
Bachelor thesis

Martin Löf’s J-Rule

by

Lennard Götz

July 16, 2018

supervised by

Dr. Iosif Petrakis

Faculty for mathematics, informatics and statistics of
Ludwig-Maximilian-Universität München

Statement in Lieu of an Oath

Ich versichere hiermit, dass ich die vorgelegte Bachelorarbeit
eigenständig und ohne fremde Hilfe verfasst, keine anderen als die
angegebenen Quellen verwendet und die den benutzten Quellen
entnommenen Passagen als solche kenntlich gemacht habe. Diese
Bachelorarbeit istt in dieser oder einer ähnlichen Form in keinem

anderen Kurs und/oder Studiengang als Studien- oder
Prüfungsleistung vorgelegt worden.

Hiermit stimme ich zu, dass die vorliegende Arbeit von dem Prüfer
in elektronischer Form mit entsprechender Software über prüft

wird.

2

Contents

1 Introduction 5

2 Function types 5
2.1 Dependent function types (Π− types) 6
2.2 Product type (A×B) 6
2.3 Dependent pair types (

∑
−types) 7

2.4 Coproduct type (A + B) 7

3 Identity types 8
3.1 Martin Löf’s J-Rule 9
3.2 J-Rule as function . 9

4 The relation between the J-rule and the j-rule 10
4.1 Transport . 10
4.2 The M-judgement . 12
4.3 Based versions . 15
4.4 The j-Rule . 15
4.5 Equivalence between the J-Rule and the j-Rule 16
4.6 Based Transport (transport) 17
4.7 Based LeastRefl (leastrefl) 18
4.8 The m-judgement . 19

5 Applications of the J-rule 21

6 C++ and the J-Rule 29

7 Identity systems 33

8 Appendix 40

3

Abstract

After giving an overview of Martin-Löf Type Theory (MLTT), we focus on
identity types. Based on the work of Coquand [1] and following [4], we present
the relation between the fundamental judgements of MLTT with the J-rule,
which is the main proof-tool of MLTT. Then we introduce a C++ program which
is capable of using the J-rule in order to show the inhabitance of certain types.
Finally, we present the fundamental theorem on identity systhems. Except from
our construction of a proof checker in C++, this Thesis is based on the book-
HoTT [5].

4

1 Introduction
Martin Löf’s J-rule is the elimination rule for identity types in type theory.
Before we treat this elimination rule closer, we want to give a short overview
of type theory. In comparison to set theory, we have types instead of sets and
terms instead of elements. By the Curry-Howard interpretation every type is
understood as a proposition and every term is understood as a proof of the
proposition represented by the type which is inhabited by that term. Type,
space and proposition are synonyms in this theory. Term and proof are here
synonyms as well. Every term belongs to some universe U. U is the type of a
higher universe. As in [5, chapter 1.3] we give levels to the universes and require
that all points of a universe and the universe it self are terms of the universe of
the next level.
Ui : Ui+1 and if a : Ui than a : Ui+1.

There are rules how to form a new type,
how to construct points of that type,
how to use these points (elimination rule),
how the construction and the use work together and
there can be something that expresses uniqueness.

We write a : A to refer to a term a of type A. As we are not going to intro-
duce a homotopical point of view, for us a function f : A → B is nothing but
a proof that A implies B. we call terms of identity types paths, as it is done in
the naive homotopical introduction of [5].

For this thesis the most important type is the identity type. It treats equality.
For some a, b : A the type a =A b is an identity type. The path p : a =A b is a
proof that a and b are equal.
The J-rule is also called path induction.

If two terms are equal by definition we write a ≡ b : A and we call a and b
judgementally equal. If a =A b is inhabited we call a and b propositionally equal.

In the next chapter we present the basic types of MLTT.

2 Function types
Functions are a primitive concept of type theory. I explain the function type by
prescribing how functions can be constructed and what we can do with them.
The type A→ B is a space of functions f. f can be defined or constructed using
λ− abstraction.
Via Definition:
f(x) :≡ φ where x : A and for all x : A φ : B is an expression of type B which
can depend on x.
Via λ− abstraction:
Using an expression φ : B which can depend on x : A we have the judgement
(λ(x : A).φ) : A→ B.
The function can be applied to an argument a : A with the following judgemental
equality:

5

(λx.φ)(a) ≡ φ∗
where φ∗ denotes the expression φ in which x was replaced by a.

2.1 Dependent function types (Π− types)
Given a type A and a family P : A→ U one can construct the type∏

x:A

P (x)

which is the type of dependant functions. We can construct dependent functions
by definition or using λ− abstraction.
Via Definition:

f(x) :≡ φ
where x : A and for all x : A it holds that φ : P (x) is an expression which can
depend on x : A.
Via λ− abstraction:

λx.φ :
∏
x:A

P (x)

using an expression φ : P (x) which can depend on x : A.
Like an ordinary one the dependent function can be applied to an argument
a : A with the following judgemental equality:

f(a) ≡ (λx.φ)(a) ≡ φ∗

where φ∗ denotes the expression φ in which x was replaced by a.
If we choose B to be the family of constant functions, the dependent function
becomes an ordinary function.

2.2 Product type (A×B)
We call the type A×B the cartesian product of the types A and B. With a : A
and b : B we can construct (a, b) : A×B. For a family C : A×B → U we can
define a dependent function

f :
∏

x:A×B
C(x)

using a function
g :

∏
x:A

∏
y:B

C((x, y))

by
f((x, y)) :≡ g(x)(y).

in this way it is possible to construct a function

uniquenessA×B :
∏

x:A×B
((pr1(x),pr2(x)) =A×B x)

with pr1((a, b)) :≡ a and pr2((a, b)) :≡ b by defining

uniquenessA×B((a, b)) :≡ refl(a,b)

which is a proof that all elements of the product type are pairs. Reflx will be
introduced later on.

6

2.3 Dependent pair types (
∑
−types)

We want to allow the type of the second component of a pair to vary depending
on the first component. Given a type A : U and a family P : A → U , we use
the notation ∑

x:A

P (x) : U

for the dependent pair type.
With a : A and b : B(a) we get the pair

(a, b) :
∑
x:A

P (x).

A function
f : (

∑
x:A

P (x))→ C

can be defined using a function

g :
∏
x:A

P (x)→ C

by
f((a, b)) :≡ g(a)(b)

therefore we have a family

C : (
∑
x:A

P (x))→ U.

We can construct a dependent function

f :
∏

p:
∑

x:A P (x)

C(p)

using a function
g :

∏
a:A

∏
b:P (a)

C((a, b))

by
f((a, b)) :≡ g(a)(b).

This gives us the induction principle for
∑
−types

ind∑
x:A P (x) :

∏
(C:

∑
x:A P (x)→U)

(
∏
a:A

∏
b:P (a)

C((a, b)))→
∏

p:
∑

x:A P (x)

C(p).

2.4 Coproduct type (A + B)
With some types A,B : U we use the notation A+B : U for the coproduct type.
For a : A and b : B we have the elements inl(a), inr(b) : A+ B. To construct a
function

f : A+B → C

we use functions
g0 : A→ C

7

g1 : B → C

and define
f(inl(a)) :≡ g0(a),

f(inr(b)) :≡ g1(b).

Now we have the family P : (A+B)→ U
For

g0 :
∏
a:A

C(inl(a)),

g1 :
∏
b:B

C(inr(b))

we define
f(inl(a)) :≡ g0(a),

f(inr(b)) :≡ g1(b).

This gives us the induction principle for (A + B)

ind(A+B) :
∏

c:(A+B)→U

(
∏
a:A

C(inl(a)))→ (
∏
b:B

C(inr(b))→
∏

x:(A+B)

c(x).

3 Identity types
The proposition, that two points a, b : A of a type A are equal, corresponds to
some type. This type depend on a and b. Therefore the identity Types are a
family which depend two times on A.
Write this family as

IdA : A→ A→ U

which is not the identity function.
The Type IdA(a, b) that corresponds to the proposition that a : A and b : A are
equal, will also be denoted by a =A b.
A Point of a =A b is called a path.
The formation rule states that for a type A : U and two elements a, b : A we
can form the type

a =A b : U.

The basic way to do so is to know that a and b are equal.

(x 6=A y) :≡ ¬(x =A y)

The introduction rule
refl :

∏
a:A

(a =A a)

is called reflexivity and states that every element of A is equal to itself. One
could say, that the identity Types are generated by elements of the form reflx :
x = x.

In order to characterize the identity Type we introduce the elimination rule
(i.e. the induction principle) of it, which considers maps from x =A y and
falsities over it. The elimination rule for identity Types is called J-Rule.

8

3.1 Martin Löf’s J-Rule
Given a family

C :
∏
x,y:A

(x =A y)→ U

and a function
c :

∏
x:A

C(x, x, reflx),

there is a function
f :

∏
x,y:A

∏
p:x=Ay

C(x, y, p)

such that

f(x, x, reflx) :≡ c(x).

The J-rule allows us to define a function f : C with a property for all elements
x, y : A and paths p : x =A y by only considering cases where the elements are
x, x and the path is reflx : x =A x.

[2] tries to justify the J-rule with the uniqueness principle for identity types
and the substitution of equals. [2] in which the term token is used for points,
states in chapter 6.2 that

...the token constructors give us every token of the type up to
identity. ...every token is equal to the output of one of the construc-
tors,...

which leads to the uniqueness principle (M). The substitution of equals (Trans-
port) shall come from pre-mathematical understanding of identity.

3.2 J-Rule as function
Definition 1 We define

ind =A:
∏

(C:
∏

x,y:A(x=Ay)→U)

(
∏
x:A

C(x, x, reflx)→
∏
x,y:A

∏
p:x=Ay

C(x, y, p)

with the computation rule

ind =A (C, c, x, x, reflx) :≡ c(x)

As the induction principal for identity types is called Martin Löf’s J-rule, this
function is called "J.".
As a consequence of the elimination rule equals can be substituted by equals
which is expressed by Indiscernibility of identicals (Transport):
For every family

C : A→ U

there is a function
f : Πx,y:AΠp:x=AyC(x)→ C(y)

such that
f(x, x, reflx) :≡ idC(x).

9

4 The relation between the J-rule and the j-rule
Definition 2 We define

LeastRefl :
∏

R:A→A→U

∏
r:
∏

x:A R(x,x)

∏
x,y:A

∏
p:x=Ay

R(x, y)

with the compuattion rule

LeastRefl(R, r, x, x, reflx) ≡ r(x);x : A

The LeastRefl-judgement expresses that =A is the least reflexive relation on A
[4].

Proposition 1 The J-Rule and its computation rule imply the judgement and
the computaion rule of LeastRefl.

Proof:
C :

∏
x,y:A

(x =A y)→ U

define
C(x, y, p) :≡

∏
R:A→A→U

∏
r:
∏

x:A R(x,x)

R(x, y)

and
c(R, r, x) :≡ r(x).

Than
c :

∏
x:A

∏
R:A→A→U

∏
r:
∏

x:A R(x,x)

R(x, x).

Path induction implies the existence of a function

LeastRefl :
∏
x,y:A

∏
p:x=Ay

C(x, y, p)

such that
LeastRefl(R, r, x, x, reflx) :≡ c(R, r, x)

Replace C(x, y, p) and c(R, r, x) by its definitions

LeastRefl :
∏
x,y:A

∏
p:x=Ay

∏
R:A→A→U

∏
r:
∏

x:A R(x,x)

R(x, y)

LeastRefl(R, r, x, x, reflx) ≡ r(x)

4.1 Transport
Definition 3 We define

Transport :
∏

P :A→U

∏
x,y:A

∏
p:x=Ay

(P (x)→ P (y))

with the computation rule

Transport(P, x, x, reflx) ≡ idP (x)

10

where x : A.
Let P be a Property of elements of A and let x and y be equal. Than

Transport implies that P (x) holds if and only if P (y) holds.
The Transport-judgement expresses the indiscernibility of
identicals [4].

Proposition 2 The J-Rule and its computation rule imply Transport and its
computation rule

Proof:
C :

∏
x,y:A

(x =A y)→ U

define
C(x, y, p) :≡

∏
P :A→U

(P (x)→ P (y))

and
c(P, x) :≡ idP (x).

Than
c :

∏
x:A

∏
P :A→U

(P (x)→ P (x)).

Path induction implies the existence of a function

Transport :
∏
x,y:A

∏
p:x=Ay

C(x, y, p)

such that
Transport(P, x, x, reflx) :≡ c(P, x)

Replace C(x, y, p) and c(P, x) by its definitions

Transport :
∏
x,y:A

∏
p:x=Ay

∏
P :A→U

(P (x)→ P (y))

Transport(P, x, x, reflx) ≡ idP (x)

We can even show that LeastRefl and Transport are equivalent.

Proposition 3 LeastRefl and its computation rule imply Transport and its
computation rule.

Proof: For all
P : A→ U

we have that
R(x, y) :≡ P (x)→ P (y) : A→ A→ U.

Further
r(x) :≡ idP (x) : P (x)→ P (x)

r :
∏
x:A

R(x, x)

LeastRefl implies a function

11

f :
∏

P :A→U

∏
idP (•):

∏
x:A P (x)→P (x)

∏
x,y:A

∏
p:x=Ay

(P (x)→ P (y))

which is the same as

f :
∏

P :A→U

∏
x,y:A

∏
p:x=Ay

(P (x)→ P (y))

such that
f(P, x, x, reflx) ≡ r(x) :≡ idP (x)

As this f is equal to Transport, LeastRefl implies Transport.

Proposition 4 Transport and its computation rule imply LeastRefl and its
computation rule.

Proof: For all R : A → A → U and r :
∏

x:AR(x, x) we define a function
P : A→ U by

P (x) :≡ R(x, x).

Therefore r(x) : P (x).

Transport(P, x, y, p) : (P (x)→ P (y))

Now we define a function f by

f :≡ λ(R, r, x, y, p).Transport(P, x, y, p)(r(x))

f(R, r, x, x, reflx) ≡ Transport(P, x, x, reflx)(r(x))

≡ idP (x)(r(x))

≡ r(x)

As this f is equal to LeastRefl, Transport implies LeastRefl.

4.2 The M-judgement
We already know that the J − Rule implies LeastRefl and Transport. But the
converse is not true. Therefore we want to find a sufficient condition M which
in connection with LeastRefl or Transport implies the J − Rule. This M shall
be implied by the J −Rule as well. If we have that M, the following holds true:

Transport ∧M⇔ J −Rule

LeastRefl ∧M⇔ J −Rule
The following M is the M we want.

Definition 4 With
Ea :≡

∑
x:A

(a =A x)

we define the term

M :
∏
a,x:A

∏
p:a=Ax

(a, reflx) =Ea
(x, p),

with the computation rule

M(a, a, refla) ≡ refla,refla

12

Generally, the uniqueness principal for an inductively defined type A ex-
presses the fact that every point of the identity type is equal to an output of a
constructor of that type. According to [5] and [3] M is the uniqueness principle
for identity types.

Theorem 1 The J-Rule and its computation rule imply the M-judgement and
its computation rule.

Proof:
C :

∏
a,x:A

(a =A x)→ U

Define
C(a, x, p) :≡ (a, refla) =Ea (x, p),

C(a, a, refla) ≡ (a, refla) =Ea (a, refla)

and
c(a) :≡ refl(a,refla)

. Than
c :

∏
a:A

C(a, a, refla) ≡
∏
a:A

(a, refla) =Ea
(a, refla).

Path induction implies a function

M :
∏
a,x:A

∏
p:a=Ax

(a, refla) =Ea
(x, p)

such that
M(a, a, refla) :≡ c(a) ≡ refl(a,refla).

Theorem 2 The LeastRefl- and the M-judgement and their computation rules
imply the J-Rule and its computation rule.

Proof: We require
C :

∏
a,x:A

(a =A x)→ U

and a function
c :

∏
a:A

C(a, a, refla).

Define the function R : Ea → Ea → U by

R((a, p), (x, p)) :≡ C(a, x, p).

Further define r by
r(a, refla) :≡ c(a).

Now we have a point r :
∏

(x,reflx):Ea
R((x, reflx), (x, reflx)). We have

M(a, x, p) : (a, refla) =Ea (x, p)

and
LeastRefl(R, r, (a, refla), (x, p),M(a, x, p)) : R((a, refla), (x, p))

13

in which we can use the definition of R

LeastRefl(R, r, (a, refla), (x, p),M(a, x, p)) : C(a, x, p)

We know
LeastRefl(R, r, y, y, refly) ≡ r(y),

M(y, y, refly) ≡ refl(y,refly).

Now we can define

F :≡ λ(a, x : A, p : a =A x).LeastRefl(R, r, (a, refla), (x, p),M(a, x, p))

F (a, a, refla) ≡ LeastRefl(R, r, (a, refla), (a, refla),M(a, a, p))

≡ LeastRefl(R, r, (a, refla), (a, refla), refl(a,refla))

≡ LeastRefl(R, r, (a, refla), (a, refla), refl(a,refla))

≡ r((a, refla)) ≡ c(a).

As F (a, x, p) : C(a, x, p) we have

F :
∏
a,x:A

∏
p:a=Ax

C(a, x, p)

such that
F (a, a, refla) ≡ c(a).

Corollary 1 The Transport- and the M-judgement and their computation rules
imply the J-Rule and its computation rule.

Proof: It follows immediately form 2 together with 4 but we can show the
implication directly.
We require

C :
∏
a,x:A

(a =A x)→ U

and a function
c :

∏
a:A

C(a, a, refla).

For all a : A and p : a =A x the recursion principle allows us to define a
dependent function

Pa : Ea → U

by
Pa((x, p)) :≡ C(a, x, p).

We have
M : (a, x, p) : (a, refla) =Ea (x, p)

and

Transport(Pa, (a, refla), (x, p),M(a, x, p)) : (Pa((a, refla))→ Pa((x, p)))

in which we can use the definition of Pa

Transport(Pa, (a, refla), (x, p),M(a, x, p)) : C(a, a, refla)→ C(a, x, p).

14

We know
Transport(P, y, y, refly) ≡ idP (y),

M(y, y, refly) ≡ refl(y,refly).

Now we can define

F :≡ λ(a, x : A, p : a =A x).Transport(Pa, (a, refla), (x, p),M(a, x, p))(c(a))

F (a, a, refla) ≡ Transport(Pa, (a, refla), (a, refla),M(a, a, p))(c(a))

F (a, a, refla) ≡ Transport(Pa, (a, refla), (a, refla), refl(a,refla))(c(a))

≡ idPa(a,refla)(c(a))

≡ (c(a)).

As F (a, x, p) : C(a, x, p) we have

F :
∏
a,x:A

∏
p:a=Ax

C(a, x, p)

such that
F (a, a, refla) ≡ c(a).

4.3 Based versions
There are Based versions [3] of J−Rule, Transport, LeastRefl and M which are
all equivalent to the normal forms. The based versions can be helpful as they
use less unknown variables.

4.4 The j-Rule
The j-Rule is a synonym for based path induction.
Given a proof P : a =A b, the J-rule replaces a and b with the unknown x and
y. In some cases it can be more simple to replace a or b and do the remainder
of the proof for a specific element instead for unknown x and y.
The j-rule says that the types a =A x are generated by refla : a = a.
Fix a:A
Given a family

C :
∏
x:A

(a =A x)→ U)

and an element
c : C(a, refla),

there is a function
f :

∏
x:A

∏
p:a=x

C(x, p)

such that
f(a, refla) :≡ c.

The j-rule allows us to define a function f : C with property for all elements x
and paths p : a =A x by only considering cases where the element is a and the
path is refla : a =A a.

15

Definition 5 The j-Rule as function

ind∗ =A:
∏
a:A

∏
(C:

∏
x:A(a=Ax)→U)

C(a, refla)→
∏
x:A

∏
p:a=Ax

C(x, p)

with the computation rule

ind∗ =A (a,C, c, a, refla) :≡ c

4.5 Equivalence between the J-Rule and the j-Rule
Both induction principles for the identity Type are equivalent.

Proposition 5 The j-Rule and its computation rule imply the J-Rule and its
computation rule.

Proof: Given a family
C :

∏
x,y:A

(x =A y)→ U)

and a function
c :

∏
x:A

C(x, x, reflx),

for some x : A we can construct

C∗ :
∏
y:A

(x =A y)→ U)

c∗ : C(x, reflx),

such that
C∗ :≡ C(x),

c∗ :≡ c(x).

Based path induction implies the existence of a function

g : Πy:AΠp:x=AyC
∗(y, p)

such that
g(x, reflx) :≡ c∗.

By discharging the assumption x : A we derive a function

f :
∏
x,y:A

∏
p:x=Ay

C(x, y, p)

with
f(x) :≡ g.

It follows:
f(x, x, reflx) ≡ g(x, reflx) :≡ c∗ :≡ c(x)

[5] gives the following homotopical proof. Later in corollary 2 we proof the
same result in a different way.

Theorem 3 The J-Rule implies the j-Rule and their computation rule.

16

Proof: Let us assume all possible kinds of given Families

C :
∏
z:A

(x =A z)→ U

with elements
c : C(x, reflx).

Define
D :

∏
x,y:A

(x =A y)→ U

with
D(x, y, p) :≡ ΠC:Πz:A(x=Az)→UC(x, reflx)→ C(y, p).

We can construct
d :

∏
x:A

D(x, x, reflx)

using λ− abstraction

d :≡ λx.λC.λ(c : C(x, reflx)).c.

Path induction implies the existence of a function

f :
∏
x,y:A

Πp:x=AyD(x, y, p)

with
f(x, x, reflx) :≡ d(x).

Inserting the definition of D into the Type of f leads to

f :
∏
x,y:A

∏
p:x=Ay

∏
C:

∏
z:A(x=Az)→U

C(x, reflx)→ C(y, p)

Fix an element x : A. For a path p : a =A x

f(a, x, p, C, c) : C(x, p).

4.6 Based Transport (transport)
Definition 6 We define

transport :
∏
a:A

∏
P :A→U

∏
x:A

∏
p:a=Ax

(P (a)→ P (x)),

with their computation rule

transport(a, P, a, refla) ≡ idP (a).

Proposition 6 transport and its computation rule is implied by the j − Rule
and its computation rule.

17

C :
∏
x:A

(a =A x)→ U

Define for all a : A and all P : A→ U the functions

C(a,P)(x, p) :≡ (P (a)→ P (x))

where C(a,P) ≡ C(a, P). We have

idP (a) : C(a,P)(a, refla).

The j −Rule gives a function

f :
∏
x:A

∏
p:a=Ax

C(a,P)(x, p)

such that
f(a, refla) ≡ idP (a).

Than
transport(a, P) :≡ f

is what we were looking for.

Proposition 7 Transport and transport are equivalent.

If we fix an arbitrary a : A at Transport, we get a function Transporta.

transport :≡ λa.Transporta

If we fix arbitrary a and P in transport and Transport, we get equal functions
transporta,P and TransportP,a. Therefore

Transport :≡ λP.λa.transporta,P .

4.7 Based LeastRefl (leastrefl)
Definition 7 We define

leastrefl :
∏
a:A

∏
Ra:A→U

∏
ra:Ra(a)

∏
x:A

∏
p:a=Ax

Ra(x),

with its computation rule

leastrefl(a,Ra, ra, a, refla) ≡ ra.

As expected, leastrefl is directly derived from the j −Rule:

C :
∏
x:A

(a =A x)→ U

Define for all a : A and all Ra : A→ U and all ra : Ra(a) the functions

C(a,Ra,ra)(x, p) :≡ Ra(x)

where C(a,Ra,ra) ≡ C(a,Ra, ra). We have

ra : C(a,Ra,ra)(x, p).

18

The j −Rule gives a function

f :
∏
x:A

∏
p:a=Ax

C(a,Ra,ra)(x, p)

such that
f(a, refla) ≡ ra.

Than
leastrefl(a,Ra, ra) :≡ f

is what we were looking for.
LeastRefl and leastrefl are equivalent. We get one from the other by defining

either ∏
a:A

(Ra(x) :≡ R(a, x)),

ra :≡ r(a)

or ∏
a:A

(R(a, x) :≡ Ra(x)),

r(a) :≡ ra.

4.8 The m-judgement
Definition 8 We define

m :
∏
a:A

∏
u:Ea

(a, refla) =Ea u,

with its computation rule

m(a, (a, refla)) ≡ refl(a,refla).

As expected, m is directly derived from j −Rule:

C :
∏
x:A

(a =A x)→ U

Define the function

C(x, p) :≡ ((a, refla) =Ea
(x, p)).

We have
refl(a,refla) : C(a, refla).

The j −Rule gives a function

f :
∏
x:A

∏
p:a=Ax

C(x, p)

such that
f(a, refla) ≡ refl(a,refla).

Than
m :≡ f

is what we were looking for.

M and m are equivalent.

19

Proposition 8 The m-Judgement and its computation rule imply the M-judgement
and its computation rule.

Proof: We define M(a, x, p) ≡ ma((x, p)) and get the implication.

Proposition 9 The M-Judgement and its computation rule imply them-Judgement
and its computation rule.

Proof: We define the family Q : Ea → U for all u : Ea by

Q(u) ≡ (a, refla) =Ea u.

Now
M(a) :

∏
x:A

∏
p:a=Ax

(a, refla) =Ea
(x, p))

and as Q((x, p) ≡ (a, refla) =Ea
(x, p) it exists a family F :

∏
u:Ea

Q(u) such
that

F ((a, refla)) ≡ M(a)(a, refla) ≡ M(a, a, refla) ≡ refla,refla
).

Theorem 4 ma and transport with their computation rules imply the j-rule
and its computation rule.

Proof: We have
C :

∏
x:a

∏
p:a=Ac

U

with c : C(a, refla). We get

F :
∏
x:A

∏
p:a=Ax

C(x, p)

with F (a, refla) ≡ c. Because of the recursion principal for
∑

-types we can
define P : Ea → U by P ((x, p)) ≡ C(x, p), for every x : A and p : a =A x. We
have

ma((x, p)) : (a, refl : a) =Ea
(x, p).

It follows from transport that [ma((x, p))]P∗ : P ((a, refla))→ P ((x, p)).
By replacing P with C we get [ma((x, p))]P∗ : C((a, refla))→ C((x, p).
Define F :≡ λ(x : A, p : a =A x).[ma((x, p))]P∗ (c).
Now we get

F (a, refla) ≡ [ma((x, p))]P∗ (c)

≡ [refl(a,refla)]
P
∗ (c)

≡ idP (a, refla)(c)

≡ idC(a, refla)(c)

≡ c

Corollary 2 The J-rule and its computation rule imply the j-rule and its com-
putation rule.

Proof: The theorem 1 and the proposition 2 give us M, Transport and their
computation rules. By proposition 9 M and its computation rule imply m and
its computation rule. By proposition 7 Transport and its computation rule
imply transport and its computation rule. By theorem 4 transport and m imply
the j-rule.

20

5 Applications of the J-rule
As mentioned before we identify a proposition with a Type and a proven state-
ment with an inhabited Type. We will proof the following propositions by
translating them into Types and than use path induction to construct elements
of these Types.

Lemma 1 For every type A and every x, y : A there is a function

(x =A y)→ (y =A x)

denoted p→ p−1, such that for every x : A

refl−1
x ≡ reflx

.

Proof: We have A : U and p : x =A y and want to show that∏
A:U

∏
x,y:A

(x =A y)→ (y = x)

is inhabited. Define
C :

∏
x,y:A

(x =A y)→ U

with
C(x, y, p) :≡ (y =A x)

21

Than c :≡ λx.reflx is an element of
∏

x:A C(x, x, reflx).
Path induction gives us a function

f :
∏
x,y:A

∏
p:x=Ay

C(x, y, p),

such that f(x, x, reflx) :≡ c(x).
As f(x, y, p) : (y =A x) our type to poof is inhabited by

λp.f(x, y, p).

λp.f(x, x, reflx)(reflx) =x=Ax refl−1
x ≡ reflx

as required. Call p−1 the inverse of p.

Lemma 2 For every Type A and every x, y, z : A there is a function

(x =A y)→ (y =A z)→ (x =A z)

denoted
p→ q → p • q,

such that
reflx • reflx ≡ reflx

for any x : A.

Proof: We have A : U , p : x =A y and q : y =A z and want to show that∏
A:U

∏
x,y,z:A

(x =A y)→ (y =A z)→ (x =A z)

is inhabited. Define
C :

∏
x,y:A

(x =A y)→ U

with
C(x, y, p) :≡

∏
z:A

(y =A z)→ (x =A z)

C(x, x, reflx) ≡
∏
z:A

(x =A z)→ (x =A z).

We need an element of
∏

x:A C(x, x, reflx).
Define

D :
∏
x,z:A

(x =A z)→ U

with
D(x, z, q) :≡ (x =A z).

Than d defined with d(x) :≡ reflx is an element of∏
x:A

D(x, x, reflx).

22

Path induction gives us a function

c :
∏
x,z:A

∏
q:x=Az

D(x, z, q)

such that c(x, x, reflx) :≡ d(x).

c :
∏
x:A

C(x, x, reflx)

holds true.
Path induction gives us a function

f :
∏
x,y:A

∏
p:x=Ay

C(x, y, p)

such that f(x, x, reflx) :≡ c(x).

f :
∏

x,y,z:A

(x =A y)→ (y =A z)→ (x =A z)

holds.

f(C, c,D, d, x, x, x, reflx, reflx) ≡ c(D, d, x, x, reflx) ≡ d(x) ≡ reflx

as required. Call p • q the composition of p and q.

Lemma 3 Given A : U and x, y, z, w : A and p : x = y and
q : y = z and r : z = w the following hold.

(i) p = p • refly is inhabited.

(ii) p = reflx • p is inhabited.

(iii) p−1 • p = refly is inhabited.

(iv) p • p−1 = reflx is inhabited.

(v) (p−1)−1 = p is inhabited.

(vi) p • (q • r) = (p • q) • r is inhabited.

Proof: (i) Define
C :

∏
x,y:A

(x =A y)→ U

with
C(x, y, p) :≡ p = p • refly,

C(x, x, reflx) ≡ reflx = reflx • reflx

Since reflx • reflx ≡ reflx, C(x, x, reflx) ≡ reflx = reflx.

c :≡ λx.reflreflx :
∏
x:A

C(x, x, reflx).

23

Path induction gives us the required function

f :
∏
x,y:A

∏
p:x=Ay

C(x, y, p),

f(x, y, p) : p = p • refly

holds.

(ii) Define
C :

∏
x,y:A

(x =A y)→ U

with
C(x, y, p) :≡ p = reflx • p.

C(x, x, reflx) ≡ reflx = reflx • reflx

Since reflx • reflx ≡ reflx, C(x, x, reflx) ≡ reflx = reflx.

c :≡ λx.reflreflx
:
∏
x:A

C(x, x, reflx).

Path induction gives us the required function

f : Πx,y:AΠp:x=AyC(x, y, p)

f(x, y, p) : p = reflx • p holds.

(iii) Define
C :

∏
x,y:A

(x =A y)→ U

with
C(x, y, p) :≡ p−1 • p = refly.

C(x, x, reflx) ≡ refl−1
x • reflx = reflx

Since refl−1
x ≡ reflx, refl−1

x • reflx ≡ reflx • reflx. Further reflx • reflx ≡ reflx.
Therefore

C(x, x, reflx) ≡ reflx = reflx.

c :≡ λx.reflreflx
: Πx:AC(x, x, reflx).

Path induction gives us the required function

f :
∏
x,y:A

∏
p:x=Ay

C(x, y, p)

f(x, y, p) : p−1 • p = refly

holds.

(iv) Define
C :

∏
x,y:A

(x =A y)→ U

24

with
C(x, y, p) :≡ p • p−1 = reflx.

C(x, x, reflx) ≡ reflx • refl−1
x = reflx

Since refl−1
x ≡ reflx, reflx • refl−1

x ≡ reflx • reflx. Further reflx • reflx ≡ reflx.
Therefore

C(x, x, reflx) ≡ reflx = reflx.

c :≡ λx.reflreflx
:
∏
x:A

C(x, x, reflx).

Path induction gives us the required function

f :
∏
x,y:A

∏
p:x=Ay

C(x, y, p),

f(x, y, p) : p • p−1 = reflx

holds.

(v) Define
C :

∏
x,y:A

(x =A y)→ U

with
C(x, y, p) :≡ (p−1)−1 = p,

C(x, x, reflx) ≡ (refl−1
x)−1 = p.

Since refl−1
x ≡ reflx, (refl−1

x)−1 ≡ (reflx)−1 ≡ reflx.
Therefore C(x, x, reflx) ≡ reflx = reflx.

c :≡ λx.reflreflx :
∏
x:A

C(x, x, reflx).

Path induction gives us the required function

f :
∏
x,y:A

∏
p:x=Ay

C(x, y, p),

f(x, y, p) : (p−1)−1 = p

holds.

(vi) Define
C :

∏
x,y:A

(x =A y)→ U

with
C(x, y, p) :≡

∏
z,w:A

∏
q:y=z

∏
r:z=w

p • (q • r) = (p • q) • r.

C(x, x, reflx) ≡
∏

z,w:A

∏
q:x=z

∏
r:z=w

reflx • (q • r) = (reflx • q) • r

25

We have to find an element of C(x, x, reflx).
Define

D :
∏
x,z:A

(x =A z)→ U

with
D(x, z, q) :≡

∏
w:A

∏
r:z=w

reflx • (q • r) = (reflx • q) • r.

D(x, x, reflx) ≡
∏
w:A

Πr:x=wreflx • (reflx • r) = (reflx • reflx) • r

We have to find an element of D(x, x, reflx).
Define

E :
∏

x,w:A

(x =A w)→ U

with
E(x,w, r) :≡ reflx • (reflx • r) = (reflx • reflx) • r.

E(x, x, reflx) :≡ reflx • (reflx • reflx) = (reflx • reflx) • reflx.

Since reflx • reflx ≡ reflx,

E(x, x, reflx) ≡ reflx • (reflx) = (reflx) • reflx ≡ reflx = reflx,

e :≡ λ.reflreflx :
∏
x:A

E(x, x, reflx).

Path induction gives us the required function

d :
∏

x,w:A

∏
r:x=Aw

E(x,w, r)

d(x,w, r) : reflx • (reflx • r) = (reflx • reflx) • r

d :
∏
x:A

D(x, x, reflx)

hold.
Path induction gives us the required function

c :
∏
x,z:A

∏
q:x=Az

D(x, z, q)

c(x, z, q) :
∏
w:A

Πr:z=wreflx • (q • r) = (reflx • q) • r

c :
∏

x:A C(x, x, reflx) hold. Path induction gives us the required function

f :
∏
x,y:A

∏
p:x=Ay

C(x, y, p)

f(x, y, p) :
∏

z,w:A

∏
q:y=Az

∏
r:z=Aw

p • (q • r) = (p • q) • r

f(x, y, z, w, p, q, r) : p • (q • r) = (p • q) • r

26

Lemma 4 Let f : A→ B. For all x, y : A there is a function

apf : (x =A y)→ (f(x) =B f(y))

such that, for all x : A holds αf (reflx) ≡ reflf(x) which means functions preserve
paths.

Proof: Define
C :

∏
x,y:A

(x =A y)→ U

with
C(x, y, p) :≡ (f(x) =B f(y)).

C(x, x, reflx) ≡ f(x) =B f(x)

c :≡ λx.reflf(x) :
∏
x:A

C(x, x, reflx)

Path induction gives us the required function

apf

∏
x,y:A

∏
p:x=Ay

C(x, y, p)

with apf (x, x, reflx) ≡ c(x) ≡ reflf(x).
Note that apf (reflx) ≡ reflf(x).

Lemma 5 Given f : A→ B and g : B → C and
p : x =A y and q : y =A z the following hold.

(i) apf (p • q) = apf (p) • αf (q) is inhabited.

(ii) apf (p−1) = (apf (p))−1 is inhabited.

(iii) apg(apf (p)) = apg•f (p) is inhabited.

(iv) apidA
(p) = p is inhabited.

Proof: (i) Define
C : Πx,y:A(x =A y)→ U

with

C(x, y, p) : ≡ apf (p • q) = apf (p) • apf (q)

C(x, x, reflx) ≡ apf (reflx • reflx) = apf (reflx) • apf (reflx)

≡ apf (reflx) = reflf(x) • reflf(x)

≡ reflf(x) = reflf(x)

c :≡ λx.reflreflx
:
∏
x:A

C(x, x, reflx)

Path induction gives us the required function

f :
∏
x,y:A

∏
p:x=Ay

C(x, y, p)

27

f(x, y, p) : apf (p • q) = apf (p) • apf (q).

(ii) Define
C :

∏
x,y:A

(x =A y)→ U

with

C(x, y, p) : ≡ apf (p−1) = (apf (p))−1

C(x, x, reflx) ≡ apf (refl−1
x) = (apf (reflx))−1

≡ apf (reflx) = (reflf(x))
−1

≡ reflf(x) = reflf(x)

c :≡ λx.reflreflx :
∏
x:A

C(x, x, reflx)

Path induction gives us the required function

f :
∏
x,y:A

∏
p:x=Ay

C(x, y, p)

f(x, y, p) : apf (p−1) = (apf (p))−1

(iii) Define
C :

∏
x,y:A

(x =A y)→ U

with

C(x, y, p) : ≡ apg(apf (p)) = apg•f (p)

C(x, x, reflx) ≡ apg(apf (reflx)) = apg•f (reflx)

≡ apg(reflf(x)) = reflg•f(x)

≡ reflg(f(x) = reflg(f(x))

c :≡ λx.reflreflg(f(x))
:
∏
x:A

C(x, x, reflx)

Path induction gives us the required function

f :
∏
x,y:A

∏
p:x=Ay

C(x, y, p)

f(x, y, p) : apg(apf (p)) = apg•f (p)

(iv) idA(x) :≡ x
Define

C :
∏
x,y:A

(x =A y)→ U

28

with

C(x, y, p) : ≡ apidA
(p) = p

C(x, x, reflx) ≡ apidA
(reflx) = reflx

≡ reflidA(x) = reflx

≡ reflx = reflx

(1)

c :≡ λx.reflreflx :
∏
x:A

C(x, x, reflx)

Path induction gives us the required function

f :
∏
x,y:A

∏
p:x=Ay

C(x, y, p)

f(x, y, p) : apidA
(p) = p

6 C++ and the J-Rule
From pre mathematical understanding we already know that the order of some
A,B has nothing to do with the statement that A and B are equal. Which
means Identity should be symmetric. Analogically Identity should be reflexive
and transitive as well. Reflexivity of identity types holds by their construction.
Symmetry and transitivity is implied by the J-Rule as shown in 1 on page 21
and 2 on page 22. Further the J-Rule implies LeastRefl.
Therefore identity in Martin Löf’s type theory is similar to identity given by
Lawvere’s Law [6, Chapter 6].

As type theory is closer to computer science than set theory, it has a huge
potential for programs.
It simplifies writing computer programs, which helps the mathematician writing
proofs or which even construct full poofs on there own. The c++ code presented
in 8 can generate proofs of many different types using the J-rule.
One only has to give the type in a certain form.
For some of the proofs above one can use the program below:

One can type in types similar to the following:

• (x = y) > (y = x)

• Pi_(x, y : A)(x = y) > (y = z) > (x = z)

• p = p(dot)refl_y

• p = refl_x(dot)p

• (p)−1(dot)p = refl_y

• p(dot)(p)−1 = refl_x

• (p−1)−1 = p

• Pi_(ab, c)(ab = c) > p = refl_c(dot)refl_ab

• Pi_(ab, c : Z)(ab = c) > p = refl_c(dot)refl_ab

29

• Pi_(v, w)(v = w) = (w = v)

The program uses string manipulation. When using strings C++ takes the
input as a sequence of characters and saves every character on a byte in the same
order, directly behind each other and safes an "end command" at the following
byte.

The strings in this code are to represent types in a way a mathematician
would write them down. So the relation between the program and type theory
lays in the text representation.

In the program the input it saved at the string type and at the string
simpletype. The first is just to remember the input, the second is used to
construct an inhabitant. The program checks whether the input starts with
Pi_(, if yes the program assumes that it starts with Pi_(..., ... : ...) If this
start is assumed, the characters between "(" and "," are saved as the string
x1. The characters between "," and ":" are saved as the string x2 and the
characters between ":" and ")" is saved at the string A. The start will be
deleted from simpletype. Now the program checks whether sympletype starts
with (x1 = x2) > or not, if yes (x1 = x2) > is deleted from the beginning
of simpletype. Now simpletype represents the type to which U refers to in
C :

∏
x,y:A(x =A y)→ U .

If any of this fails the program tells that an error occured.
If the program does not assume this start. It safes x1 = x, x2 = y and A = A.
x1 and x2 are to represent the variables used in the type. It would be a bad
idea to type in Pi_(a, b, c : A) as b, c would become the name of the second
variable. A is to represent the type inhabited by x1 and x2. The letter p refers
to a possible proof that the types represented by x1 and x2 are equal.
The program gives as first output the type which inhabitans is to proof.
As it suffices to consider the case of reflexifity, the string part of simpletype
which is equal to x2 is now replaced by the string x1. Than the letter p in
simpletype is replaced by the string refl_x1. After that compositions of refl_x1
and its inverse are replaced by refl_x1. This is equal to the contraction of the
path between equal points to a constant one. simletype is now simplified and
represents only the case that the two variables are equal and the path is reflex-
ifity.
Now the program tries to represent a function that maps the first variable so
that the j-rule can be applied.
remember:
If there is

C :
∏
x,y:A

(x =A y)→ U

c :
∏
x:A

C(x, x, reflx)

than, there exists
f :

∏
x,y:A

∏
p:x=Ay

C(x, y, p)

f(x, x, reflx) :≡ c(x).

30

To this point simpletype represents what C(x, x, reflx) refers to in the formula
above.
Now the program gains the information whether there is a character right in the
middle of simpletype by counting the characters of simpletype and checking if
the number is even or odd. If there is a character in the middle, the integer m
will refer to its position within the string. Lets call this character [m]
If [m] is "=", than the program checks if the right side of [m] is identical to the
left side. If yes, the program defines a function via text output, which maps a
variable to a constant path between the types represented by the right and the
left side of [m].
If [m] is ">", than the program checks if the right side of [m] is identical to the
left side. If yes, the program defines a function via text output, which maps a
variable to an identity function which maps the type represented by the right
side of [m] to the type represented by the left side of [m].
If any of that fail, the program tells that an error occured. If no error occured
The J-rule can be applied. The program, if it reaches this point, gives as last
output:
"J-rule gives a function which existence is a proof for the type type"
type was the input made to the program at the very beginning.
One could say the program tries to write a proof. If the program was successful,
the output of the program is a complete text based proof.

31

32

7 Identity systems
At the very end of this essay I want to say something about the homotopical
few of identity types.

Now we interpret a path p : a =A b as a continuous function between the to
points a, b of the type A. Even though the constructor of identity types only
enables us to construct the constant path reflx for some type x, we can’t say
anymore that all path are equal to a constant one.

Definition 9 A type A is contractible if it exists a point a : A such that a = x
is inhabited for all x : A.

isContr(A) :
∑
a:A

∏
x:A

a =A x

We first describe the identity Type with the j-Rule, which is now called
based path induction as we do homotopy. The identity Type is now regarded
as a Family P : A→ U . We can deduce following results.

Definition 10 For a0 : A

• A pointed predicate over (A, a0) is a family R : A → U with a point
r0 : R(a0).

• Let (R, r0) and (S, s0) be pointed predicates. A family

g :
∏
b:A

R(b)→ S(b)

is pointed if g(a0, r0) = s0.

ppmap(R,S) :≡
∑

g:
∏

b:A R(b)→S(b)

(g(a0, r0) = s0)

• Let (R, r0) be a pointed predicate. If for all families

D :
∏
b:A

R(b)→ U

and d : D(a0, r0), it exists a function

f :
∏
b:A

∏
r:R(b)

D(b, r)

with f(a0, r0) = d than (R, r0) is an identity system.

Theorem 5 For the pointed predicat (R, r0), the following are equivalent:

(i) (R, r0) is an identity system at a0.

(ii) For any pointed predicate (S, s0), the type ppmap(R,S) is contractible.

33

(iii) For any b : A, the function

transport(−, r0) : (a0 =A b)→ R(b)

is an equivalence.

(iv) The type
∑

b:AR(b) is contractible.

(i) ⇒ (ii):
Let (S, s0) be a pointed predicat and define D(b, r) :≡ S(b) and d :≡ s0 :
S(a0) ≡ D(a0, r0). Then we have

f :
∏
b:A

R(b)→ S(b)

with f(a0, r0) = s0. This means ppmap(R,S) is inhabited.
Let (f, fr), (g, gr) : ppmap(R,S).
Define

D(b, r) :≡ (f(b, r) = g(b, r))

and d : f(a0, r0) = s0 = g(a0, r0).
Now (i) gives a function

h :
∏
b:A

∏
r:R(b)

D(b, r)

h :
∏
b:A

∏
r:R(b)

(f(b, r) = g(b, r))

such that h(a0, r0) = d. (f, fr) = (g, gr) holds and ppmap(R,S) is contractible.

(ii) ⇒ (iii):
Define S(b) :≡ (a0 = b) with s0 :≡ refla0

: S(a0). Then (S, s0) is a pointed
predicat and

λb.λp.transportR(p, r) :
∏
b:A

S(b)→ R(b)

is a pointed family of maps from R to S. This means ppmap(S,R) is inhabited.
ppmap(R,S) is inhabited by (ii). There fore we have a pointed family from R
to S.
One composition is a pointed family from R to R which is equal to identity as
ppmap(R,R) is contractible by (ii). Then (iii) holds.

(iii) ⇒ (iv):
Define

f :≡ λb.transport(−, r0) :
∏
b:A

(a0 =A b)→ R(b)

which is an equivalence. Further define

total(f) :≡ λw.(pr1w, f(pr1w,pr2w)) :
∑
b:A

(a0 =A b)→
∑
b:A

R(b)

34

which again is an equivalence.

fibtotal(f)((x, v)) ≡
∑

w:
∑

x:A(a0=Ax)

(pr1w, f(pr1w,pr2w)) = (x, v)

'
∑
a:A

∑
u:(a0=Aa)

(a, f(a, u)) = (x, v)

'
∑
a:A

∑
u:(a0=Aa)

∑
p:a=x

p∗(f(a, u)) = v

'
∑
a:A

∑
p:a=x

∑
u:(a0=Aa)

p∗(f(a, u)) = v

'
∑

u:(a0=Aa)

f(x, u) = v

≡ fibf(x)(v)

As fibtotal(f)((x, v)) and fibf(x)(v) are equal, fibf(x) is an equivalence.
As

∑
b:A(a0 =A b) is contractible by M for all b : A, we have that fibf(x) is

contractable.
Again because of the equivalence between fibtotal(f)(x, v) and fibf (x)(v) we have
that fibtotal(f)(w) is contractible. Therefore

∑
b:AR(b) is contractable.

(iv) ⇒ (i):
When we define D′ :≡ λw.D(pr1w,pr2w) we can express any

D :
∏
b:A

R(b)→ U

as a family
D′ : (

∑
b:A

R(b))→ U.

As
∑

b:AR(b) is contractible, we have a

p :
∏

u:
∑

b:A R(b)

(a0, r0) = u.

Define
f(u) :≡ transportD

′
(p(u), d).

We have
f :

∏
u:
∑

b:A R(b)

D′(u)

which is equivalent to
f :

∏
b:A

∏
r:R(b)

D(b, r)

and
f(a0, r0) = transportD

′
(p((a0, r0), d) = d.

So (I) holds.

Now we describe the identity Type with the J-Rule, which is now called path
induction. The identity Type is now regarded as a Family P : A→ A→ U . We
can deduce following results.

35

Definition 11 An identity system over a type A is a family

R : A→ A→ U

with a function r0 :
∏

a:AR(a, a) such that for any type family

D :
∏
a,b:A

R(a, b)→ U

and d :
∏

a:AD(a, a, r0(a)), there exists a function

f :
∏
a,b:A

∏
r:R(b)

D(a, b, r)

such that f(a, a, r0(a)) = d(a) for all a : A.

Theorem 6 For R : A → A → U with r0 :
∏

a:AR(a, a), the following are
equivalent:

(i) (R, r0) is an identity system over A.

(ii) For all a0 : A, the pointed predicate (R(a0), r0(a0)) is an identity system
at a0.

(iii) For any S : A→ A→ U and s0 :
∏

a:A S(a, a), type∑
g:
∏

a,b:A R(a,b)→S(a,b)

∏
a:A

g(a, a, r0(a)) = s0(a)

is contractible.

(iv) For any a, b : A, the function

transport(−, r0(a)) : (a =A b)→ R(a, b)

is an equivalence.

(v) For any a : A, the type
∑

b:AR(a, b) is contractible.

(i) ⇒ (ii) Fix any a0 : A at R : A→ A→ U to get a family of functions

Ra0 : A→ U

and at
r0 :

∏
a:A

R(a, a) ≡
∏
a:A

Ra(a).

to get a function
r0(a0) : Ra0

(a0).

Than (Ra0
, r0(a0)) is a pointed predicate.

For all a : A take any family

Da :
∏
b:A

Ra(b)→ U

36

and da : Da(a0, r0(a0)).

Define R :≡ λa.Ra and r0 :≡ λa.r0(a0).

Define D :≡ λa.Da and r0 :≡ λa.r0(a0).

Than (i) gives an
f :

∏
a,b:A

∏
r:R(b)

D(a, b, r)

such that f(a, a, r0(a)) = d(a) for all a : A.
Fix any a0 : A at f to get

fa0 :
∏
b:A

∏
r:R(b)

D(a0, b, r) ≡
∏
b:A

∏
r:R(b)

Da0(b, r)

such that fa0(a0, r0(a0)) = d(a) which is equal to
fa0

(a0, r0(a0)) = da.

(ii) ⇒ (iii) We already know that for all a0 : A and any pointed predicate
(Sa0

, s0(a0)) and a family of functions ga0
:
∏

b:ARa0
(b) → Sa0

(b) the type
ppmap(Ra0 , Sa0) which can be written as∑

ga0
:
∏

b:A Ra0
(b)→Sa0

(b)

(ga0
(a0, ro(a0)) = s0(a0))

is contractable.

Let pa0
: ppmap(Ra0

, Sa0
). Define p :≡ λa.pa and g :≡ λa.ga.

Than
p :

∏
a:A

∑
ga0 :

∏
b:A Ra0 (b)→Sa0 (b)

(ga0
(a0, ro(a0)) = s0(a0)),

which is equal to ∑
g:
∏

a,b:A R(a,b)→S(a,b)

∏
a:A

(g(a)(a, ro(a)) = s0(a)),

which is equal to ∑
g:
∏

a,b:A R(a,b)→S(a,b)

∏
a:A

(g(a, a, ro(a)) = s0(a)).

As every pa is unique up to equality, p is unique up to equality and (III) holds.

(iii) ⇒ (iv) Define S(a, b) :≡ (a =A b) and s0 :≡
∏

a:A refla :
∏

a:A S(a, a)
and

h(r0) :≡ λa.λb.λp.Transport(p, r0) :
∏
a,b:A

S(a, b)→ R(a, b).

It holds that
h(r0)(a0, a0, s0(a0)) = r0(a0).

37

Now we have ∑
h(r0):

∏
a,b:A S(a,b)→R(a,b)

∏
a:A

(h(r0)(a, a, s0(a)) = r0(a))

is inhabited. We also know that there exists a

k :
∑

g:
∏

a,b:A R(a,b)→S(a,b)

∏
a:A

(g(a, a, ro(a)) = s0(a)).

The composition h(r0) • k is a function of the type∑
i:
∏

a,b:A R(a,b)→R(a,b)

∏
a:A

(i(a, a, ro(a)) = r0(a))

which we know to be contractable and inhabited by the identity function. There-
fore h(r0) is equal to identity. Than for all a, b : A the function h(r0)(a, b, p) is
equal to identity or with other words

Transport(−, r0(a)) : S(a, b)→ R(a, b)

is an equivalence.

(iv) ⇒ (v) Fix a : A, than for any b : A the type

Transport(−, r0(a)) : Sa(b)→ Ra(b)

is an equivalence and we get from 5 that the type
∑

b:ARa(b) is contractable.
So for any a : A the type

∑
b:AR(a, b) is contractable.

(v) ⇒ (i) For any family

D :
∏
a,b:A

R(a, b)→ U

and d :
∏

a:AD(a, a, r0(a))
we have for any a : A the family

Da :≡ D(a) :
∏
b:A

Ra(b)→ U

and da :≡ d(a) : D(a, a, r0(a)).
As

∑
b:ARa(b) is contractable for any a : A, it follows from 5 that (Ra, r0(a)) is

an identity system at a : A for any a : A.
So for any a : A there exists a function

fa :
∏
b:A

∏
r:Ra(b)

Da(b, r)

such that fa(a, r0(a)) = da.
Define

f :≡ λa.fa :
∏
a,b:A

∏
r:R(a,b)

D(a, b, r).

38

For all a : A
f(a, a, r0(a)) = d(a)

So (R, r0) is an identity system over A.

After [5] Chapter 5; p.174 the univalence axiom says that a type

(− ' −) : U → U → U

with id :
∏

A:U (A ' A) satisfies Theorem 6(IV).
Therefore it is equivalent to the corresponding version of 6(I). Which is:
For any

D :
∏

A,B:U

(a ' B)→ U

and d :
∏

A:U D(A,A, idA), there exists a function

f :
∏

A,B:U

∏
e:A'B

D(A,B, e)

such that f(A,A, idA) = d(A) for all A : U .

Further [5] Chapter 5; p.174 states that for any B : A→ U , the type family

(− ∼ −) : (
∏
a:A

B(a))→ (
∏
a:A

B(a))→ U

with λf.λa.reflf (a) satisfies 6(IV).
So it is equivalent to the corresponding version of 6(I). Which is:
For any

D :
∏

f,g:
∏

a:A B(a)

(f ∼ g)→ U

and d :
∏

f :
∏

a:A B(a)D(f, f, λx.reflf(x)), there exists a function

k :
∏

f,g:
∏

a:A B(a)

∏
h:f∼g

D(f, g, h)

such that k(f, f, λx.reflf(x)) = d(f) for all f.

39

8 Appendix
Save the code in a file type with the ending ”.cpp”. Open the file with an
editor ("cd.file address/" than "c++ file name.cpp") and start the program
("./a.out").

using namespace std;

#include <iostream>
#include <stdlib.h>
#include <string>

int main(){

int fail=0;
int l, lx1, lx2;
std::string A;
std::string type;

std::string simpletype;
std::string x1, x2, help, intro;
std::string c, f;

std::cout << "type:";

std::cin >> type; // The input is saved as string

simpletype = type;
l=type.length();
x1 = type;

// in the following "Pi_(...,...:...)"
if(simpletype[0]==’P’ && simpletype[1]==’i’

&& simpletype[2]==’_’&& simpletype[3]==’(’){
std::size_t found = simpletype.find(’)’);
if(found == std::string::npos) fail=5; //error 5
else{
simpletype.erase(0,found+1);
x1.erase(found,l-found);
x1.erase(0,4);
found = x1.find(’,’);
if(found!=std::string::npos){

x2=x1;
l=x1.length();
x1.erase(found,l-found); //x1 is the string of the name

//of the first variable.
x2.erase(0,found+1);
l=x2.length();
found= x2.find(’:’);
if(found!=std::string::npos) {

A=x2;

40

A.erase(0,found+1); //A is a string for the type of the
//two variables.

x2.erase(found,l-found); //x2 is the string of the name
//of the second variable.

}

}
}
if(x2.length()!=0) {

intro=")>";
intro.insert(0,x2);
intro.insert(0,"=");
intro.insert(0,x1);
intro.insert(0,"(");
found = simpletype.find(intro);
if(found==0){

simpletype.erase(found,intro.length());
}

}
}
else {

A="A";
x1="x";
x2="y";
intro="(x,y)>";

}
if(A.length()==0) A="A";

if(simpletype[0]==’(’){
std::size_t found=simpletype.find(")");
std::size_t lsimpletype=simpletype.length();
if(found == lsimpletype-1){

simpletype.erase(lsimpletype-1,1);
simpletype.erase(0,1);

}
}

// the string simpletype correspond to a type.
// We want to show that this type is inhabited.

std::size_t lintro=intro.length();
help=intro;
help.erase(lintro-1,1);
std::cout << "C:Pi("<< x1 <<","<< x2 <<":"<<A<<")"<< help <<" > U\n";
std::cout << "C("<<x1<<","<<x2<<",p):= " << simpletype <<"\n";
// this output represents a family of functions.
// In the following changes are made to simpletype such that
// it represents the output of the family of functions
// depending two times on the first variable and reflexivity
// as proof that the variable is equal to itself.

41

l = simpletype.length();
lx1= x1.length();
lx2= x2.length();

// The second variable is replaced by the first
for(int i=0; i!=l; ++i) {

std::size_t found=simpletype.find(x2);
if(found!=std::string::npos){

simpletype.erase(found,lx2);
simpletype.insert(found,x1); // The second variable is

//replaced by the first.
l=simpletype.length();

}
}

help=x1;
help.insert(0,"refl_");

for(int i=0; i!=l; ++i) {
if(simpletype[i]==’p’) { // the character p is the

// presetting for a proof of
// first variable equals the second.

simpletype.erase (i,1),
simpletype.insert(i,help), // p is replaced by reflexivity.
l = simpletype.length();

}
}
std::string refl=help;
std::cout << "C(" << x1 << "," << x1 << "," << refl << ")=" << simpletype <<"\n";
// This output represents the family of functions which depend
// two times on the first variable and reflexivity.

// As refl_x1^-1 equals refl_x1 it can be replaced.
std::string toreplace2="^-1";
toreplace2.insert(0,refl);
std::size_t lrefl=refl.length();
for(int i=0; i<l; ++i) {
std::size_t found = simpletype.find(toreplace2);
if (found==std::string::npos) break;
else {

// replace refl_x1^-1 in simpletype by refl_x1.
simpletype.erase (found,lrefl+3),
simpletype.insert(found,refl),
i+=lrefl, l=simpletype.length();

}
}

// same step as before for different notation
// (refl_x1)^-1 = refl_x1

std::string toreplace=")^-1";
toreplace.insert(0,refl);

42

toreplace.insert(0,"(");

for(int i=0; i<l; ++i) {
std::size_t found = simpletype.find(toreplace);
if (found==std::string::npos) break;
else {

// lösche (refl_x1)^-1 und setze refl_x1 ein
simpletype.erase (found,lrefl+5),
simpletype.insert(found,refl),
i+=lrefl-1, l=simpletype.length();

}
}

std::cout << "C(" << x1 << "," << x1 << "," << refl <<")="<< simpletype << "\n";

// As refl_x1(dot)refl_x1 equals refl_x1 it can be
// replaced.

std::string toreplacerefl=refl;
toreplacerefl.insert(0,"(dot)");
toreplacerefl.insert(0,refl);

for(int i=0; i<l; ++i) {
std::size_t found = simpletype.find(toreplacerefl);
if (found==std::string::npos) break;
else {

// replace refl_x1(dot)refl_x1 by refl_x1 in simpletype.
simpletype.erase (found,lrefl+lrefl+5),
simpletype.insert(found,refl),
l=simpletype.length();

}
}

std::cout << "C(" << x1 << "," << x1 << "," << refl <<")="<< simpletype << "\n";

// To apply the J-rule one needs a function which maps
// the first variable to the type represented by simpletype.
// The code tries to gain a representation of that function.
// First by representing a function which maps to reflexivity
// and if it fails by representing an identity function.

int m, z, found;
std::string start=simpletype;
std::string final;
z=start.length();
if (z%2!=0){ //z is even
m=(z-1)/2;
if (start[m]==’=’){

start.erase(m,z+1-m); //string till =
final=start;
final.insert(0,"=");

43

final.insert(0,start);
if (final==simpletype)
std::cout << "c=lamda "<< x1 << ".refl_{" << start << "} :

Pi_("<< x1 << ":"<< A << ") "<< simpletype <<"\n";
else fail=2;

}
if (start[m]==’>’){

start.erase(m,z+1-m); //string bis >
final=start;
final.insert(0,">");
final.insert(0,start);
if (final==simpletype)
std::cout << "c=lamda " << x1 << ".id_{" << start << "} :

Pi_(" << x1 << ":" << A<< ") "<< simpletype <<"\n";
else fail=2;

}
}
else fail=1;
if (fail!=0) std::cout << "error="<< fail <<"\n" ;
else std::cout << "J-rule gives a function which existence is a proof for

the type " << type <<"\n";
return 0;}

As this program gives the proof with steps, it is easy to check if the program
did well.

for "a→ b" type "a>b"; for "p • p" use "p(dot)p";

44

References
[1] T. Coquand: "A remark on singleton types", manuscript, 2014.

[2] J. Ladyman and Stuart Presnell: "Identity in Homotopy Type Theory,
Part I: The Justification of Path Induction", Philosophia Mathematica
(III) Vol. 23, No.3, 2015, 386-406.

[3] C. Paulin-Mohring: "Inductive Definitions in the System Coq - Rules and
Properties", in M. Bezem, J. F. Groote (Eds.) Proceedings of TLCA, LNM
664, Springer, 1993.

[4] I. Petrakis: "A Yoneda lemma-formulation of the univalence axiom",
preprint, 2018.

[5] The Univalent Foundations Program: Homotopy Type Theory: Univa-
lent Foundation of Mathematics, Institute for Advanced Study, Princeton,
2013.

[6] P. Walsh: Justifying Path Induction, Master’s thesis, CMU, 2015.

45

