The suspension isomorphism 

Built into the definition we have chosen are suspension isomorphisms 

HB{Xj Y} --t HB{L'BXj L'BY} --t ... --t HB{L'~Xj L'~Y} --t ... 

To obtain the general suspension isomorphism stated below we shall revise 
our definition to one more in keeping with the definition (Definition 3.3) of 
a fibrewise stable map. 

Proposition 15.3 For a finite-dimensional real vector bundle, over B, there 
is a suspension isomorphism 

11\ : H1{Xj Y} --t H1{'~ I\B Xj ,~ I\B Y}, 

given by the smash product with the identity 1 E H~ { '~j ,~}. 

Let e be an n-dimensional real vector bundle over B. Then one can define 
an associatedfibrewise Eilenberg-MacLane space KB(R,e), which is a pointed 
fibre bundle with fibre K(R, n). We shall give an explicit construction (es­
sentially following Segal [121]) shortly. And there are fibrewise homotopy 
equivalences: 

with adjoint 
(15.4) 

for any vector bundle , (generalizing the familiar homotopy equivalence 
K(R,n) --t {1kK(R,k+n». 

Now we can think of a homology map X --t Y over B, in just the same 
way as we defined a stable map, in terms of representatives (I, ~"), where f is 
a fibrewise pointed map 

Still following the account in Section 3, we introduce the equivalence relation 
generated by (i) homotopy, (li) stability and (iii) vector bundle isomorphism. 
The stability condition says that the pair (I, e) is equivalent to the pair 
«81\ 1) 0 (11\ j), (EB e): 

(~ I\B e~ I\B X 1A1) ,~ I\B KB(R, e) I\B Y ~ KB(R, ( EB e) I\B Y, 

with 8 as in (15.4). Because every finite-dimensional bundle over the compact 
base B is a direct summand of a trivial bundle, the equivalence classes give 
the elements of H~ {X j Y} defined above using only suspension by trivial 
bundles. 
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The Hurewicz transformation 

The construction of the Hurewicz map from stable homotopy to homology 
proceeds exactly as in the classical theory. The identity 1 E R gives a fibrewise 
pointed map B x So --t B x R = KB(R, B x 0), where R has the discrete 
topology, and hence a map 

~~ --t KB(R,~) 

for any vector bundle ~. A fibrewise map e~ I\B X --t e~ I\B Y, representing a 
stable map X --t Y, thus gives by composition a map e~ I\B X --t KB(R, ~), 
representing a homology map. The transformation 

WB{X; Y} --t HB{X; Y} 

so defined is a natural transformation from the stable homotopy category over 
B to the homology category over B; it is compatible with all the structure, 
such as products and pull-backs, that we have considered. 

The cofibre exact sequences 

The arguments described in Section 3 for stable homotopy establish the usual 
cofibre exact sequences on the left and right in homology. 

Proposition 15.5 Associated to the two cofibre sequences X' --t X --t X" 
and Y' --t Y --t Y" over B there are long exact sequences: 

and 

... --t H1{X"; Y} --t H1{X; Y} --t H1{X'; Y} 

~ H}ti{X"; Y} --t ... 

... --t H1{X; Y'} --t H1{X; Y} --t H1{X; Y"} 

~H1+i{X; Y'} --t ... 

of H*(B)-module homomorphisms. 

The relative and Mayer- Vietoris sequences 

Homotopy local triviality is needed for the results involving the excision prop­
erty, Lemma 2.10. 

Proposition 15.6 Let X and Y be pointed homotopy fibre bundles over a 
compact ENR, and let A' ~ A be closed sub-ENRs of B. Then there is a long 
exact sequence of graded H* (B) -modules 

.. , --t HtB,A) {X; Y} --t HtB,AI) {X; Y} --t HtA,AI) {XA; YA} 

" Hi ~H(B,A){X; Y} --t .... 
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Proposition 15.7 Suppose that B is a union of compact sub-ENRs Bl and 
B2 whose intersection A is a sub-ENR. Then, for two pointed homotopy fibre 
bundles X and Y over B, one has a long exact homology M ayer-Vietoris 
sequence 

... ~ H1{X; Y} ~ H11 {XBl; YBJ EEl H12{XB2; YB2} -t H~{XA; YA} 

~ H1tl{X; Y} ~ ... 

of H*(B)-modules. 

Rational stable homotopy theory 

In the classical theory the Hurewicz map to Q-homology determines stable 
homotopy modulo torsion. By induction over the cells of the base, using 
the relative exact sequence and the five-lemma, we obtain a homological 
description of the rational fibrewise stable theory. 

Proposition 15.8 Let X and Y be pointed homotopy fibre bundles, with 
fibres of the homotopy type of finite complexes, over a compact ENR B. Then 
the Hurewicz transformation to homology, H, with rational coefficients gives 
an isomorphism 

WB{X; Y} ®Q ~ HB{X; Y} 

of finite-dimensional Q-vector spaces. 

The Dold-Thom theorem 

For the remainder of this section the fibrewise spaces considered will be 
(pointed) homotopy fibre bundles with fibres of the homotopy type of finite 
complexes. 

In [50] Dold and Thorn gave a description of the integral homology groups 
of a pointed space as the homotopy groups of the infinite symmetric product. 
The extension of this result to the fibrewise theory is essentially routine. 
The two papers [121] and [122] of Segal are recommended as supplementary 
reading. 

We start with the case R = Z, and define the fibrewise infinite symmetric 
product AB (Y) ~ B with fibre at b E B the free Abelian monoid on the fibre 
Yb with the basepoint as zero element. It is filtered by subspaces 

B = A~(Y) ~ Y = A1(Y) ~ ... ~ AMY) ~ ... ~ AB(Y), 

where the fibre Ak(Yb) of Ak(y) consists of the sums of at most k elements 
of Yb• Each A~(Y), topologized as a quotient of Y XB ... XB Y (k factors), 
is a pointed homotopy fibre bundle. 
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There is a suspension map: t;,~ "B A~(Y) -+ A~(t;,~ "B Y) described in 
the fibres at a point by: [x, YI + ... + Yk] r-+ [x, YI] + ... + [x, Yk], with adjoint 

(15.9) 

and, similarly, a map 

(15.10) 

Now the original Dold-Thom theorem asserts that, for a connected 
pointed space Y, the integral homology groups Hn(Y), for n ~ 1, can be 
computed as the homotopy groups 1rn (A(Y)). We see, in particular, that 
A(sn), for n ~ 1, is an Eilenberg-MacLane space K(Z, n). It follows that 
AB(t;,~), for a vector bundle t;, of dimension n ~ 1, is an Eilenberg-MacLane 
bundle KB(Z,t;,) as used above to define fibrewise homology, and we have a 
map: 

1r~[t;,~ "B X; AB(t;,~) "B Y] -+ H~{X; Y}, 

which is bijective if n is sufficiently large. (We recall that B is a retract of 
a finite complex and that the fibres of X have the homotopy type of finite 
complexes.) Using the transformation (15.9), we obtain for n large a map 
from H~{X; Y} to 1r~[t;,~ "BX; AB(t;,~ "B Y)], which by the classical Dold­
Thom theorem and obstruction theory (Proposition 2.15) will be a bijection 
when n is sufficiently large. The maps are compatible with suspension as in 
Proposition 15.3 and (15.10), and we have established: 

Theorem 15.11 (Dold-Thom theorem). There is, for any real vector bundle 
t;" a natural map 

which is an isomorphism for dim t;, sufficiently large (greater than some bound 
depending on the dimension of B and of the fibres of X and on the connec­
tivity of the fibres of Y). 

For a general ring of coefficients R the definition of AB (Y) has to be 
modified to form the free R-module on each fibre. 

The Thom isomorphism 

We now turn to the calculation of fibrewise homology modules. The Thom 
isomorphism theorem can be interpreted as a classification of pointed sphere­
bundles in the fibrewise homology category. Working first with Z-coefficients, 
let t;, be an oriented n-dimensional real vector bundle over B. Then the Thorn 
class 
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is an isomorphism in the homology category from {~ to the trivial pointed 
sphere-bundle B x sn. Its inverse is given by the Thorn class of the virtual 
bundle -{. Two such isomorphisms differ by multiplication by a unit in the 
ring HO(B). 

More generally: 

Proposition 15.12 Let { and 'f/ be real vector bundles over B. Then {~ 
and 'f/~ are isomorphic in the 7L.-homology category over B if and only if 
dim { = dim'f/ and WI ({) = WI ('f/). In that case, isomorphisms are in 1-1 
correspondence with isomorphisms of the orientation bundles: a({) --+ a('f/). 

In characteristic 2, any two pointed sphere-bundles {~ and 'f/~ of the 
same dimension are isomorphic in the homology category over B, and the 
automorphism group of a sphere-bundle is trivial. 

H -free fibrewise spaces 

Definition 15.13 We shall say that a pointed homotopy fibre bundle X --+ B 
(with fibre of the homotopy type of a finite complex) is H-free over B if it 
is isomorphic in the fibrewise homology category to a trivial bundle B x F 
with fibre F a wedge of spheres. 

This condition can be reformulated in classical language by using the 
Leray-Hirsch lemma. 

Lemma 15.14 The pointed homotopy fibre bundle X --+ B is H -free over B 
if and only if there exist classes 

which restrict to a basis of the cohomology (understood to be free) of each 
fibre Xb, bE B. Such classes el, ... ,em form a basis of fI*(X/B) over the 
graded ring n:= H*(B). 

For a class e E fIn (X/B) can be read as a homology map X --+ B x sn. 
Classes el, ... ,em as in the statement above describe a homology map 

over B. A homology map which restricts to an isomorphism on fibres is an 
isomorphism, by induction over cells of the base using the relative exact 
sequence or a Mayer-Vietoris argument. 

If X --+ B and X' --+ B are both H-free over B, we obtain immediately a 
Kiinneth theorem for fibrewise cohomology: 

fI*((x AB X')/ B) = fI*(x/ B) ®n fI*(X' / B). (15.15) 



316 An Introduction to Fibrewise Stable Homotopy Theory 

Homology maps admit a similar description in terms of fibrewise cohomology 
or homology: 

Lemma 15.16 If X -+ Band Y -+ Bare H -free pointed homotopy fibre 
bundles, then 

HB{X; Y} = Hom'n(H*(YIB),H*(XIB)) 

= Hom'n(HB{B x So; X},HB{B x So; Y}). 

In particular, there is duality between homology and cohomology over B: 

HB{B x So; Y} = Hom'n(H*(YIB), R). 

The Kiinneth theorem generalizes to describe homology maps between 
smash products: 

Lemma 15.17 Suppose that the four pointed homotopy fibre bundles X, X', 
Y and Y' over B are H -free. Then there is a Kunneth isomorphism 

HB{X /l.B X'; Y /l.B Y'} = HB{X; Y} ®'R. HB{X'; Y'}. 

Example 15.18. As an example, take X = P(~)+B' where P(~) is the pro­
jective bundle of an n-dimensional complex vector bundle ~ over B. Then 
H'B{Xj B x SO} is just the integral cohomology ring H*(P(€», which as an 
algebra over R is R[xl/(xn - CIXn - 1 + ... + (-I)ncn), where x is the Euler 
class of the Hopf line bundle and Ci E R is the ith Chern class of ~. We may 
take xi, 0 ~ i < n as a basis. The fibrewise homology HB{B x So; X} has a 
dual basis: 

with 

(0 ~ i < n) 

. {I ifi=j 
{Yj, x'} = 0 if i :f: j. 

The Serre spectral sequence 

Serre's spectral sequence relating the cohomology of XI B to the cohomology 
of the base B and the cohomology of the fibres of the pointed homotopy fibre 
bundle X -+ B over a finite complex is a synthesis of the information con­
tained in the various relative exact sequences (Proposition 15.6) involving the 
skeleta of B. Its generalization to fibrewise homology maps between pointed 
homotopy fibre bundles X and Y is direct. The homology maps between fibres 
of X and Y, with the action of the fundamental groupoid of B determined 
by Proposition 1.11, form a local coefficient system of R-modules on B: 
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Proposition 15.20 Let X ~ Band Y ~ B be pointed homotopy fibre 
bundles, with fibres of the homotopy type of finite complexes, O1Jer a compact 
ENR B. Then there is a Serre spectral sequence with 

E;,i = Hi(Bj ll~{Xj Y}) 

con1Jerging to HB{Xj Y}. 

(In the description of the E2-term the first 'H' is to be read in the usual 
sense as cohomology with coefficients in the local systemj elsewhere 'H' is 
R-cohomology. ) 

The Eilenberg-Moore spectral sequences 

In major work on the foundations of fibrewise homology theory [125] Smith 
showed how the Eilenberg-Moore spectral sequence could be generalized to 
a Kiinneth spectral sequence for homology over a base. We assume in this 
subsection that the coefficient ring R is a field. The aim is to compute vector 
spaces such as HB{XXBX'j BxSO} or HB{Xj Y} starting from thefibrewise 
cohomology (or homology) of X and X' or Y respectively. It is clear that some 
restriction will be necessary. Take, for example, X to be the fibrewise one­
point compactification of the Hopf line bundle over the circle B = S1, with 
R = Q. Then fl*(XjB) = 0, but H~{Xj X} = Q. The next lemma describes 
the fibrewise version of an acyclic space. 

Lemma 15.21 The following conditions on the pointed homotopy fibre bun­
dle X are equi1Jalent. 
(i) 1 = ° E H~{Xj X}; 
(ii) X is isomorphic in the fibrewise homology category O1Jer B to the fibre­

wise space B ~ B; 
(iii) fl*(Xb) = ° for all b E B. 

Clearly condition (i) is preserved by pull-backs 0: : B' ~ B and, in partic­
ular, by restriction to a fibre. Thus (i) implies (iii). From (iii) it follows that 
H*{Xbj Xb} = 0, by Lemma 15.16 say. Then we deduce (i) from the Serre 
spectral sequence, or equivalently by an induction over cells of the base. 

To exclude cases of the type considered in the example above, where the 
fibrewise cohomology fl* (X j B) vanishes although X is not fibrewise acyclic, 
we impose the following condition on the fundamental group of B. 

Lemma 15.22 Suppose that the fundamental group of each component of B 
is tri1Jial if the field R has characteristic 0, or is a finite p-group if R has 
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characteristic p > o. Then a pointed homotopy fibre bundle X ~ B with 
fl* (X/B) = 0 is isomorphic in the homology category over B to the fibrewise 
space B ~ B. 

We may assume that B is connected and a finite complex. Suppose that 
the cohomology of the fibre of X is non-zero in dimension d and is zero in lower 
dimensions. Write x(n) for the restriction of X to the n-skeleton B(n) of B. 
Then fli(x(l) / B(1») is 0 for i < d and non-zero for i = d from the monodromy 
exact sequence (the relative exact sequence of the pair (B(1),B(O) = *». For if 
a finite p-group acts on a non-zero finite dimensionallFp-vector space the fixed 
subspace is non-zero. But now fli(x(n+l)/B(n+l»), for n ~ 1, maps isomor­
phically to fli(x(n) / B(n») for i ::; d. So the cohomology module fld(X/ B) is 
non-trivial. This completes the proof. 

To any pointed homotopy fibre bundle X ~ B we associate a pointed 
trivial bundle 

FBX := B x (X/B), 

with the projection onto the first factor B, equipped with a fibrewise pointed 
map 

i : X ~ FBX : x 1-+ (P(x), [xl). (15.23) 

It is an elementary exercise, using the Kiinneth theorem over the field R, to 
verify: 

Lemma 15.24 The fibrewise pointed space FBX is H-free and the map 
i : X ~ FBX induces an epimorphism fl*((FBX)/B) ~ fl*(X/B) in co­
homology. 

The cofibre of i : X ~ F B is another pointed homotopy fibre bundle, with 
fibres of the stable homotopy type of finite complexes, to which we can again 
apply the construction F B. In this way we produce an explicit free resolution 
of X, and the Eilenberg-Moore spectral sequences are manufactured by the 
standard machinery. (See, for example, [68].) 

Proposition 15.25 Let X, X' and Y be pointed homotopy fibre bundles, 
with fibres of the homotopy type of finite complexes, over the compact ENR 
B satisfying the condition of Lemma 15.22 on the fundamental group depend­
ing on the characteristic of the coefficient field R. Then there exist natural 
convergent Eilenberg-Moore spectral sequences: 

E~·j = Tori.;!(fI*(X/B),fI*(X'/B)) => fI*((X I\B X')/B), 

E~·j = Exti.;!(fI*(Y/B),fI*(X/B» => HB{Xj Y}. 

We recall that n is the graded R-algebra H*(B). The spectral sequences 
have been stated in the form involving the fibrewise cohomology groups: 
HB{Xj B x SO} = fI*(X/B). There are related spectral sequences involving 
the less familiar fibrewise homology groups HB{B x SOj X}. 
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The Pontrjagin ring of a fibrewise Hopf space 

Before we continue, let us remove the restriction that the coefficient ring R 
be a field. Suppose that M is a fibrewise Hopf space over B with associative 
product m : M x B M -+ M and identity e : B -+ M. Then the Pontrjagin 
multiplication 

m* : HB{BxSOj M+B}®HB{BxSOj M+B} -+ HB{BxSOj M+B} (15.26) 

gives the fibrewise homology module HidB x SOj M+B} the structure of an 
algebra over H*(B), with identity given by e*. 

Example 15.27. Consider the bundle of unitary groups M = U(~) -+ Basso­
ciated to an n-dimensional Hermitian vector bundle ~ over B. The first term 
Rl(~) of the filtration (13.5) is the suspension EB(P(~)+B) ~ U(~) of the 
complex projective bundle of ~ and its fibrewise homology, with Z-coefficients, 
generates the homology of U(~). Indeed, if we write 

Xi E Hi.i(2i-l){B x SO; EB(P(~)+B)} 

for the suspension of the class Yi-l introduced in Lemma 15.17, then the 
Pontrjagin ring HB{BxSO; U(~)+B} is an exterior algebra over H*(B) on the 
n generators Xi, 1::; i::; n. The homology HB{B x So; Rk(~)+B} of the kth 
term of the filtration is included in the homology of U(~)+B as the submodule 
spanned by the exterior powers Ar[Xl," . ,Xn], 0::; r ::; k, and the homology 
of the quotient Rk(~)/BRk-l(~) is thus identified with A k[Xl" .. ,xn]. (The 
fibrewise homology of the fibrewise loop space nBU(~) can be described in a 
similar way. Details can be found in [28], where the result is used to determine 
the structure of the cohomology ring H*(nBU(~)),) 

The fibrewise homology of nBEBct 

We consider as an interesting example an oriented real vector bundle C of even 
dimension 2n, n ~ 1, over a finite complex B and describe the fibrewise hom­
ology and cohomology, with integer coefficients, of the bundle nBEBC~ -+ B. 

Proposition 15.28 As Pontrjagin algebra over R := H*(B), the fibrewise 
homology of nBEBC~ is a polynomial algebra 

HB{B x So; (nBEBC~)+B} = R[z] 

on one generator z in dimension -2n, and admits a natural Hopf algebra 
structure with comultiplication 

Llz = z ® 1 + e(z ® z) + 1 ® z, 

where e E H2n(B) is the Euler class of C. 
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To define the generator z we use the standard inclusion of (jj in {JBEB(jj. 
The fibrewise homology group of (jj is identified by the Thom isomorphism: 

HB{B x So; (jj} = H*{B x So; B X (JR2n )+} = H*+2n(B) 

and is dual over 'R to the free 'R-module iI*(B') generated by the Thorn 
class U E iI2n (B'). This identifies 

HB{B x So; ((jj)+B} = HB{B x So; B x SO} EB HB{B x So; (jj} 

with 'Rl EB 'Rz, where z is the generator corresponding under duality to the 
Thorn class. The comultiplication is determined, by duality, from the identity: 
U . U = e . u in cohomology. 

Remark 15.29. In the filtration by fibre bundles of the combinatorial model 
JB((jj) of {JBEB(jj 

J O ((+) = B C Jl ((+) = r+ C··· C Jk((+) c .. · B B - B B '>B - - B B -

the fibrewise homology of J~ ((jj) is the 'R-submodule consisting of the poly­
nomials of degree at most k. 

The cohomology of {JBEB(jj can be read off by duality. Let us write ai, 
i ~ 0, for the basis over 'R dual to the Zi. We shall use a formal power series 
to encode the duality pairing: 

(zk,aiaj) = (Ll(zk),ai®aj) = «(z®l+e(z®z)+I®z)k,ai®aj)' 

Proposition 15.30 The ring H*({JBEB(jj) is free as an 'R-module, with 
basis ai, i ~ 0, and multiplication described by the identityaiaj = L: Ai,j;kak 
where L Ai,j;kXiyj = (X + Y + eXy)k 

in the formal power series ring 'R[[X, Y]], that is, 

k! i+j-k 
Ai,j;k = (k _ i)! (i + j _ k)! (k _ j)! e 

if i, j ::; k ::; i + j, and Ai,j;k = ° otherwise. In particular, ao = 1. 

An example: the space of free loops on cpn 

As a concrete application of this computation, and to emphasize once again 
the way in which fibrewise methods may be used to tackle classical problems, 
we shall compute the integral cohomology ring of the space of free loops ccpn 
on complex projective space cpn. We begin with a general observation on 
mapping spaces. 
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Remark 15.31. Let F be a pointed space. Then the space map(F, B) of (un­
pointed) maps from F to B fibres over B by evaluation at the basepoint of 
F. There is a natural fibrewise homeomorphism 

map(F,B) mapB(B x F, B x B) 

where B x B ~ B is the fibrewise pointed space with projection (a, b) t-+ a 
and basepoint (b, b) in the fibre at b. As a special case, taking F to be the 
circleT we have a fibrewise homeomorphism: 

over B, where the projection from the free loop space CB ~ B is evaluation 
at 1 E 'II'. We recall, from Remark 11.22, that if B is a closed manifold 
B x B ~ B is a pointed fibre bundle. 

Let us consider first the space CS(Cn+1) of free loops on the sphere 
S(Cn+1 ) = s2n+1. Write ( for the n-dimensional complex vector bundle 
over B := S(Cn+1) with fibre at v the orthogonal complement of Cv. Thus 
( is the pull-back of the tangent bundle to the complex projective space un­
der the projection s(cn+l) ~ p(cn+1) = cpn. We can then identify the 
trivial sphere-bundle B x S(Cn+1) ~ B with S(lRv EB ilRv EB () ~ B. Us­
ing stereographic projection we can express this as the fibrewise one-point 
compactification (ilR EB ()~, so that the diagonal section corresponds to the 
section at infinity. 

Now CS(Cn+1) fibres, by evaluation at the basepoint 1 E S1, over 
S(Cn+1), and we can identify this bundle, by the discussion above, with 
the fibrewise loop-space DB(hB(13) ~ B. 

We can use similar ideas to describe the space of free loops .ccpn. It 
fibres, by evaluation at 1 E SI, over cpn. Let us now write B for this base 
cpn and ( for its complex tangent bundle. The fibre over a point L E cpn, 
that is, a I-dimensional subspace L of V := Cn +1, is the loop-space DP(V), 
where the complex projective space P(V) of V has basepoint P(L). Now 
P(V) is naturally identified, by tensoring with the dual L *, with P(L * ® V) = 
P(C EB (L). The basepoint is now given by P(C). 

Next, we lift loops in complex projective space to paths in the cov­
ering sphere. Thus a loop in P(C EB (L) can be identified with a path 
w: [0, 1] ~ S(C EB (L) with w(O) = (1,0) and w(1) E S(C). By mapping w 
to its endpoint w(1) E Sl, we obtain a fibrewise fibration over B 

ccpn --+ B X Sl 

\, ../ 
B 

(15.32) 

with fibrewise fibre DBhB(13 (as in the discussion above). We need to know 
the monodromy map 
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M : aBEB(~ -+ aBEB(~' 
The pull-back from Sl to [0,1] can be trivialized by composing paths with a 
standard path from the basepoint in the suspension factor. We thus see that 
M is loop-multiplication by the degree 1 loop in aS l . 

We use the fibrewise fibration (15.32) over B x Sl to obtain a cohomology 
exact sequence: 

M*-l ---+ Hi-l{aBEB(~) 

---+ Hi{aBEB(~) 

---+ Hi{.ccpn) 

M*-:~ Hi(aBEB(~) ---+ .... , 
this is the fibrewise version of the monodromy exact sequence for a bundle 
over the circle. Since the cohomology of aBEB(~' calculated by Proposi­
tion 15.30, is concentrated in even dimensions, this completely describes the 
cohomology of the free loop-space. 

We need to calculate M*. As seen above, the monodromy M is given by 
loop-multiplication by the degree 1 loop in aS l . This loop determines a hom­
ology class in HO{SO; (aS1)+} coming from (1,1) E Z EB Z = HO{SO; (SO)+} 
by the inclusion of So = {±1} in aS l = aE(SO) which maps 1 to the trivial 
loop and -1 to the standard loop of degree 1. 

Now consider the map 

H1{B x So; {O~)+B} = nEB n -+ H1{B x So; {(~)+B} = nEB nz 

induced by the inclusion 0 '-t ( of the zero vector bundle into (. Since the 
inclusion of the zero-section corresponds to multiplication by the Euler class, 
we see that the element (1,1) is mapped to (l,ez). 

In homology the monodromy is thus given by Pontrjagin multiplication 
by 1 + ez. Taking the dual, we find that M* - 1 maps ai to eai-1 for i ~ 1, 
and ao = 1 to zero. 

Now the cohomology of the projective space n = Z[[xll/(xn+l) is gen­
erated by the Euler class x of the Hopf line bundle. The Euler class of the 
tangent bundle is e = (n + l)xn and e2 = 0. We can read off the structure 
of H*{.ccpn) as follows. Write (3i E H2in+l(.ccpn), i ~ 0, for the image of 
ai in the monodromy exact sequence above and Q:i E H2in+2{.ccpn) for the 
unique class mapping to xai. 

Proposition 15.33 The cohomology ring H* (.ccpn) is generated as an al­
gebra over H*(cpn) = Z[[xll/(xn+l) by the classes Q:i E H2in+2(.ccpn), 
i ~ 1, and (3i E H2in+l{.ccpn), i ~ 0, defined above, subject to the relations: 

(i + j)! 
Q:iQ:j = .,., xQ:i+j, 

~.J. 

(i + j)! 
Q:i(3j = ., ., x(3i+j, 

~. J. 

(3i(3j = 0. 
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The fibrewise homology of DBEBY in general 

The discussion above for sphere-bundles of even dimension generalizes to the 
case of a pointed homotopy fibre bundle Y -t B (with fibres of the homotopy 
type of a finite complex) which is H-free over B. 

Proposition 15.34 In the setting described above, the Pontrjagin algebra of 
DBEBY is the tensor algebra 

H1{B x So; DBEBY} = EB®~M 
k~O 

of the free module M := HE{ B x So; Y} over R. It admits a natural Hopf 
algebra structure with comultiplication determined by 

Llm = m ® 1 + &(m) + 1 ® m, (m EM), 

where & : M -t M ®n M is induced by the diagonal map Y -t Y I\B Y. 

The splitting of the fibrewise homology as a module follows at once from 
the stable homotopy splitting, Proposition 14.34. To check the algebra struc­
ture it is necessary to look at the precise definition of the splitting. This lifts 
the computation, in the notation N = Y for Y regarded as an unpointed 
fibrewise space that we used in (14.23), to the fibrewise pointed space 

JB(N+B) = U: N k 

k=O 

with the multiplication defined by concatenation. 
As a special case one obtains the analogue of Remark 15.29 for an oriented 

vector bundle ( of odd dimension. One has to replace the usual formal power 
series ring R[[X, Yll by the super-commutative version in which XY = -Y X. 
Computations are simplified somewhat by the fact that 2e = 0; we leave the 
derivation of a formula for the coefficients Ai,j;k as an exercise. 

Duality and fixed-point theory 

The discussion of duality and fixed-point theory in Section 10 translates ef­
fortlessly from stable homotopy to homology. From duality structure maps 

i E w~{B x SOj X· I\B X} and e E w~{X· I\B Xj B x SO} 

in stable homotopy the Hurewicz transformation supplies homology maps 

i E H~{B x SOj X" I\B X} and e E H~{X* I\B Xj B x SO} (15.35) 

with the same formal properties, Definition 10.8. 
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The fibrewise homology HB{B x So; Y} of a pointed homotopy fibre 
bundle Y is equal to the fibrewise cohomology HB{Y*; B x SO}, that is 
H* (y* I B), of the stable dual Y*. More generally, we can write 

HB{X; Y} = HB{X I\B Y*; B x SO} = H*((X 1\ Y*)IB), 

and so rephrase statements about fibrewise homology maps in terms of stan­
dard cohomology modules. The Serre spectral sequence, Proposition 15.20, 
reduces in this way to its classical (cohomological) form. 

Remark 15.36. When performing homology calculations it suffices to work in 
the fibrewise homology category. We could call a fibrewise stable space X* 
an H -dual of X if there are given elements i and e as in (15.35) with the 
requisite properties, as in Definition 10.8, in homology. This leads naturally 
to a definition of a fibrewise Poincare duality space which is H-dual to a 
suspension of itself. 

When the fibrewise space X is H-free, so also is the dual X*, and the 
cohomology modules are algebraically dual: 

HB(X* IB) = Homn(H*(XIB), R). 

So the definitions (Proposition 10.17 and Definition 10.18) of the Lefschetz 
trace and transfer translate into purely algebraic form, and we obtain the 
following result of Dold [48], generalizing the classical interpretation, or even 
definition, of the Lefschetz index as the trace in homology. 

Proposition 15.37 Let the pointed homotopy fibre bundle X -+ B, with fi­
bres of the homotopy type of finite complexes, be H -free. Let f E HB{X; X} 
be a homology self-map. Then the Lefschetz trace TB(f, X) E H*(B) = R is 
the algebraic (super) trace of the R-linear map 

f* : M := H*(XIB) -+ M, 

and the Lefschetz transfer TB(f,X) in HB{B x So; X} = Homn(M, R) is 
given by 

x E M H tr{y H f*(x· y) : M -+ M}. 

We have already noted the algebraic form of the transfer in Remark 10.19. 
Of course, the homology trace TB(f, X) E HO(B) for a fibrewise self-map 
f : X -+ X is determined by its restriction to a fibre, if B is connected. 

Example 15.38. As an example, take X = M+B, where M = P(~) is the 
projective bundle of an n-dimensional complex vector bundle ~ over B, n > 1. 
Then, as in Lemma 15.17, the integral cohomology ring H*(M) is 

R[x]/(xn - C1Xn - 1 + ... + (-l)ncn). 
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The homology Lefschetz trace TB(I, X) is given by: 

xk t-+ Sk : H*(M) -+ H*(B), 

where Sk is the characteristic class defined by I:~=1 yf if ~ is split as a sum of 
line bundles A1 EB ... EB An with Chern classes C1(Ai) = Yi. (See, for example, 
[48]. ) 

Borel cohomology 

Borel's definition of equivariant cohomology, for a compact Lie group G, is a 
classical fibrewise construction. Let E and F be compact pointed G-ENRs. 
Then, for any principal G-bundle P -+ B over a compact ENR B we can form 
the fibrewise pointed spaces (indeed pointed fibre bundles) X := P Xa E 
and Y := P Xa F over B and consider the fibrewise cohomology modules 
H1{X; Y}. The equivariant Borel cohomology is the inverse limit 

Hb{E; F} = lim H1{P Xa E; P Xa F} 
~ 

P-tB 

(15.39) 

over the category of such principal G-bundles P. (Some clash of notation 
between the equivariant and fibrewise theories is, alas, almost inevitable.) 
To be more careful, let Bo ~ B1 ~ ... ~ BG be the standard filtration of 
the Milnor classifying space of G and let Pn -+ Bn be the restriction of the 
universal bundle EG -+ BG. It suffices to consider the subcategory consisting 
of these bundles and the inclusion maps, so that 

Hb{E; F} = lim H1{Pn Xa E; Pn Xa F}. 
~ 

n~O 

Moreover, for fixed i this inverse limit stabilizes for large n. 
The suspension isomorphism which one requires for an equivariant theory 

follows from the fibrewise suspension isomorphism (Proposition 15.3). For 
consider a finite-dimensional real G-module V. The natural suspension iso­
morphism for the associated vector bundle ( := P Xa V over B produces the 
equivariant suspension isomorphism 

1/\ : Hb{E; F} ~Hb{v+ /\ E; V+ /\ F}. 

Example 15.40. As an example let us compute the U(n)-equivariant inte­
gral homology and cohomology of the space U(n) with the adjoint action 
of the group. The coefficient ring HU(n) (*) is, by definition, the cohomology 
H*(BU(n)) of the classifying space, that is, the formal power series ring 
Z[[C1, ... , en]] on the Chern classes of the universal bundle. (We have written 
the graded ring as a formal power series ring because we defined Borel co­
homology as an inverse limit, but the graded ring sees only the homogeneous 
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components.) The results described in Example 15.27 determine the Borel 
homology of the group U(n) as a Pontrjagin ring: 

HU(n){SO; U(n)+} = Z[[Cl"" ,cn]] ® A*[XI"" ,Xn], 

where Ci has (cohomological) degree 2i and Xi has degree -(2i - 1). The 
homology in each degree is finitely generated as a Z-module. We can now 
compute the Borel cohomology as the dual, by Lemma 15.16: 

HU(n) {U(n)+; SO} = Z[[CI" .. ,cn]] ® A *[el' ... ,en] 

for certain classes ei of degree 2i - 1. (To be exact, we may fix (Xi, ei) = 1 
and (u,ei) = 0 for any other monomial u in the generators Xl, ... ,Xn .) In 
non-equivariant terms this is the cohomology of the space 

EU(n) XU(n) U(n), 

which may be thought of as the space .c(BU(n» offree loops on the classi­
fying space of U(n) or as the classifying space B(.cU(n» of the loop group. 
(See, for example, [4] or [38].) 

Other theories 

The other classical cohomology theories, notably periodic complex K-theory 
and the connective k-theory, and complex cobordism MU, can be extended 
to fibrewise theories by following along the lines of the treatment we have 
given for ordinary cohomology. 

For example, we can define fibrewise periodic K-theory as 

K~{X; Y} := lim 1I'~[E1n X; (B x (Z x BU» I\B Y], 
--t 
n~O 

where the maps in the direct system are given by the Bott periodicity 
Z x BU ~ (}2(Z X BU). 

When X and Y are fibre bundles with compact ENR fibres, these 
groups are Kasparov KK-groups [97] over the C*-algebra C(B) of continu­
ous functions B ~ C. Algebraically, one replaces the fibrewise pointed space 
p: X ~ B over B by the homomorphism p* : C(B) ~ C(X) of commutat­
ive C*-algebras (with identity). This paves the way for the non-commutative 
theory studied by Kasparov in which one considers central homomorphisms 
C(B) ~ R to a general C*-algebra (with identity) R. 

In [122] Segal gives an illuminating treatment of connective k-theory using 
C* -algebra methods. 
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Connective complex k-theory 

We shall explain how to define the fibrewise k-group k~{X; Y} when X and 
Yare pointed fibrewise compact ENRs over a compact ENR B. 

Suppose first of all that the base B = * is a point, so that X and Y 
are pointed compact ENRs. Roughly speaking, one should think of k-theory 
maps X -t Y, that is elements of kO {X; Y}, in terms of C· -algebra homo­
morphisms 

C(E+ 1\ Y) -t EndC(E+Ax) P, 

where P is a finitely generated projective Hilbert C(E+ 1\ X)-module, for 
some finite-dimensional real vector space E. 

To be more precise, let H be a finite-dimensional complex Hilbert space, 
and define FH (Y) to be the space of C· -algebra homomorphisms 

p : C(Y, *) -t End(H), 

where C(Y, *), as in Remark 5.40, is the ideal of complex-valued functions 
vanishing at the basepoint. The space FH (Y) is topologized in the usual 
way as a mapping-space with the compact-open topology. We take the zero 
homomorphism as basepoint. Given such a representation p of the C·-algebra 
(without identity) on H, let us write Hy (y E Y) for the subspace of H on 
which p(f) acts as multiplication by f (y), for each f E C (Y, * ). By the spectral 
theory of commutative C·-algebras, Hy is zero for all but finitely many points 
y E Y and H is the orthogonal direct sum 

H = Ef)Hy. 
yEY 

Associated to p is the essentially finite sum 

dimp:= 2: (dim Hy)Y, 
yEY 

which gives an element of the infinite symmetric product A(Y). Thus we 
obtain a continuous map 

dim: FH (Y) -t AdimH (Y) ~ A(Y). 

Segal shows in [122] that a pointed map X -+ FH (Y) determines a class 
in kO {X; Y} (lifting a naturally defined class in the periodic Kasparov K K­
group KO {X; Y}) and proves that by adequate suspension one obtains every 
k-theory class in this way. For a real vector space E and a complex Hilbert 
space H, the natural map 

lI'°[E+ 1\ X; FH (E+ 1\ Y)]----+ kO{E+ 1\ X; E+ 1\ Y} +-=- kO{X; Y} 

is a bijection for dim E and dim H sufficiently large. 
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We turn now to the fibrewise theory. Suppose that Y is a pointed fibre 
bundle with each fibre a compact ENR. (This simplifies the exposition, and is 
no great restriction, because it follows from Lemma 5.18 that every fibrewise 
compact ENR is locally a fibrewise retract of such a bundle.) Let JL be a finite­
dimensional complex Hilbert bundle over B. Then, by using the construction 
described above on each fibre we can construct a fibre bundle FJ;(Y), with 
fibre FJ1.b (Yb) at b E B. Furthermore, we have a fibrewise pointed map 

dim : FJ; (Y) ~ AB (Y) (15.41) 

given by the dimension on fibres. 

Proposition 15.42 (Segal's definition of k-theory). Let X and Y be fibrewise 
pointed compact ENRs over a compact ENR B. Then for a real vector bundle 
, and complex Hilbert bundle JL over B there is a natural transformation 

and this transformation is an equivalence if' and JL are of sufficiently high 
dimension. 

Granted the existence of the natural transformation, the fact that it is 
an equivalence in high dimensions follows from Dold's theorem and Segal's 
original result. 

As in our definition in Section 3 of fibrewise stable homotopy groups 
it would suffice to look only at trivial bundles ~. We note again that this 
fibrewise formulation lends itself to immediate equivariant generalization. 

The dimension transformation (15.41) corresponds to the so-called Thom 
map: 

kidXj Y} ~ HB{Xj Y} 

from connective k-theory to integral homology. 

Cobordism 

Our last example is unitary cobordism. One can simply set, in the original 
notation of tom Dieck [41], 

UZ{Xj Y} := lim 1T~[E~n Xj (B x MU(n)) xB Y], 
~ 

n~O 

where MU(n) is the Thorn space of the universal n-dimensional complex 
vector bundle, (n, over BU(n). In the fibrewise theory it is more natural, 
however, to consider not just trivial bundles B x en, but all complex (Her­
mitian) vector bundles, over B. The bundle of groups U(,) has a fibrewise 
classifying space BBU(,), and there is a corresponding fibrewise Thorn space 



15 Fibrewise homology 329 

MBU(e) of a universal bundle ((. Then one can define U~{X; Y} as a set of 
equivalence classes of fibrewise maps 

Remark 15.43. In fact, the fibrewise classifying space is trivial: there is an 
equivalence 

BBU(e) ~ B x BU(n), 

where n = dim e, under which the universal bundle (( corresponds to e ® (n. 
To be exact, this is a fibrewise homotopy equivalence, but not (unless e 
is trivial) a fibrewise pointed homotopy equivalence: the basepoint section 
of BBU(e) corresponds to the section of the trivial bundle given by the 
classifying map B -+ BU(n) of e. We leave the verification of these facts as 
a final exercise for the reader. 
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