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1 Order Statistics

Let X;i,...,X, be LLILD. random variables with a continuous distribution.
The order statistic of X7,..., X, is the ordered sample:

X(l) < X(g) < ... < X(n),
Here

X(l) = min (Xl, ceuy Xn)

X(n) = Imax (Xl, Ce ,Xn)

and
X = kth smallest of Xy,..., X, .

The variable X is called the kth order variable. The following theorem has
been proved in, e.g., Allan Gut: An Intermediate Course in Probability. 2nd
Ed., Springer Verlag, Dordrecht e.t.c., 2009, ch. 4.3., theorem 3.1..

Theorem 1.1 Assume that Xi,..., X, are L.L1.D. random variables with the
density f. The joint density of the order statistic is

n'szlf(?/k) ifyp <o < ... <Yn,
0 elsewhere.
(1.1)

fX(l),X(Q) ..... X(n) (yl, oo ,yn> =



2 Exponential Order Variables

Let Xi,...,X, be LLD. random variables with distribution Exp(#). Thus
the density function of each X; is

Le=2/0  if £ >0
. o 96 I r ~
J(:0) = { 0 it z < 0. (22)

We are interested in the differences of the order variables
X(l),X(i) _X(i—l)a 2':2,...,71.

Note that we may consider Xy = X1y — X(g), it X9y = 0. We shall next
show the following theorem.

Theorem 2.1 Assume that Xi,..., X, are LLI.D. random variables under
Exp(1). Then

(a)
X1 ek L X X ek L
X - i) T A (i— X — |
w € Bxp { — ), X = Xy € Exp | == —
(b) Xy, X5y —X(i—1y fori = 2,...,n, are n independent random variables.
Proof: We define Y; for i =1,...,n by
Yi=Xu, Yi=Xu— Xe-

Then we introduce

1 0 0 0
-1 1 0 . 00
Al 0o —11 00 (2.3)
0 0 0 . -1 1
so that if
Yy X
Y, X(2)



we have
Y = AX.

It is clear that the inverse matrix A~! exists, because we can uniquely find
X from Y by
Xoy=Y1, Xup=Yi+Yii+...+Y.

We write these lastmentioned equalities in matrix form by

X=A"'Y.

Then we have the well known change of variable formula (se Gut work cited
chap I)

1
e (v) = fx (A7) [T (2.4)
But now we evoke (1.1) to get
Ix (A_IY) =nlf(y)fptuye) - flntyat.. +yn), (2.5)

since y; <Y1+ Y2 < ... <1+ Y2+ ... +yn. As f(z) = e, we get
F@) i +u) - [ +yst.. +yn) =e Ve Wl omrttedum)
and rearrange and use y; = x(1) and y; = T — T(i—1),
— e Wip—(n=1)y2 || o=2Yn—1,"Yn
= e W~ DER—TW) L o= (@m =T @m-)

Hence, if we insert the last result in (2.4) and distribute the factors in n! =
n(n—1)---3-2-1 into the product of exponentials we get

— ne ™0 (n — e DeE@)—zw) . .. o= (@n) —2n-1) 2.6
e (y) = ne=0(n — 1)e ‘ A 9

Since A in (2.3) is a triangular matrix, its determinant equals the product of
its diagonal terms, c.f. L. Rade and B. Westergren: Mathematics Handbook
for Science and Engineering, Studneetlitteratur, Lund, 2009, p. 93. Hence
from (2.3) we get det A = 1. In other words, we have obtained

fX(l),X(Q)—X(l),...,X(n)—X(nfl) (x(1)7 x(2) - x(l)? s >x(n) - x(n))



— ne ") (n _ 1)6—("—1)(96(2) —z)) ... 2 2@ (n-1)"T(n-2)) = (F(n)~T(n-1)) (2.7)

But, checking against (2.2), ne™"*(® is the probabilty density of Exp (%), (n—
1)e~ (V@ =2m) is nothing but the probability density of Exp (-2), and so
on, the generic factor in the product in (2.7) being (n+1—i)e~ " F1=DE0H ~26-1),
which is the density of Exp (-=).

Hence we have that the product in (2.7) is a product of the respective
probability densities for the variables X(;) € Exp (%) and for X — Xq-y) €
Exp (= +11_Z.). Thus we have established the cases (a) and (b) in the theorem
as claimed. .
As is well known, there is also a more intuitively appealing way of seeing this

result. First one shows that

1
Xy =min (Xy,...,X,) € Exp (—)
n

(which is also seen above), if Xj,..., X, are L.L.D. random variables under
Exp(1). Then one can argue by independence and the memorylessness pro-
perty of the exponential distribution that X — X(;_;) is the minimum of
lifetimes of n + 1 — ¢ independent Exp(1) -distributed random variables.



