
Kepler’s Laws of Planetary Motion and
Newton’s Law of Universal Gravitation

Abstract

These notes were written with those students in mind having taken (or are taking) AP Calculus and AP
Physics. Newton’s law of universal gravitation is introduced in pretty much the same way as it is in AP
Physics, except that the ensuing discussion relies heavily on differential and integral calculus. Through this
treatment the equation of motion is obtained for an orbiting body and the three possible trajectories (elliptical,
parabolic, and hyperbolic) are classified in terms of the relevant constants. At the end is a collection of guided
exercises designed to deepen the reader’s understanding of the interplay between between the mathematics
and the physics, as well as to provide a useful review of analytical geometry.

Equations of Planetary Motion
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Figure 1: Heliocentric diagram

In this short discussion I would like to
show how Newton’s law of univer-
sal gravitation can be applied to de-
riving Keplar’s laws of planetary
motion. Newton’s law of gravitation
says that the force on a planet of mass
m exerted by another planet (or star)
of mass M is given by the familiar
inverse-square law, and has magnitude

F =
GMm

r2
,

where r is the distance separating the
two masses (measured from their cen-
ters). In the above, G is the universal gravitational constant, whose measured
value is approximately

G = 6.67× 10−11 N ·m2/kg2.

As depicted in the above figure, the sun is at the origin (the “heliocentric”

point of view), and
−→
R is the position vector of the orbiting planet. The vector

−→
r is the unit vector in the direction of

−→
R . Since

−→
r · −→r = 1, the product

rule for differentiation shows that
−→
r ·
(
d

dt

−→
r

)
= 0; therefore if

−→
s is the unit

vector in the dirction of
d

dt

−→
r , it follows that

−→
r · −→s = 0, as well. All of this is

depicted in Figure 1 above. In fact, from this picture, we see that
−→
r and

−→
s are

given explicitly as

−→
r = (cos θ, sin θ),

−→
s = (− sin θ, cos θ),



from which it follows that

d

dt

−→
r =

dθ

dt

−→
s and that

d

dt

−→
s = −dθ

dt

−→
r .

The vector equation dictating the motion of of the orbiting planet is

−
(
GMm

r2

)
−→
r = m

d2

dt2

−→
R (1)

since the force on the planet is directed back towards the sun.

In order to compute
d2

dt2

−→
R explicitly, note first that the velocity vector is

given by

−→
v =

d

dt

−→
R=

d

dt

(
r· −→r

)
=
dr

dt

−→
r +r

(
d

dt

−→
r

)
=
dr

dt

−→
r +r

dθ

dt

−→
s (2)

The acceleration is the time derivative of Equation (2):

−→
a =

d

dt

−→
v =

d

dt

(
dr

dt

−→
r +r

dθ

dt

−→
s

)
=

d2r

dt2
−→
r +2

dr

dt

dθ

dt

−→
s +r

d2θ

dt2
−→
s −r

(
dθ

dt

)2
−→
r

=

(
d2r

dt2
− r

(
dθ

dt

)2
)
−→
r +

(
2
dr

dt

dθ

dt
+ r

d2θ

dt2

)
−→
s

However, from equation (1) we see that the acceleration vector is given by

−→
a = −GM

r2
−→
r

from which we conclude that

d2r

dt2
− r

(
dθ

dt

)2

= −GM
r2

(3)

and

2
dr

dt

dθ

dt
+ r

d2θ

dt2
= 0. (4)

Equations (3) and (4) will be put to good use momentarily.



Keplar’s Second Law
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Figure 2: Keplar’s Second Law

Keplar’s second law says simply this:
the area swept out by the planet’s or-
bit between times t1 and t2, versus the
area of the planet’s orbit swept out be-
tween times t3 and t4 are equal pro-
vided that t2 − t1 = t4 − t3. In other
words, equal areas are swept out in
equal times. Referring to Figure 2, and
recalling how to compute areas in polar
coordinates, we get

Area swept between times t1 and t2 =
1

2

∫ θ2

θ1

r2 dθ =
1

2

∫ t2

t1

r2
dθ

dt
dt.

Note, however, that

d

dt

(
r2
dθ

dt

)
= 2r

dr

dt

dθ

dt
+ r2

d2θ

dt
= r · 0 = 0,

where we have used Equation (4), above. The upshot is that the integrand r2
dθ

dt
is a constant—call it L—from which we conclude that

Area swept between times t1 and t2 =
1

2

∫ t2

t1

r2
dθ

dt
dt =

1

2
L(t2 − t1).

Therefore, if t4 − t3 = t2 − t1 the areas will be the same! This proves Kepler’s
Second Law.

Keplar’s First Law

Keplar’s first law says that planets follow an eliptical orbit with the Sun at one of
the foci. This is a bit trickier to prove than the second law, but we can proceed
as follows. Recall from the above discussion that the quantity

L = r2
dθ

dt

is a constant; define the new constant

P =
L2

GM
,



and define the (dimensionless) variable

u =
P

r
.

This says that
GM

r2
=
L2u2

P 3

and that
dθ

dt
=
L

r2
=
Lu2

P 2
.

We have, using the Chain Rule, that

dr

dt
=

d

dθ

(
P

u

)
dθ

dt
= −P

u2
dθ

dt

du

dθ
= −L

P

du

dθ
.

Differentiate again and obtain

d2r

dt2
=

d

dθ

(
dr

dt

)
dθ

dt
= −L

P

d2u

dθ2
dθ

dt
= −L

2u2

P 3

d2u

dθ2

Next, we substitute into Equation (3) and get

−L
2u2

P 3

d2u

dθ2
−
(
P

u

)(
Lu2

P 2

)2

= −L
2u2

P 3
.

Dividing by the common factor of −L
2u2

P 3
results in the inhomogeneous second-

order differential equation:
d2u

dθ2
+ u = 1.

The general solution of this has the form

u = u(θ) = 1 + e cos(θ − θ0),

where e and θ0 are constants which can be determined from the initial conditions.
In terms of the polar radius r, this becomes

r =
P

1 + e cos(θ − θ0)
, (5)

which gives a circle when e = 0, an ellipse when |e| < 0, a parabola when |e| = 1,
and a hyperbola when |e| > 1 (see Exercise 1, below). Note that the coordinate
system can be chosen so that θ0 = 0, (which puts the perihelion1 on the positive
x-axis) giving the equation of the form

r =
P

1 + e cos θ
, (6)

1The perihelion is the point of closest approach of the orbiting planet to the Sun.



from which Keplar’s first law follows.

Determining the Eccentricity
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Equation 1: r=a/(1+kcos(θ−φ))
Equation 2: x^2+y^2/3=.1Figure 3: Initial configuration

In this section we take a closer look
at Equation (5) and determine the ec-
centricity e in terms of the initial data.
We imagine a planet of mass M and
a nearby massive object—call it an
asteroid—which has mass m. As we
have seen, the trajectory of the as-
teroid is a conic section; we assume
a coordinate system which places the
planet at a focus. Assume that at time
t = 0 we measure the distance of the
asteroid to the plant to be r0 and that
the corresponding speed of the asteroid is v0. Assume that relative to our coordi-
nate system, the initial location of the asteroid corresponds to the angle θ(0) = α

and that the angle between the asteroid’s velocity vector and the position vector
is φ (as indicated) in Figure 3.

If we read Equation (5) at time t = 0, we get

r0 =
P

1 + e cos(α− θ0)
. (7)

It will be convenient to introduce the new constant p = P/r0, and so Equation
(7) implies that

1 =
p

1 + e cos(α− θ0)
,

which gives
1 + e cos(α− θ0) = p. (8)

Next, we differentiate Equation (5) with respect to t; noting the Chain Rule
and setting t = 0, this leads to

v0 cosφ =
dr

dt

∣∣∣
t=0

=
Pe sin(α− θ0)

[1 + e cos(α− θ0)]2
· dθ
dt

∣∣∣
t=0

=
ev0 sinφ sin(α− θ0)

p
.

Therefore,

cotφ =
e sin(α− θ0)

p
,



and so
e sin(α− θ0) = p cotφ. (9)

Applying Equations (8) and (9) leads immediately to

e2 = e2 cos2(α− θ0) + e2 sin2(α− θ0) = (p− 1)2 + p2 cot2 φ

which simplifies quickly to

e2 = p2 csc2 φ− 2p+ 1. (10)

From the above, we get a useful trichotomy for the eccentricity e:

Ellipse (e2 < 1): Equation (10) reduces in this case to

p2 csc2 φ− 2p+ 1 < 1 ⇐⇒
p csc2 φ < 2.

However, recall that

P =
L2

GM
, where L = r20

dθ

dt

∣∣∣
t=0

= r0v0 sinφ,

and so

p csc2 φ =
r0v

2
0

GM
.

That is to say, an elliptical orbit will occur precisely when

r0v
2
0 < 2GM. (11)

Parabola (e2 = 1): Similarly with the above, this will occur when

r0v
2
0 = 2GM. (12)

Hyperbola (e2 > 1): This is when

r0v
2
0 > 2GM. (13)

Exercise 1.

(a) Using the equations x = r cos θ, y = r sin θ, show that Equation (6) can
be expressed in cartesian coordinates as(

x+
Pe

1− e2

)2

+
y2

1− e2
=

P 2

(1− e2)2
, if e 6= 1,

and as
y2 + 2Px = P 2 if e = 1.

From this, conclude that one obtains an ellipse if e2 < 1, a parabola if e2 = 1,
and a hyperbola if e2 > 1.



(b) Given that e2 < 1, show that the semi-major axis of the ellipse has length
P/(1− e2) and the semi-minor axis has length P/

√
1− e2.

Exercise 2: Calculations of Eccentricities of Planetary Orbits about
the Sun

The Earth’s orbit
We itemize some estimates of the important constants:

• Distance at perihelion: r0 ≈ 1.471× 108 km.

• Linear velocity at perihelion2: v0 ≈ 30.29 km/sec.

• Universal gravitational constant: G ≈ 6.67× 10−11 N ·m2/kg2

• Mass of Sun: ≈ 1.99× 1030 kg.

Using Equation (10), compute the eccentricity of the Earth’s orbit about the
Sun.3

Mars’s orbit
The important constants are given below:

• Distance at perihelion: r0 ≈ 2.066× 108 km.

• Linear velocity at perihelion: v0 ≈ 26.50 km/sec.

Compute the eccentricity of Mars’s orbit about the Sun.4

Mercury’s orbit about Sun
The important constants are given below:

• Distance at perihelion: r0 ≈ 4.600× 107 km.

• Linear velocity at perihelion: v0 ≈ 58.98 km/sec.

Compute the eccentricity of Mars’s orbit about the Sun.5

2This is the point at which the Earth is closest to the Sun.
3You should get e ≈ 0.0167, showing that the Earth’s orbit is very close to a perfect circle.
4Here, e ≈ 0.0935, showing that the Mars’s orbit is more elliptical that that of the Earth.
5Here, e ≈ 0.2056, making Mercury’s orbit the most elliptical among the planets. (Actually Pluto’s orbit is more elliptical,

with e ≈ 0.248, but in 2006 Pluto was downgraded from a “planet” to a “dwarf planet.”)



Exercise 3: Minimum and Maximum Orbital Speeds

In this guided exercise you’ll show that for the orbital model given by Equation
(5), the body’s maximum speed occurs precisely at its perigee (point of closest
approach to the central mass), and when the orbit is elliptical, its minimum speed
occurs at its apogee (point of maximum distance from the central mass).

Step 1. Using Equation (2), show that the speed is given by

v2 =

(
dr

dt

)2

+ r2
(
dθ

dt

)2

.

Step 2. Use Equation (5) to write

r =
P

1 + e cos θ
.

Also, you know that r2
dθ

dt
is a constant, which we earlier denoted by L:

dθ

dt
=
L

r2
.

Combine this to get

v2 =

(
L2

P 2

)
[e2 sin2 θ + (1 + e cos θ)2].

Step 3. Show that

2v
dv

dt
= constant× sin θ

r2
.

Step 4. Finish the proof that the maximum speed occurs at the perigee and the
minimum speed occurs at the apogee (if any).6

Exercise 4: The Moon’s Orbit about the Earth

You are given that the Moon’s distance from Earth at perigee is about 364,397
km and its distance to the Earth at apogee is about 406,731 km. The mass of
the Earth is ≈ 5.98× 1024 kg. Given this information, compute the eccentricity
of the moon’s orbit and its minimum and maximum linear speeds.7

6Note that L2/P 2 = GM/P ; therefore the velocity at perigee is

vmax = (1 + e)

√
GM

P
,

and the velocity at apogee (if any) is

vmin = (1− e)
√
GM

P
.

7Simple algebra leads to

e =
rmax − rmin

rmax + rmin
≈ 0.055.
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Exercise 5. On the earth an as-
tronomer spots a very slow-moving as-
teroid at time t = 0 moving at a speed
of roughly v0 ≈ 42 m/sec and whose
initial distance from the earth is ap-
proximately r0 ≈ 7.5 × 108 km. As-
sume at the time of observation the an-
gle φ between the velocity vector and

−
−→
R (as shown) is approximately 15◦,

and recall that the mass of the earth
is M ≈ 5.98 × 1024 kg. The value of
the universal gravitational constant is
roughly

G = 6.67× 10−11 N ·m2/kg2,

and the initial angle relative to the coordinate system indicated in Figure 4 is
θ(0) ≈ 120◦.

(i) Will this asteroid be captured into an elliptical orbit about the Earth?8

(ii) Compute the eccentricity of the asteroid’s orbit relative to Earth.9

(iii) Relative to Figure 4 and the model

r =
P

1 + e cos(θ − θ0)
,

determine the angular shift θ0 and plot the trajectory of the asteroid.10

(iv) Compute the speed of the asteroid at its perigee. (Just use the result for
v2 in Step 2 of Exercise 2, above.)11

Exercise 6. Prove Kepler’s Third Law, namely, that the square of the orbital
period (for an elliptical orbit) is proportional to the cube of the semi-major

To compute the corresponding velocities, just use the equation

r =
P

1 + e cos θ
;

the perigee occurs at θ = 0, and P = r2minv
2
max/GM . Put this together and get vmax = 1.074 km/sec. Likewise, get vmin = 0.963

km/sec.

8No, because
r0v

2
0 ≈ 1.32× 1015 > 8× 1014 = 2GM.

9Using Equation (10), get e ≈ 1.14, which dictates a hyperbolic orbit.
10From Equation (8), get θ(0)− θ0 ≈ 133◦, and so θ0 ≈ −13◦.
11The constant L is given by L = r0v0 sinφ, which implies that L2 = PGM . Therefore, the velocity vmax at perigee is

determined through

v2max =

(
GM

P

)
(1 + e)2 =⇒ vmax ≈ 105 m/sec



axis.
To do this, just carry out the indicated steps.

Step 1. Denoting by T the orbital period, note that the area of the ellipse swept
out by the orbiting body is

A =
1

2

∫ t=T

t=0

r2
dθ

dt
dt.

However, we’ve seen that r2
dθ

dt
is a constant, denoted L. Therefore, the

above area is given by A = 1
2LT.

Step 2. Denoting by a the semi-major axis and by b the semi-minor axis, the
area of the corresponding ellipse can be expressed by the integral

A =
4b

a

∫ a

0

√
a2 − x2 dx = abπ.

Step 3. Recall from Analytical Geometry that an ellipse with semi-major axis a
and eccentricity e has semi-minor axis b = a

√
1− e2. (See also Exercise 1,

above.) Conclude from Steps 1 and 2 that

T =
2A

L
=

2a2
√
1− e2π
L

.

Step 4. Using the equation

r =
P

1 + e cos θ
, P =

L2

GM
,

together with

2a = rmin + rmax =
P

1 + e
+

P

1− e
leads immediately to

L2 = a(1− e2)GM.

Step 5. Conclude by showing that
T 2

a3
=

4π2

GM
.

Exercise 7: A Paradox?

As we Suppose that we return to the Earth-Moon system of Exercise 4, where the
Moon’s orbit about the Earth was determined to be elliptical, having eccentricity
e ≈ 0.055. Furthermore, a moment’s thought reveals that relative to observers



on the Moon, the Earth can be said to orbit about the Moon in an
elliptical orbit with the same eccentricity and the same velocities at perigee and
apogee. However, suppose that we adopt a coordinate system which places the
Moon at the origin and the positive x-axis in the direction of the Earth’s perigee
relative to the Moon. Then the equation of motion predicting the Earth’s motion
relative to the Moon should be

r =
P

1 + e cos θ
,

where P =
r2minv

2
max

Gm
, and where m is the mass of the Moon and is

m ≈ 7.36× 1022 kg.

However, using rmin ≈ 3.64 × 105 km and vmax ≈ 1.05 km/sec, the above
equation returns an eccentricity of

e =
P

rmin
− 1 ≈ 80.8,

which isn’t the eccentricity of an ellipse at all! What gives?


