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1 Order Statistics

Let X1, . . . , Xn be I.I.D. random variables with a continuous distribution.
The order statistic of X1, . . . , Xn is the ordered sample:

X(1) < X(2) < . . . < X(n),

Here
X(1) = min (X1, . . . , Xn)

X(n) = max (X1, . . . , Xn)

and
X(k) = kth smallest of X1, . . . , Xn .

The variable X(k) is called the kth order variable. The following theorem has
been proved in, e.g., Allan Gut: An Intermediate Course in Probability. 2nd

Ed., Springer Verlag, Dordrecht e.t.c., 2009, ch. 4.3., theorem 3.1..

Theorem 1.1 Assume that X1, . . . , Xn are I.I.D. random variables with the
density f . The joint density of the order statistic is

fX(1),X(2),...,X(n)
(y1, . . . , yn) =

{

n!
∏n

k=1 f (yk) if y1 < y2 < . . . < yn,

0 elsewhere.
(1.1)
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2 Exponential Order Variables

Let X1, . . . , Xn be I.I.D. random variables with distribution Exp(θ). Thus
the density function of each Xi is

f(x; θ) =

{

1
θ
e−x/θ if x ≥ 0

0 if x < 0.
(2.2)

We are interested in the differences of the order variables

X(1), X(i) − X(i−1), i = 2, . . . , n.

Note that we may consider X(1) = X(1) − X(0), if X(0) = 0. We shall next
show the following theorem.

Theorem 2.1 Assume that X1, . . . , Xn are I.I.D. random variables under
Exp(1). Then

(a)

X(1) ∈ Exp

(

1

n

)

, X(i) − X(i−1) ∈ Exp

(

1

n + 1 − i

)

,

(b) X(1), X(i)−X(i−1) for i = 2, . . . , n, are n independent random variables.

Proof: We define Yi for i = 1, . . . , n by

Y1 = X(1), Yi = X(i) − X(i−1).

Then we introduce

A =















1 0 0 . . . 0 0
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . −1 1















. (2.3)

so that if

Y =















Y1

Y2

Y3
...

Yn















,X =















X(1)

X(2)

X(3)
...

X(n)















,
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we have
Y = AX.

It is clear that the inverse matrix A−1 exists, because we can uniquely find
X from Y by

X(1) = Y1, X(i) = Yi + Yi−1 + . . . + Y1.

We write these lastmentioned equalities in matrix form by

X = A−1Y.

Then we have the well known change of variable formula (se Gut work cited
chap I)

fY (y) = fX

(

A−1y
) 1

| detA|
. (2.4)

But now we evoke (1.1) to get

fX

(

A−1y
)

= n!f (y1) f (y1 + y2) · · · f (y1 + y2 + . . . + yn) , (2.5)

since y1 < y1 + y2 < . . . < y1 + y2 + . . . + yn. As f(x) = e−x, we get

f (y1) f (y1 + y2) · · · f (y1 + y2 + . . . + yn) = e−y1e−(y1+y2) · · · e−(y1+y2+...+yn)

and rearrange and use y1 = x(1) and yi = x(i) − x(i−1),

= e−ny1e−(n−1)y2 · · · e−2yn−1e−yn

= e−nx(1)e−(n−1)(x(2)−x(1)) · · · e−(x(n)−x(n−1)).

Hence, if we insert the last result in (2.4) and distribute the factors in n! =
n(n − 1) · · ·3 · 2 · 1 into the product of exponentials we get

fY (y) = ne−nx(1)(n − 1)e−(n−1)(x(2)−x(1)) · · · e−(x(n)−x(n−1))
1

| detA|
(2.6)

Since A in (2.3) is a triangular matrix, its determinant equals the product of
its diagonal terms, c.f. L. R̊ade and B. Westergren: Mathematics Handbook

for Science and Engineering, Studneetlitteratur, Lund, 2009, p. 93. Hence
from (2.3) we get detA = 1. In other words, we have obtained

fX(1),X(2)−X(1),...,X(n)−X(n−1)

(

x(1), x(2) − x(1), . . . , x(n) − x(n)

)
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= ne−nx(1)(n − 1)e−(n−1)(x(2)−x(1)) · · · 2e−2(x(n−1)−x(n−2))e−(x(n)−x(n−1)). (2.7)

But, checking against (2.2), ne−nx(1) is the probabilty density of Exp
(

1
n

)

, (n−

1)e−(n−1)(x(2)−x(1)) is nothing but the probability density of Exp
(

1
n−1

)

, and so

on, the generic factor in the product in (2.7) being (n+1−i)e−(n+1−i)(x(i)−x(i−1)),
which is the density of Exp

(

1
n+1−i

)

.
Hence we have that the product in (2.7) is a product of the respective

probability densities for the variables X(1) ∈ Exp
(

1
n

)

and for X(i) −X(i−1) ∈
Exp

(

1
n+1−i

)

. Thus we have established the cases (a) and (b) in the theorem
as claimed.
As is well known, there is also a more intuitively appealing way of seeing this
result. First one shows that

X(1) = min (X1, . . . , Xn) ∈ Exp

(

1

n

)

(which is also seen above), if X1, . . . , Xn are I.I.D. random variables under
Exp(1). Then one can argue by independence and the memorylessness pro-
perty of the exponential distribution that X(i) − X(i−1) is the minimum of
lifetimes of n + 1 − i independent Exp(1) -distributed random variables.
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