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Abstract. This paper presents an approach aimed at reducing the im-
pact of exceptional points/outliers when computing skyline queries. The
phenomenon that one wants to avoid is that noisy or suspect elements
“hide” some more interesting answers just because they dominate them
in the sense of Pareto. The approach we propose is based on the fuzzy no-
tion of typicality and makes it possible to distinguish between genuinely
interesting points and potential anomalies in the skyline obtained.
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1 Introduction

In this paper, a qualitative view of preference queries is chosen, namely the Sky-
line approach introduced by Börzsönyi et al. [2]. Given a set of points in a space,
a skyline query retrieves those points that are not dominated by any other in the
sense of Pareto order. When the number of dimensions on which preferences are
expressed gets high, many tuples may become incomparable. Several approaches
have been proposed to define an order for two incomparable tuples, based on
the number of other tuples that each of the two tuples dominates (notion of
k-representative dominance proposed by Lin et al. [12]), on a preference order
of the attributes (see for instance the notions of k-dominance and k-frequency
introduced by Chan et al. [3,4]), or on a notion of representativity ([14] redefines
the approach proposed by [12] and proposes to return only the more represen-
tative points of the skyline, i.e., a point among those present in each cluster of
the skyline points). Other approaches fuzzify the concept of skyline in different
ways, see e.g. [9]. Here, we are concerned with a different problem, namely that
of the possible presence of exceptional points, aka outliers, in the dataset over
which the skyline is computed. Such exceptions may correspond to noise or to
the presence of nontypical points in the collection considered. The impact of
such points on the skyline may obviously be important if they dominate some
other, more representative ones.

Two strategies can be considered to handle exceptions. The former consists in
removing anomalies by adopting cleaning procedures or defining data entry con-
straints. However, the task of automatically distinguishing between odd points
and simply exceptional points is not always easy. Another solution is to define an
approach that is tolerant to exceptions, that highlights representative points of
the database and that points out the possible outliers. In this paper, we present
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such an approach based on the fuzzy notion of typicality [15]. We revisit the def-
inition of a skyline and show that it i) makes it possible to retrieve the dominant
points without discarding other potentially interesting ones, and ii) constitutes
a flexible tool for visualizing the answers.

The remainder of the paper is structured as follows. Section 2 provides a
refresher about skyline queries and motivates the approach. Section 3 presents
the principle of exception-tolerant skyline queries, based on the fuzzy concept
of typicality. Section 4 gives the main implementation elements of the approach
whereas Section 5 presents preliminary experimental results obtained on a real-
world dataset. Finally, Section 6 recalls the main contributions and outlines
perspectives for future work.

2 Refresher about Skyline Queries and Motivations

Let D = {D1, . . . , Dd} be a set of d dimensions. Let us denote by dom(Di) the
domain associated with dimension Di. Let S ⊆ dom(D1)× . . .×dom(Dd), p and
q two points of S, and �i an order on Di. One says that p dominates q on D (p
is better than q according to Pareto order), denoted by p �D q, iff

∀i ∈ [1, d] : pi �i qi and ∃j ∈ [1, d] : pi �i qi.

A skyline query on D applied to a set of points S, whose result is denoted by
SkyD(S), according to order relations �i, produces the set of points that are
not dominated by any other point of S:

SkyD(S) = {p ∈ S | � ∃q ∈ S : q �D p}

Depending on the context, one may try, for instance, to maximize or minimize
the values of dom(Di), assuming that dom(Di) is a numerical domain.

In order to illustrate the principle of the approach we propose, let us consider
the dataset Iris [8], graphically represented in Figure 1.

Fig. 1. The dataset Iris

The vertical axis corresponds to the attribute sepal width whereas the hori-
zontal axis is associated with sepal length. The skyline query:
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select * from iris
skyline of sepallength max, sepalwidth max

looks for those points that maximize the dimensions length and width of the
sepals (the circled points in Figure 1).

In this dataset, the points form two groups that respectively correspond to the
intervals [4, 5.5] and [5.5, 7] on attribute length. By definition, the skyline points
are on the border of the region that includes the points of the dataset. However,
these points are very distant from the areas corresponding to the two groups
and are thus not very representative of the dataset. It could then be interesting
for a user to be able to visualize the points that are “almost dominant”, closer
to the clusters, then more representative of the dataset. The notion of typicality
discussed in the next section makes it possible to reach that goal.

2.1 Computing a Fuzzy Set of Typical Values

The typicality of an element in a set indicates the extent to which this element
is similar to many other points from the set. The notion of fuzzy typicality has
been much studied in the contexts of data summaries and approximate reasoning.
Zadeh [15] states that x is a typical element of a fuzzy set A iff i) x has a high
membership degree to A and ii) most of the elements of A are similar to x. In
the case where A is a crisp set — as it will be the case in the following —, the
definition becomes: x is in A and most of the elements of A are similar to x.

In [7], the authors define a typicality index based on frequency and similarity.
We adapt their definition as follows. Let us consider a set E of points. We say
that a point is all the more typical as it is close to many other points. The
proximity relation considered is based on Euclidean distance. We consider that
two points p1 and p2 are close to each other if d(p1, p2) ≤ τ where τ is a
predefined threshold. In the experiment performed on the dataset Iris, we used
τ = 0.5. The frequency of a point is defined as:

F (p) =
|{pi ∈ E , d(p, pi) ≤ τ}| − 1

|E| . (1)

This degree is then normalized into a typicality degree in [0, 1]:

typ(p) =
F (p)

maxpi∈E{F (pi)}
.

We will also use the following notations:

Typ(E) = {typ(p)/p | p ∈ E}

Typγ(E) = {p | p ∈ E and typ(p) ≥ γ}.
Typ(E) represents the fuzzy set of points that are somewhat typical of the set E
while Typγ(E) gathers the points of E whose typicality is over the threshold γ.
An excerpt of the typicality degrees computed over the Iris dataset is presented
in Table 1.
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Table 1. Excerpt of the Iris dataset with associated typicality degrees

length width frequency typicality
7.4 2.8 0.0600 0.187
7.9 3.8 0.0133 0.0417
6.4 2.8 0.253 0.792
6.3 2.8 0.287 0.896
6.1 2.6 0.253 0.792
7.7 3.0 0.0467 0.146
6.3 3.4 0.153 0.479
6.4 3.1 0.293 0.917
6.0 3.0 0.320 1.000

3 Principle of the Exception-Tolerant Skyline

As explained in the introduction, our goal is to revisit the definition of the skyline
so as to take into account the typicality of the points in the database, in order
to control the impact of exceptions or anomalies.

3.1 Boolean View

A first idea is to restrict the computation of the skyline to a subset of E that
corresponds to sufficiently typical points. The corresponding definition is:

SkyD(Typγ(S)) = {p ∈ Typγ(S) | � ∃q ∈ Typγ(S) such that q �D p} (2)

Such an approach obviously reduces the cost of the processing since only the
points that are typical at least to the degree γ are considered in the calculus.
However, this definition does not make it possible to discriminate the points
of the result according to their degree of typicality since the skyline obtained
is a crisp set. Figure 2 illustrates this behavior and shows the maxima (circled
points) obtained when considering the points that are typical to a degree ≥ 0.7
(represented by crosses).

Another drawback of this definition is to exclude the nontypical points alto-
gether, even though some of them could be interesting answers. A more cautious
definition consists in keeping the nontypical points while computing the skyline
and transform Equation (2) into:

SkyD(Typγ(S)) = {p ∈ S | � ∃q ∈ Typγ(S) such that q �D p} (3)

Figure 3 illustrates this alternative solution. It represents (circled points) the
objets from the Iris dataset that are not dominated by any item typical to the
degree γ = 0.7 at least (represented by crosses).

With Equation (2), the nontypical points are discarded, whereas with Equa-
tion (3), the skyline is larger and includes nontypical extrema. This approaches
relaxes skyline queries in such a way that the result obtained is not a line any-
more but a stripe composed of the regular skyline elements completed with
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Fig. 2. Skyline of the Iris points whose typicality degree is ≥ 0.7

possible “substitutes”. However, the main drawbacks of this definition are: i) the
potentially large number of points returned, ii) the impossibility to distinguish,
among the skyline points, those that are not at all dominated from those that
are dominated (by weakly typical points).

3.2 Gradual View

A third version makes it possible to compute a graded skyline, seen as a fuzzy
set, that preserves the gradual nature of the concept of typicality. By doing so,
no threshold (γ) is applied to typicality degrees. The definition is as follows:

SkyD(Typ(S)) =
= {μ/p | p ∈ S ∧ μ = min

q∈S
(max(1 − μTyp(q), deg(¬(q �D p) ))} (4)

where deg(¬(q �D p)) = 1 if q does not dominate p (i.e., (q �D p) is false), 0
otherwise. A point totally belongs to the skyline (membership degree equal to
1) if it is dominated by no other point. A point does not belong at all to the
skyline (membership degree equal to 0) if it is dominated by at least one totally
typical point. In the case where p is dominated by somewhat (but not totally)
typical points, its degree of membership to the skyline depends on the typicality
of these points. Equation (4) may be rewritten as follows:

SkyD(Typ(S)) = {μ/p | p ∈ S ∧ μ = 1− max
q∈S | q�Dp

(μTyp(q))}. (5)

With the Iris dataset, one gets the result presented in Figure 4, where the
degree of membership to the skyline corresponds to the z axis. As expected, the
points of the classical skyline totally belong to the graded skyline, along with
some additional answers that more or less belong to it. This approach appears
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Fig. 3. Points that are not dominated by any other whose typicality degree is ≥ 0.7
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Fig. 4. Graded skyline obtained with the Iris dataset

interesting in terms of visualization. Indeed, the score associated with each point
makes it possible to focus on different α-cuts of the skyline. In Figure 4, one may
notice a slope from the optimal points towards the less typical or completely
dominated ones. The user may select points that are not necessarily optimal
but that represent good alternatives to the regular skyline answers (in the case,
for instance, where the latter look “too good to be true”). Finally, an element
of the graded skyline is associated with two scores: a degree of membership to
the skyline, and a typicality degree (that expresses the extent to which it is not
exceptional). One may imagine different ways of navigating inside areas in order
to explore the set of answers: a simple scan for displaying the characteristics of
the points, the use of different filters aimed, for instance, at optimizing diversity
on certain attributes, etc.
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4 Implementation Aspects

Two steps are necessary for obtaining the graded result: i) computation of the
typicality degrees, and ii) computation of the skyline. Many algorithms have been
proposed for processing skyline queries: Block-Nested-Loops(BNL) [2]; Divide
and Conquer [2]; a technique exploiting a B-tree or an R-tree [2]; an algorithm
based on bitmap indices [13]; an improvement of the BNL method, named Sort-
Filter-Skyline [5,6], and a strategy proposed in [1] that relies on a preordering of
the tuples aimed to limit the number of elements to be accessed and compared.
We have based our implementation on the approach proposed in [13] with which
Formula (5) appears the easiest to evaluate.

The data structure underlying the algorithm described in [13] is an array
of Boolean values or bitmap. A bitmap index is defined for each dimension of
the skyline: every column corresponds to a possible value in the dimension con-
sidered, and every row references a tuple from the database. Value 1 at the
intersection of row l and column c means that the tuple referenced in row l has
the value corresponding to column c. Then, every point p of the database S is
tested in order to determine if it belongs to the skyline or not. For doing so,
two other data structures are created. The first one, denoted by A, gathers the
tuples that are as good as p on every dimension, the second one, denoted by B,
contains the tuples that are better than p on at least one dimension. A and B
are defined as two-dimensional tables of Booleans whose columns are associated
with the tuples of S. They are initialized using the bitmap indices.

Algorithm 1 constitutes the heart of our prototype and follows the principle
described above. We have also used three tables (T , Skygrad, A′) where each
column corresponds to a tuple of S, that contain real numbers in [0, 1]. In T ,
these numbers correspond to typicality degrees whereas in Skygrad they represent
degrees of membership to the graded skyline. AND corresponds to the logical
conjunction between the pairs of values (A[i], B[i]) so as to check whether the
point i is both as good as p on all dimensions and better than p on one dimension.
If it is the case, then this point dominates p. MULT is used to compute the
product of the values A[i] and T [i], which makes it possible to associate a point
i with its typicality degree if it dominates the point p considered. Finally, MAX
returns the maximal value of the array A. The membership degree of p to the
graded skyline is then obtained by means of Formula (5).

The computation of the typicality degrees uses a threshold on the distance
that depends on the attributes involved in the skyline query. The complexity of
the computation is obviously in θ(n2) since one has to compute the Euclidean
distance between each pair of points of the dataset.

One may think of two ways for computing typicality: either on demand, on
the attributes specified in the skyline clause of the query, or beforehand, on dif-
ferent relevant sets of attributes. The first method implies an additional cost
to the evaluation of skyline queries, whereas the second one makes it neces-
sary to update the typicality degrees when the dataset evolves. In any case, in-
dices such as those used for retrieving k nearest neighbors (for instance kdtrees)
may be exploited. Furthermore, since in general the computation of the graded
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Algorithm 1. Main algorithm for computing the graded skyline
Require: d distance, n cardinality of the dataset S , the points of the dataset p ∈ S ,

the set of dimensions {di}
Ensure: graded skyline: ∀p ∈ S , Skygrad(p)

Preprocessing: creation of the bitmap indices on the di’s
Preprocessing: computation of the typicality of the points T : ∀p ∈ S , Typ(p)
for all p ∈ S do

// Search for those points that dominate p
Creation of A
Creation of B
A := A AND B
A′ := A MULT T
Skygrad(p) := 1−Max(A′)

end for

skyline concerns only a small fragment of the database, the extra cost related to
typicality should not be too high.

It is worth emphasizing that the algorithm could be parallelized by partition-
ing the arrays A, B, A′ and T . Similarly, the creation of the structures A and B
may be parallelized, provided that the bitmap indices and the typicality degrees
are distributed or shared.

Table 2. Excerpt of the database and associated degrees (skyline and typicality)

id price km skyline typicality
1156771 6000 700 1 0.247
1596085 5800 162643 1 0.005
1211574 7000 500 1 0.352
1054357 1800 118000 1 0
1333992 500 220000 1 0
1380340 800 190000 1 0
891125 1000 170000 1 0
1229833 5990 10000 1 0.126
1276388 1300 135000 1 0
916264 5990 2514000 0.874 0
1674045 6000 3500 0.753 0.315

5 Experimental Results

The approach has been tested using a subset of the database of 845810 ads about
second hand cars from the website Le bon coin 1 from 2012. The skyline query
used hereafter as an example aims at minimizing both the price and the mileage.
In the query considered, we focus on small urban cars with a regular (non-diesel)
engine, which corresponds to 441 ads. Figure 5 shows the result obtained. In dark
1 www.leboncoin.fr
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Fig. 5. 3D representation of the graded skyline

Table 3. Excerpt of the area [0.6, 0.8]

id price km skyline typicality
870279 6900 1000 0.716 0.358
981939 6500 4000 0.637 0.363
1022586 6500 7200 0.637 0.258
1166077 7750 2214 0.642 0.532
1208620 6500 3300 0.716 0.363
1267726 6500 100000 0.637 0
1334605 10500 500 0.647 0.642
1366336 7490 4250 0.637 0.516
1529678 7980 650 0.647 0.458
1635437 9900 590 0.647 0.621
1685854 7890 1000 0.642 0.458

grey are the points that belong the most to the skyline (membership degree
between 0.8 and 1). These points are detailed in Table 2. According to the
definition used, points dominated by others that are not totally typical belong
to the result. It is the case for instance of ad number 916264 that is dominated
by ads numbered 1054357 and 1229833. The identifiers in bold correspond to
the points that belong to the regular skyline. One may observe that the points
from Table 2 (area [0.8, 1]) are not very (or even not at all) typical. Moreover,
certain features may not satisfy the user (the mileage can be very high, the price
can be very low) and may look suspicious. On the other hand, Table 3, which
shows an excerpt of the 0.6-cut of the graded skyline, contains more typical –
thus more credible – points whose overall satisfaction remains high. Let us also
mention that the time taken by the precomputation of the typicality degrees
associated with the selected elements is twice as large (around 0.54 second) as
the time devoted to the computation of the graded skyline (about 0.22 second).
However, this result must taken carefully as the computation of typicality has
not been optimized in the prototype yet.
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6 Conclusion

In this paper, we have proposed a graded version of skyline queries aimed at
controlling the impact of exceptions on the result (so as to prevent interesting
points to be hidden because they are dominated by an exceptional one). An
improvement could consist in using more sophisticated techniques for character-
izing the points according to their level of representativity as a typicality-based
clustering approach [11] or statistical methods for detecting outliers [10]. As a
short-term perspective, we intend to carry out a parallel implementation of the
algorithm and to use indexes for reducing the processing time devoted to the
computation of typicality degrees.

References

1. Bartolini, I., Ciaccia, P., Patella, M.: Efficient sort-based skyline evaluation. ACM
Trans. Database Syst. 33(4), 1–49 (2008)

2. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. of ICDE
2001, pp. 421–430 (2001)

3. Chan, C., Jagadish, H., Tan, K., Tung, A., Zhang, Z.: Finding k-dominant skylines
in high dimensional space. In: Proc. of SIGMOD 2006, pp. 503–514 (2006)

4. Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: On high di-
mensional skylines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F.,
Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006.
LNCS, vol. 3896, pp. 478–495. Springer, Heidelberg (2006)

5. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: Proc.
of ICDE 2003, pp. 717–719 (2003)

6. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting: Theory and
optimizations. In: Proc. of IIS 2005, pp. 595–604 (2005)

7. Dubois, D., Prade, H.: On data summarization with fuzzy sets. In: Proc. of IFSA
1993, pp. 465–468 (1984)

8. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of
Eugenics 7(2), 179–188 (1936)

9. Hadjali, A., Pivert, O., Prade, H.: On different types of fuzzy skylines. In:
Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS
(LNAI), vol. 6804, pp. 581–591. Springer, Heidelberg (2011)

10. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artificial Intel-
ligence Review 22(2), 85–126 (2004)

11. Lesot, M.: Typicality-based clustering. Int. J. of Information Technology and In-
telligent Computing 12, 279–292 (2006)

12. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: the k most representative
skyline operator. In: Proc. of the ICDE 2007, pp. 86–95 (2007)

13. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In:
Proc. of VLDB 2001, pp. 301–310 (2001)

14. Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based representative skyline. In: Ioan-
nidis, Y.E., Lee, D.L., Ng, R.T. (eds.) ICDE, pp. 892–903. IEEE (2009)

15. Zadeh, L.A.: A computational theory of dispositions. In: Wilks, Y. (ed.) COLING,
pp. 312–318. ACL (1984)


	Exception-Tolerant Skyline Queries
	1 Introduction
	2 Refresher about Skyline Queries and Motivations
	2.1 Computing a Fuzzy Set of Typical Values

	3 Principle of the Exception-Tolerant Skyline
	3.1 Boolean View
	3.2 Gradual View

	4 Implementation Aspects
	5 Experimental Results
	6 Conclusion
	References




