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ABSTRACT
Many tools empower analysts and data scientists to consume analy-

sis results in a visual interface. When the underlying data changes,

these results need to be updated, but this update can take a long

time—all while the user continues to explore the results. Tools can

either (i) hide away results that haven’t been updated, hindering

exploration; (ii) make the updated results immediately available to

the user (on the same screen as old results), leading to confusion

and incorrect insights; or (iii) present old—and therefore stale—

results to the user during the update. To help users reason about

these options and others, and make appropriate trade-offs, we in-

troduce Transactional Panorama, a formal framework that adopts

transactions to jointly model the system refreshing the analysis

results and the user interacting with them. We introduce three key

properties that are important for user perception in this context: vis-

ibility (allowing users to continuously explore results), consistency

(ensuring that results presented are from the same version of the

data), and monotonicity (making sure that results don’t “go back

in time”). Within transactional panorama, we characterize all feasi-

ble property combinations, design new mechanisms (that we call

lenses) for presenting analysis results to the user while preserving a
given property combination, formally prove their relative orderings

for various performance criteria, and discuss their use cases. We

propose novel algorithms to preserve each property combination

and efficiently present fresh analysis results. We implement our

framework into a popular, open-source BI tool, illustrate the rela-

tive performance implications of different lenses, and demonstrate

the benefits of the novel lenses and our optimizations.
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Figure 1: Visual examples of different lenses for refreshing
views in a dashboard

1 INTRODUCTION
Many data-centric tools empower a user to visually organize, present,

and consume multiple data analysis results within a single interface,

such as a dashboard. Each such analysis result is represented on this

interface as a scalar value, table, or visualization, and is computed

using the source data or other analysis results, in turn, as views.
This pattern appears in a variety of contexts:

Visual analytics or Business Intelligence (BI) tools, like Tableau [12]

or PowerBI [8], empower a user to embed visualizations on a dash-

board, each via a SQL query on an underlying database;

Spreadsheet tools, such as Microsoft Excel [6] and Google Sheets [2],

allow a user to add derived computation in the form of spreadsheet

formulae, visualizations, and pivot tables;

Data application builder tools, such as Streamlit [10], Plotly [7],

and Redash [9], enable a user to efficiently develop interactive

dashboards, employing computation done in Python UDFs and

pandas dataframe functions, and SQL; and

Monitoring and observability tools, such as Datadog [1], Kibana [4],

and Grafana [3], empower a user to make sense of their teleme-

try data and logs via a combination of automatically defined and

customizable dashboard widgets.

In all of these contexts, there is a network of views defined on underly-
ing data, each of which is then visualized on an interface. These views
and the corresponding visualizations often need to be refreshed

when the source data is modified. For example, a dashboard in a BI

tool is refreshed with respect to regular changes to the underlying

database tables (e.g., new batches of data). However, this refresh is

rarely instantaneous, especially on large datasets. This represents

a challenge, since the user is continuously exploring the visualiza-

tions during the refresh. On the one hand, refreshing visualizations

arbitrarily can be jarring to the user, since different visualizations

on the screen may be in different stages of being refreshed. On the

other hand, not refreshing them in a timely manner can lead to
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Table 1: Properties maintained by existing tools
Lens name Example Tools Monotonicity Visibility Consistency

Globally-Consistent

Fully-Blocking (GCFB)

MS Excel [6]

Libre Calc [5]

Tableau [12]

Yes No Yes

Globally-Consistent

Partially-Blocking (GCPB)

Power BI [8]

Superset [11]

Dataspread [16]

Yes No Yes

Inconsistently

Non-Blocking (ICNB)

Google Sheets [2] Yes Yes No

stale results. The question we explore is: How do we allow users
to continuously explore results in a visual interface, while
ensuring that the results are not confusing or stale?

Unfortunately, existing tools make fixed, and somewhat arbitrary

decisions on how to address this question. For example, Excel [6],

Calc [5], and Tableau [12] block the user from exploring the inter-

face until all of the views are refreshed (Figure 1a). Other tools, like

PowerBI [8], Superset [11], and Dataspread [16], improve on this

approach by hiding (or greying) away any views that have not yet

been refreshed, while still letting the user explore the other up-to-

date views (Figure 1b). Yet other tools, like Google Sheets [2], opt

for not hiding any views, and instead just progressively make them

available as they are refreshed—this approach has the downside

of different results on the screen being in different stages of being

refreshed, leading to incorrect insights (Figure 1c).

Transactional Panorama andUnderlying Properties. In this pa-
per, we introduce transactional panorama1, a formal framework that

enables users and system designers to reason about the aforemen-

tioned question in a more principled manner. We adopt transactions

to jointly model the system concurrently updating visualizations,

with the user consuming these visualizations, over time and space

(i.e., across screens). To the best of our knowledge, transactional
panorama is the first framework that leverages transactions to reason
about correct user perception in visual interfaces. In this setting, we

define three key desirable properties monotonicity, visibility, and
consistency, which we call the MVC properties. Monotonicity guar-

antees that if a user reads the result for a view, any subsequent read

will always return the same or more recent result (i.e., monotonic

read [33]) so that results never go “back in time”. Visibility guaran-

tees that the user can always explore the result of any visualization

on the screen—instead of them being greyed out. Consistency guar-

antees that the results displayed on the screen should be consistent

with the same snapshot of source data [24, 43]—enabling correct

derivation of relationships between results on the same screen.

Concrete Property Combinations via Lenses. There are various
mechanisms we can use to present results to the user in a visual

interface, resulting in concrete selections for the aforementioned

properties, that we call lenses2. Consider our examples of existing

systems (Figure 1a–c); we list the corresponding three lenses in

Table 1—GCFB, GCPB, and ICNB (the acronyms will be explained

later). While GCFB and GCPB opt for monotonicity and consistency,

instead of visibility, ICNB opts for monotonicity and visibility, but

not consistency. In this work, we study the feasibility of different

property combinations and lenses, and characterize their perfor-

mance trade-offs. In particular, we explore the trade-off between

1
We call this framework as such because it involves adapting transactions to a problem

of fidelity across various viewpoints (screens) over space and time, i.e., a panorama.

2
These are called lenses since they capture various instantiations of our transactional

panorama framework.
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Figure 2: Trade-off between invisibility and staleness across
different lenses
invisibility, i.e., the duration when the user is unable to interact with
visualizations, and staleness, i.e., the duration when visualizations

displayed to the user have not been refreshed, as shown in Figure 2.

For example, GCFB blocks the user from exploring the interface

until all of the new results are computed, so it has high invisibility.

But GCFB also has zero staleness since it does not present stale

results. On the other hand GCPB reduces invisibility (vs. GCFB) by

presenting the newly computed results to the user whenever avail-

able while also not showing stale results. ICNB, which sacrifices

consistency, has higher staleness because the user can read stale

results, but none of the views shown are invisible, i.e., visualizations

that are greyed out.

Novel Property Combinations: Exploring the Trade-off. As
we also show in Figure 2 (in green), we discover a number of novel

lenses, resulting in new property combinations and associated per-

formance implications. We introduce three new lenses: Globally-

Consistent Non-Blocking (GCNB), Locally-Consistent Non-Blocking

(LCNB), and Locally-Consistent Minimum-Blocking (LCMB), none

of which are dominated by the three existing lenses. For example,

LCNB always allows the user to inspect the results of any visualiza-

tions (i.e., preserving visibility), and refreshes the visualizations on

the screen when all of their new results are computed (i.e., preserv-

ing consistency). Figure 1d shows an example of LCNB, where the

user can quickly read the new results on the screen (i.e., 𝑉𝑖𝑒𝑤1−4)
without waiting for computing the new results that are not on the

current screen (i.e.,𝑉𝑖𝑒𝑤5−6). LCNB can be used when a user wants

to always see and interact with consistent results on the screen.

However, as we prove later, LCNB needs to sacrifice monotonicity

when the user explores different visualizations (e.g., by scrolling).

In fact, we demonstrate one can achieve both consistency and vis-

ibility simultaneously only by either sacrificing monotonicity or

suffering from high staleness. For the aforementioned new lenses,

we further introduce 𝑘-relaxed variants (i.e., 𝑘-GCNB, 𝑘-LCNB, and

𝑘-LCMB), where 𝑘 represents the number of additional invisible

views allowed for each lens.

Usage Scenarios. This suite of lenses allow a user or a system de-

signer to determine their desired properties and gracefully explore

the trade-off between staleness and invisibility. Current tools, while

enabling users to customize their dashboards extensively (in terms

of the placement of visualizations and selection of visualization

queries and encodings), make fixed choices in this regard. A user

has no say in how results are refreshed and presented, and a system

designer opts for whatever is easiest. The transactional panorama

framework is intended to address this gap. From an end-user stand-

point, they may be able to make appropriate performance trade-offs

via various customization knobs. A system designer may similarly
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be able to make appropriate selections during tool design, with

end-users and use-cases in mind.

Translating to Practice: Challenges. Translating our transac-

tional panorama framework to practice in real data analysis and BI

systems requires addressing several challenges:

(1) In a visual interface, the user does not explicitly submit transac-

tions as in traditional systems, but reads the views by looking at

the screen. In addition, the user can read different subsets of views

by scrolling to different screens. Therefore, a challenge is to adapt

transactions to model user behavior, an aspect not considered in

classical transaction processing literature.

(2) In a visual interface, the user may want to quickly read new

results for some views before the system computes all of the new

results. If we model an update along with refreshing the related

views as a transaction (to preserve consistency), the user essen-

tially wants to read the results of an uncommitted transaction. The
MVC properties for reading uncommitted results are not considered

by traditional systems and needs to be defined in our model.

(3) Finally, instantiating transactional panorama requires design-

ing new algorithms for efficiently maintaining different property

combinations for different lenses while reducing invisibility and

staleness. Traditional concurrency control protocols, such as 2PL or

OCC [17], do not apply here because they do not consider maintain-

ing consistency on uncommitted results and the other user-facing

properties, monotonicity and visibility.

Summary of Contributions. We address these challenges as part

of transactional panorama and make the following contributions:

• We present the transactional panorama model in Section 2. We

model reads and writes on the views as operations within trans-

actions and introduce a special read-only transaction to model

a user’s behavior of reading the views on the screen. We define

the MVC properties and use a series of theorems to exhaustingly

explore the possible property combinations. We formally order

different lenses based on invisibility and staleness, and provide

guidance for selecting the right lens for specific use cases.

• We design efficient algorithms for maintaining properties for

lenses in Section 3, and propose optimizations to reduce invisi-

bility and staleness while refreshing analysis results in Section 4.

• We implement transactional panorama within Apache Superset,

a popular open-source BI tool [11], in Section 5. We perform

extensive experiments to characterize the relative benefits of

different lenses on various workloads, demonstrate the benefits

of the new lenses, and show the performance benefit of our

optimizations on reducing invisibility and staleness compared to

the baselines—by up to 70% and 75%, respectively—in Section 6.

2 TRANSACTIONAL PANORAMA MODEL
We present our transactional panorama model in this section. Due

to space limitations, we had to omit the discussion for selecting

appropriate lenses for specific use cases and a number of extensions

to our framework; these can be found in our technical report [13].

2.1 Preliminaries
View and view graph. In our context, we define a view to rep-

resent arbitrary computation, expressed in any manner, including

Visualizations
A view graph example

View 6

View 8

Within the user's viewport

View 7

Dashboard

 Base Table 2 
(View 2,    ) 

View 4

View 5

View 3

 
Base Table 1 
(View 1,    ) 

Figure 3: An example of a dashboard and its view graph

SQL, pandas dataframe expressions, spreadsheet formulae, or UDFs,

taking other views and/or source data as input. A view graph is

a directed acyclic graph (DAG) that captures the dependencies

across views and source data, both represented as nodes in the

DAG. Specifically, if a view 𝑛𝑖 takes another view or source data

𝑛 𝑗 as input, we add an edge: 𝑛 𝑗 → 𝑛𝑖 . The dependents of 𝑛 𝑗 are

defined as the views that are reachable from 𝑛 𝑗 in the view graph.

For simplicity, we regard the source data as a special type of view

that performs an identity function over the source data. Figure 3

shows an example of a view graph for visualizations in a dashboard,

where the source data are database tables and each view is defined

by a SQL statement. There are two base tables: Base Table 1 and 2,
also regarded as View 1 and 2, respectively. We use 𝑛𝑘 to represent

View k. View 3-6 (denoted 𝑛3−6) and View 6-8 (denoted 𝑛6−8) are the
dependents of 𝑛1 and 𝑛2, respectively. They define the content for

the visualizations in this dashboard.

View result and viewport. A view result represents the output
of a view given a version of the source data and the definition

of the view graph. This view result is rendered on the dashboard

as a visualization (this includes visualizations of tables or even

single values). In certain settings, a view definition may itself be

editable and rendered as part of the dashboard (e.g., as a filter).

For the following discussion, we assume view definitions are not

editable or rendered. The discussion for reading and modifying a

view definition is in the technical report [13].

A dashboard may include many visualizations that cannot fit

into a single screen. The rectangular area on the screen a user is cur-

rently looking at is the viewport. In Figure 3, the viewport includes

visualizations for views 𝑛3−5. A user can change the viewport to

explore different parts of a view graph.

Reading and writing a view, and view state. We model the

user inspecting a visualization in the viewport as reading the corre-

sponding view, which returns a view state. A view state is either

a view result or a state that indicates the view result has not been

computed yet (denoted as under-computation) and is usually ma-

terialized such that future reads coming from the user can reuse

the materialized state. In Figure 3, we need to materialize the view

states for 𝑛3−8 to support future reads by the user.

There are two types of writes in transactional panorama: in-
put writes and triggered writes. An input write is from a user or

an external system, and modifies the source data (e.g., new data

inserted to a base table) or view graph definitions. The following

discussion focuses on input writes to the source data. The case of

processing modifications to the view graph definitions is in the

technical report [13]. The input write will trigger additional writes,

called triggered writes, which compute new results for the views

that depend on the base views which were modified in the input
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Table 2: Notation frequently used in this paper
Notations Meanings
𝑤𝑡𝑖

A write transaction that is created at timestamp 𝑡𝑖
𝑟𝑠𝑖 A read transaction that is created at timestamp 𝑠𝑖
𝐺𝑡𝑖

A version of the view graph created by 𝑤𝑡𝑖

𝑛𝑘 A view in the view graph

𝑛
𝑡𝑖
𝑘

A view result for 𝑛𝑘 in𝐺𝑡𝑖

𝑈𝐶
𝑡𝑖
𝑘

A state representing the view result 𝑛
𝑡𝑖
𝑘
is under computation

𝑉 𝑡𝑖
A set that stores the view results and UCs for the views in𝐺𝑡𝑖

𝐶𝑓 Consistency-fresh

𝐶𝑚 Consistency-minimal

𝐶𝑐 Consistency-committed

write. For example, modifying the base table 𝑛1 in Figure 3 triggers

computing new results for 𝑛3−6.

2.2 Modeling the Interaction with a View Graph
We model a user’s or an external system’s interaction with a view

graph as transactions, and logically associate each transaction with

a unique timestamp that represents its submission time, with trans-

actions being ordered by these timestamps. We focus on a single

user setting as in most user-facing data analysis tools and discuss

the multiple user setting in the technical report [13]. Our model

has two types of transactions:

Write transaction. A write transaction is issued when a set of

input writes on the view graph (e.g., modifications to a set of base

tables) are submitted together to the system. A write transaction

involves processing the input writes and recomputing the views

that depend on the input writes. For example, in Figure 3 if 𝑛1 is

modified the write transaction will recompute 𝑛3−6. The specific
algorithm for maintaining the view graph and recomputing view

results is orthogonal to our model, and, for example, can employ

incremental view maintenance [14, 25, 35]. We focus on processing

one write transaction at a time, which is typical in existing tools

[6, 8, 11, 12], and discuss the case of multiple, simultaneous write

transactions in the technical report [13].

Read transaction. Transactional panorama models a user inspect-

ing visualizations in the viewport as a read transaction. For example,

in Figure 3, the read transaction involves reading views 𝑛3−5. A
unique property of this read transaction is that it does not delay to

wait for the requested view results to be computed. So the read trans-

action may return an under-computation state for a visualization if

the view result has not been computed yet. If an under-computation

state is returned, the user cannot inspect and interact with the vi-

sualization in the visual interface. To simulate the effect of the user

“looking at” the viewport, our model assumes the system periodi-

cally issues new read transactions to pull view states. The user may

read different parts of the view graph by changing the viewport

while the system continues to process writes. The location of the

user’s viewport is known to the system throughout.

2.3 Formalization
We now introduce the aforementioned concepts in more detail and

more formally. Table 2 summarizes the notation frequently used

in this paper. The view graph is logically multi-versioned, where

a new version of view graph 𝐺𝑡𝑖 = (𝐸, 𝑁,𝑉 𝑡𝑖 ) is instantiated by a

write transaction with timestamp 𝑡𝑖 (denoted as𝑤𝑡𝑖
). 𝑁 represents

the set of nodes (i.e., source data and views) in the graph and

each edge 𝑒 = (𝑛𝑝𝑟𝑒𝑐 , 𝑛𝑑𝑒𝑝 ) ∈ 𝐸 indicates that node 𝑛𝑑𝑒𝑝 has

another node 𝑛𝑝𝑟𝑒𝑐 as input. 𝑉
𝑡𝑖
captures the view results and the

under-computation states for the views in 𝐺𝑡𝑖
and evolves as we

process the write transaction𝑤𝑡𝑖
. At a given time,𝑉 𝑡𝑖

may include:

i) the view result for 𝑛𝑘 that 𝑤𝑡𝑖
has already finished computing

— this view result is represented as 𝑣
𝑡𝑖
𝑘
; ii) UC𝑡𝑖

𝑘
, which represents

the state that 𝑤𝑡𝑖
intends to compute the view result for 𝑛𝑘 , but

has not done it yet; and iii) the view result for 𝑛𝑘 from the last

version of view graph given that 𝑛𝑘 will not be updated by 𝑤𝑡𝑖
.

Figure 4 shows an example of computing a new version of view

graph for a write transaction𝑤𝑡1
that modifies 𝑛1 in Figure 3. We

see that creating a new version of view graph logically replicates

the view results of the last version of the view graph, and marks

all of the view results to be computed as UCs (in gray). Each UC is

replaced after the corresponding view result is computed (in blue).

We guarantee that a new version of view graph is atomically seen

by read transactions via our concurrency control protocol (to be

discussed in Section 3). We call a version of view graph committed
if its write transaction is committed; otherwise, this version is

uncommitted. A write transaction is defined to be committed if the

system has a) computed all of the new view results for the version of

view graph created by this write transaction and b) updated a global

variable that stores the timestamp of the recently committed graph.

More details about the procedure for processing a write transaction

and the management of the global variable are in Section 3.2. The

initial version of the view graph is 𝐺𝑡0
, which is modified by a

sequence of write transactions𝑊 = {𝑤𝑡1 , · · · ,𝑤𝑡𝑛 }, where 𝑤𝑡𝑖
is

submitted before𝑤𝑡 𝑗
if 𝑡𝑖 < 𝑡 𝑗 .

We also have a sequence of read transactions 𝑅 = {𝑟𝑠1 , · · · , 𝑟𝑠𝑚 },
where 𝑟𝑠𝑖 is submitted before 𝑟𝑠 𝑗 if 𝑠𝑖 < 𝑠 𝑗 . Recall that each read

transaction corresponds to a single viewport and all of the views

in it. We refer to the view states returned by a read transaction

𝑟𝑠𝑖 as 𝐻𝑠𝑖
, which includes view results and/or UCs for the views

in the viewport. If a read transaction returns a UC for a view, its

corresponding visualization is marked as invisible in the dashboard.

On the front end, this can be displayed in various ways: grayed out,

a progress bar, a loading sign, etc. We use UC for UC𝑡𝑖
𝑘
when 𝑘 and

𝑡𝑖 are clear from the context.

2.4 MVC Properties
We now formally define the so-called MVC properties for read trans-

actions, motivated by user needs in analytical visual interfaces. First,

the user consumes the view states returned by read transactions

in order: i.e., they consume the view states of one read transaction

before the next. Therefore, they expect to see monotonically newer

states for each view, avoiding the confusion that the states seen

“travel back in time”. Second, in a user-facing dashboard, the notion

of visibility helps ensure interactivity, as it means the user can

continuously explore the view results of different visualizations

without interruption, while the system processes write transactions.

Finally, consistency helps ensure that insights derived from multiple

visualizations on a viewport are computed from the same snapshot

of source data [24, 37, 43]. We now describe each property in detail.

Monotonicity.Monotonicity means if a user reads a given version

of a view result or UC for a view, any successive reads on the same

view will return the same or more recent version of the view result

or UC. Formally, monotonicity is defined as:

1497



Update all results 

 

 

 

Latest GraphCommitted Graph
CommittedUncommitted Uncommitted(Old version)

(New version)

Evolution of the new version over timeAtomically instantiated

 

  

 

Figure 4: An example of creating a new version of view graph and computing the view result for each node
Definition 1 (Monotonicity). A sequence of read transactions

𝑅 = {𝑟𝑠1 , · · · , 𝑟𝑠𝑚 } maintains monotonicity if the following holds: for
any view 𝑛𝑘 read by any two transactions 𝑟𝑠𝑖 and 𝑟𝑠 𝑗 , the timestamps
of the returned states are 𝑡𝑝 and 𝑡𝑞 , respectively: 𝑡𝑝 ≤ 𝑡𝑞 if 𝑠𝑖 < 𝑠 𝑗 .

Visibility. This property says that for any view that is read by any

read transaction, the system should not return an under-computation

state, UC. Formally, visibility is defined as:

Definition 2 (Visibility). A sequence of read transactions 𝑅 =

{𝑟𝑠1 , · · · , 𝑟𝑠𝑚 } maintains visibility if for the states 𝐻𝑠𝑖 that are re-
turned by any transaction 𝑟𝑠𝑖 , we have UC ∉ 𝐻𝑠𝑖 .
The user may also sacrifice visibility by opting for partial visibility,

where they accept a controlled number of UCs as a trade-off for

reading fresher view results, discussed next.

Consistency. In our setting, consistency means that the view states

returned by each read transaction belongs to a single version of the

view graph. Consistency is formally defined as:

Definition 3 (Consistency). Let 𝐻𝑠𝑖 be the view states returned
by 𝑟𝑠𝑖 . We say 𝑟𝑠𝑖 maintains consistency if there exists a version of
view graph 𝐺𝑡 𝑗 = (𝐸, 𝑁,𝑉 𝑡 𝑗 ) such that 𝑡 𝑗 ≤ 𝑠𝑖 and 𝐻𝑠𝑖 ⊆ 𝑉 𝑡 𝑗 .
Intuitively, 𝑡 𝑗 ≤ 𝑠𝑖 requires that a user read a version created by the

write transactions that happen before 𝑟𝑠𝑖 . The condition 𝐻𝑠𝑖 ⊆ 𝑉 𝑡 𝑗

guarantees that the view states returned belong to a single version

of view graph. Consider a read transaction 𝑟𝑠1 that reads 𝑛3−5.
Say for 𝐺𝑡1

in Figure 3, we have computed 𝑣
𝑡1
3
but not 𝑣

𝑡1
4−5. If the

returned states for 𝑟𝑠1 is 𝐻𝑠1 = {𝑣𝑡1
3
,UC𝑡1

4−5}, then 𝑟
𝑠1

maintains

consistency because 𝐻𝑠1
belongs to 𝑉 𝑡1

.

Note that consistency in transactional panorama is different

from traditional Consistency (C) in ACID for database transactions.

C in ACID refers to the property that each transaction correctly

brings the database from one valid state to another. In our context,

consistency is more closely related to Isolation (I) in ACID, which

defines when view results created by one transaction can be read by

others. Our notion of consistency allows a read transaction to read

uncommitted results from a concurrently running write transaction

(e.g., reading the uncommitted 𝐺𝑡1
), but additionally maintains the

semantics that the returned states correspond to a single version.

A follow-up question about preserving consistency is which

version of view graph a read transaction should read. Specifically,

since we process one write transaction at a time, a read transaction

can choose between reading the last committed version of view

graph, which we call the committed graph, and the version that the

latest write transaction is computing, which we call the latest graph.
Depending on the version that is read, we define three types of

consistency, which opt for different trade-offs between invisibility

and staleness. (Recall that invisibility refers to the time duringwhich

the views in the viewport are invisible, while staleness refers to

the time during which the returned view results are not consistent

with the latest graph; both will be defined in Section 2.7.)

The first type of consistency is Consistency-fresh or𝐶𝑓 , which

always reads the latest graph. 𝐶𝑓 returns fresh results but suffers

high invisibility. For the example in Figure 4, with 𝐶𝑓 , read transac-

tions always read𝐺𝑡1
while we are processing the write transaction.

Another type of consistency, called Consistency-committed
or𝐶𝑐 , always reads the most recently committed graph.𝐶𝑐 does not

have invisible views, but the staleness of the returned view results

could be high. In Figure 4, if 𝐶𝑐 is used, read transactions cannot

read𝐺𝑡1
until we have computed all of the view results for𝐺𝑡1

(i.e.,

𝑣
𝑡1
1
and 𝑣

𝑡1
3−6).

We additionally introduce a type of consistency that lies between

𝐶𝑓 and 𝐶𝑐 . This type of consistency requires that a read transac-

tion read the most recent version of the view graph that returns

the minimum number of UCs for this transaction, which we call

Consistency-minimal or 𝐶𝑚 for short. With 𝐶𝑚 , we would typi-

cally read the committed graph to avoid returning UCs when the

new view results in the viewport are not yet computed. Once they

are computed, we can read the latest graph to return fresh view

results. Consider reading 𝑛3−5 in Figure 4. Initially, the read transac-

tions will read𝐺𝑡0
because𝐺𝑡0

does not include UCs. After the new
results for 𝑛3−5 are computed, we will read𝐺𝑡1

because reading𝐺𝑡1

for 𝑛3−5 does not return UC𝑠 , and𝐺𝑡1
is more recent than𝐺𝑡0

. Note

that 𝐶𝑚 is different from 𝐶𝑐 because for 𝐶𝑐 , read transactions will

read the latest graph 𝐺𝑡1
after the write transaction is committed,

while for 𝐶𝑚 , read transactions will read 𝐺𝑡1
after all of the new

results in the viewport are computed, which could be sooner. In ad-

dition, when the user changes the viewport, the minimum number

of UCs returned by a read transaction may not always be zero for

𝐶𝑚 . As we prove next, adopting 𝐶𝑚 may sacrifice visibility if we

need to additionally maintain monotonicity.

Correctness and Performance. Among the MVC properties, both

monotonicity and consistency impact correctness, i.e., maintaining

one or both of these properties may be essential to guaranteeing

correct insights from the visual interface, depending on the appli-

cation. The former ensures that users are not deceived by updates

that get “undone”, while the latter ensures that users viewing mul-

tiple visualizations on a screen can draw correct joint inferences

based on the same snapshot of the source data. On the other hand,

all of the MVC properties impact performance since maintaining

these properties will increase staleness and/or invisibility as we will

show in Section 2.8. Users can further make performance trade-offs

between invisibility and staleness by choosing which version of

the view graph to read for consistency.
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Figure 5: An example timeline for each lens presenting results to the user.

2.5 Feasibility of Property Combinations
We now develop a series of theorems, that we call the MVC Theo-

rems, to characterize the complete subsets of MVC properties that

can be maintained together. We omit some proofs due to space limi-

tations, which can be found in the technical report [13]. Specifically,

we define the possible property combinations involving each type of

consistency (i.e.,𝐶𝑐 ,𝐶𝑓 , and𝐶𝑚). The first two straightforward the-

orems establish the fact that always reading the committed graph

provides monotonicity and visibility for free, while always reading

the latest graph maintains monotonicity, but sacrifices visibility.

Theorem 1 (𝐶𝑐 ). Maintaining consistency-committed will also
maintain monotonicity and visibility for read transactions.

Theorem 2 (𝐶𝑓 ). Maintaining consistency-fresh will alsomaintain
monotonicity for read transactions, but consistency-fresh and visibility
cannot always be maintained.

Unfortunately, with 𝐶𝑚 , we cannot have both monotonicity and

visibility: if two consecutive read transactions involve overlapping

views, the latter transaction needs to read the same or more recent

version of view graph compared to the former one to maintain

monotonicity. Therefore, the latter transaction may read the latest

graph, which may include UCs, thereby violating visibility.

Theorem 3 (𝐶𝑚-impossibility). We cannot always simultane-
ously maintain monotonicity, visibility, and consistency-minimal for
read transactions.

Proof. (Sketch)We construct a counterexample where the three

properties cannot be met together. We assume the initial graph is

𝐺𝑡0
and a user modifies the base table 𝑛1 in Figure 4. This modifica-

tion creates a write transaction𝑤𝑡1
that updates 𝑛1 and 𝑛3−6, and

generates a new version𝐺𝑡1
. We further assume we have computed

the new results 𝑣
𝑡1
1
and 𝑣

𝑡1
3−5, but not 𝑣

𝑡1
6
.

Based on this setup, consider two consecutive read transactions

𝑟1 (reading 𝑛3−5) and 𝑟2 (reading 𝑛5−7), which correspond to the

case that the user moves the viewport. To maintain consistency-

minimal, 𝑟1 will read𝐺𝑡1
and return 𝑣

𝑡1
3−5 since𝐺

𝑡1
does not include

UCs for 𝑟1. Now we show the subsequent transaction 𝑟2 cannot

maintain the three aforementioned properties simultaneously. To

maintain monotonicity and consistency-minimal, 𝑟2 has to read𝐺𝑡1
.

This is because both 𝑟2 and 𝑟1 need to read 𝑛5, and 𝑟
1
has already

read 𝑣
𝑡1
5

in 𝐺𝑡1
. However, reading 𝐺𝑡1

violates visibility because

𝑟2 needs to read 𝑛6 but 𝑣
𝑡1
6

has not yet been computed for 𝐺𝑡1
.

This example proves that monotonicity, visibility, and consistency-

minimal cannot always be met together. □

Interestingly, if we sacrifice one property among the three proper-

ties, we can always maintain the other two.

Theorem 4 (𝐶𝑚-possibility). Transactional panorama can al-
ways maintain any two properties out of monotonicity, visibility, and
consistency-minimal for read transactions.

2.6 Property Combinations and Lenses
Given the feasible property combinations, we now define different

ways of presenting results to the user while preserving a given

property combination, which we call lenses. We use Figure 5 to

show illustrate how each lens presents results to the user for the

example in Figure 4. In this example, the base table 𝑛1 is modified,

which will refresh 𝑛3−6, but not 𝑛7; the viewport initially includes

𝑛3−5 and is modified to 𝑛5−7 after we have computed the new view

results for 𝑛3−5. For simplicity, we use 𝑀 for Monotonicity and 𝑉

for Visibility.

Lenses from Theorems 1-2. We first define the lenses derived

from Theorems 1-2:

• GCNB: Globally-Consistent Non-Blocking

• GCPB: Globally-Consistent Partially-Blocking

Theorem 1 shows that it is possible to preserve𝑀-𝑉 -𝐶𝑐 together.We

denote the lens for this property combination GCNB, which always

reads and presents the view results from the recently committed

graph to the user. On the other hand, lens GCPB preserves 𝑀-𝐶𝑓

based on Theorem 2. It always reads the latest graph, presents new

view results that are consistent with the newlymodified source data,

and marks a view invisible if its view result has not been computed

yet. Figure 5 has shown the examples for the two lenses presenting

results in the visual interface.We include “Globally Consistent (GC)”

in the names of the lenses GCNB and GCPB to indicate that for

these two lenses all of the results (in the viewport or otherwise) are

consistent with a single version of the view graph.

Lenses from Theorems 3-4. Next, we define the lenses derived
from Theorems 3-4:

• LCNB: Locally-Consistent Non-Blocking

• LCMB: Locally-Consistent Minimum-Blocking

• ICNB: Inconsistent Non-Blocking

Lens LCNB adopts 𝑉 -𝐶𝑚 from Theorem 4. Between the committed

and latest view graphs, it reads the most recent version that does

not have UCs for any read transaction, ensuring that each viewport

does not have invisible views and that the results within a viewport

are consistent. Lens LCMB adopts𝑀-𝐶𝑚 from Theorem 4. Between

the committed and latest view graphs, it reads the most recent

version that returns the minimum number of UCs for each read

transaction and preserves monotonicity. Specifically, if reading

either the committed or latest graph preserves monotonicity, LCMB

chooses the version that has the minimum number of UCs for the
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Figure 6: The possible property combinations and the corre-
sponding base lenses covered in transactional panorama

read transaction, where the minimum number of UCs is zero since

the committed graph includes zero UCs. Otherwise, LCMB reads

the latest graph to preserve monotonicity, which may include UCs.
Finally, lens ICNB preserves𝑀-𝑉 . It allows a user to always inspect

results of any views and refreshes each view independently, which

sacrifices consistency. Figure 5 has shown the examples for the

three lenses presenting results in the visual interface.

Discovering new lenses.We call the above lenses as base lenses,
and their names and corresponding properties are summarized

in Figure 6. GCPB is adopted by Power BI [8], Superset [11], and

Dataspread [16], and ICNB is adopted by Google Sheets [2]. Recall

that there is an existing lens, Globally-Consistent Fully-Blocking

(GCFB), that is adopted by Excel [6], Calc [5], and Tableau [12].

It marks all of the views invisible until the system has computed

all of the new view results. We don’t consider it henceforth since

it is dominated by GCPB. GCNB, LCNB, and LCMB are newly

discovered lenses in our model.

𝑘-relaxed variants. As we will show in Figure 7, the three new

lenses above are optimized to achieve low invisibility, but have

high staleness. Therefore, we introduce their 𝑘-relaxed variants

to allow for more invisible views to reduce staleness such that

a user can gracefully explore the performance trade-off between

invisibility and staleness, as visualized in Figure 2. Specifically, 𝑘-

GCNB, the variant of GCNB, will read the latest graph if this graph

involves 𝑘 or fewer UCs, while GCNB reads the latest graph only

when it is committed. Similarly, 𝑘-LCNB, corresponding to LCNB,

reads the most recent version of view graph that has 𝑘 or fewer

UCs for the read transaction, ensuring the viewport has 𝑘 or fewer

invisible views. 𝑘-LCMB, the variant of LCMB, needs to maintain

monotonicity and consistency, and works as follows. If reading

either the committed or latest graph preserves monotonicity, 𝑘-

LCMB reads the recent version that has 𝑘 or fewer UCs for the read
transaction, similar to 𝑘-LCNB. Otherwise, 𝑘-LCMB reads the latest

graph to preserve monotonicity.

2.7 Performance Metrics
With the different lenses defined, we now formally define the per-

formance metrics: invisibility and staleness, for these lenses .

Invisibility represents the total time when the views read by a

user are invisible. We adapt the metric from previous work [16]

to our scenario of modeling reading the view graph as read trans-

actions. We define 𝐼 , the invisibility for a set of read transactions

𝑅 = {𝑟𝑠1 , · · · , 𝑟𝑠𝑚 }, as:

𝐼 (𝑅) =
𝑚−1∑︁
𝑖=1

|𝐻𝑠𝑖
UC | × (𝑇𝑖𝑚𝑒 (𝑟𝑠𝑖+1 ) −𝑇𝑖𝑚𝑒 (𝑟𝑠𝑖 ))

𝑇𝑖𝑚𝑒 (𝑟𝑠𝑖 ) is the time during which 𝑟𝑠𝑖 returns and 𝐻
𝑠𝑖
UC is the

set of UCs in the returned view states. So |𝐻𝑠𝑖
UC | × (𝑇𝑖𝑚𝑒 (𝑟𝑠𝑖+1 ) −

𝑇𝑖𝑚𝑒 (𝑟𝑠𝑖 )) represents the time when the views read by 𝑟𝑠𝑖 stay

invisible between two consecutive read transactions.

StalenessLow High

LCMBGCPB

ICNB

k-LCMB

LCNB GCNB

k-LCNB k-GCNB

InvisiblityHigh Low

LCMBGCPB

k-LCMB

ICNB 
LCNB 
GCNBk-LCNB k-GCNB

X Y

Figure 7: Summary of the orders across different lenses based
on staleness and invisibility

Staleness represents the total time during which read transac-

tions’ returned view results are not consistent with the latest ver-

sion of the view graph. We use 𝑆 to denote staleness for a set of

read transactions 𝑅 = {𝑟𝑠1 , · · · , 𝑟𝑠𝑚 }. Say 𝐺𝑡𝑖
is the latest version

of the view graph before the read transaction 𝑟𝑠𝑖 starts, and say the

returned view result by 𝑟𝑠𝑖 for view 𝑛𝑘 is 𝑣
𝑡 𝑗

𝑘
. 𝑆 is defined as:

𝑆 (𝑅) =
𝑚−1∑︁
𝑖=1

∑︁
𝑣
𝑡 𝑗

𝑘
∈𝐻𝑠𝑖

𝑞𝑟

I[𝑣𝑡 𝑗
𝑘

∉ 𝑉 𝑡𝑖 ] × (𝑇𝑖𝑚𝑒 (𝑟𝑠𝑖+1 ) −𝑇𝑖𝑚𝑒 (𝑟𝑠𝑖 ))

Here, 𝐻
𝑠𝑖
𝑞𝑟 represents the view results that are returned by 𝑟𝑠𝑖 .

I[𝑣𝑡 𝑗
𝑘

∉ 𝑉 𝑡𝑖 ] is 1 if the view result is stale (i.e., 𝑣
𝑡 𝑗

𝑘
does not be-

long to the latest version of the view graph); otherwise, it is 0.

So the inner summation represents the total time when the view

results returned by 𝑟𝑠𝑖 stay stale between two consecutive read

transactions.

2.8 Performance Metrics: Guarantees
Figure 7 plots the ordering across different lenses with respect to

invisibility and staleness. Our analysis assumes the same write

transaction, the same order of computing the new view results,

and the same sequence of read transactions for all lenses. The

theorems and proofs for guaranteeing the ordering can be found in

the technical report [13].

3 MAINTAINING MVC PROPERTIES
We now discuss how to maintain different property combinations

for different lenses defined in transactional panorama. Specifically,

we discuss the design of the view graph and auxiliary data structures

(Section 3.1), and the algorithms for maintaining MVC properties

separately (Section 3.2-3.3) and maintaining property combinations

for each lens (Section 3.4). We assume a ReadTxn manager responsi-
ble for processing read transactions, and anotherWriteTxn manager
responsible for processing write transactions. The ReadTxn and

WriteTxn managers are assumed to run on separate threads to

enable concurrent execution of the two types of transactions. In

Section 5, we discuss the strategy for triggering write transactions.

3.1 View Graph and Auxiliary Data Structures
We maintain a multi-versioned view graph. Each node stores a list

of items, called item list, where a item could be a view result or

UC, and created by a new write transaction. Recall that a UC is a

place-holder for the corresponding view result. Each node in the

view graph is associated with a latch to synchronize concurrent

reads/writes to its item list.

We additionally maintain an auxiliary table, MetaInfo, to store

the timestamps of the last committed and latest view graphs (de-

noted as 𝑡𝑐 and 𝑡𝑠 , respectively), and the number of UCs for the latest
graph (denoted as 𝑐uc). The quantities 𝑡𝑐 , 𝑡𝑠 , and 𝑐uc are maintained

by theWriteTxn manager and will be used by the ReadTxn manager
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to preserve the properties specified by the user. We also include

a latch to synchronize concurrent accesses to the MetaInfo table,

which means any access to MetaInfo needs to acquire this latch.

3.2 Maintaining Consistency
We now discuss preserving three types of consistency: 𝐶𝑐 , 𝐶𝑓 , and

𝐶𝑚 , and will discuss preserving monotonicity and visibility sepa-

rately in the next subsection. Intuitively, maintaining consistency

for a read transaction means this transaction can read the recently

committed and latest view graphs. However, traditional concur-

rency control protocols, such as 2PL or OCC [17], do not apply

here because they do not support the type of consistency that reads

an uncommitted version of the view graph (i.e., 𝐶𝑓 and 𝐶𝑚). To

maintain consistency, we process a read transaction in two steps:

1) Atomically find the timestamps for the last committed and

latest view graphs (i.e., 𝑡𝑐 and 𝑡𝑠 in MetaInfo)

2) Read the versions of view graph for 𝑡𝑐 and 𝑡𝑠 .
Step 1) is done correctly via the latch on the MetaInfo table. Step 2)

requires that the view graphs for 𝑡𝑐 and 𝑡𝑠 exist, which is done by

the WriteTxn manager. Step 2) additionally requires an algorithm

for reading a version of view graph for given a timestamp, which

is done in the ReadTxn manager. We now discuss the designs of

ReadTxn and WriteTxn managers for maintaining consistency.

WriteTxn manager. The WriteTxn manager processes a write

transaction𝑤𝑡𝑖
in three steps:

1) Create a new version of view graph for𝑤𝑡𝑖

2) Compute the view results for the views involved in𝑤𝑡𝑖
and

update the view graph with the new results

3) Update 𝑡𝑐 with 𝑡𝑖
Step 1) guarantees that the timestamp of the latest view graph, 𝑡𝑠 ,

exists. Specifically, the WriteTxn manager creates a new version of

view graph by appending UCs to the item lists of the nodes that𝑤𝑡𝑖

needs to update
3
. Then it atomically updates 𝑡𝑠 with the timestamp

of the running write transaction𝑤𝑡𝑖
, and 𝑐uc, the number of UCs

for the latest graph, in MetaInfo. Step 2) computes the view result

and replaces the corresponding UC for each view, and updates 𝑐uc.
It leverages a scheduler to decide the order of computing the view

results to reduce invisibility and/or staleness, which we discuss

in Section 4. Step 3) updates the timestamp of the last committed

version (i.e., 𝑡𝑐 ) with 𝑡𝑖 , which guarantees that the version of view

graph for 𝑡𝑐 exists. We say𝑤𝑡𝑖
is committed if we have successfully

performed the aforementioned three steps for𝑤𝑡𝑖
.

ReadTxnmanager. The ReadTxn manager uses timestamps 𝑡𝑐 and

𝑡𝑠 to read the last committed and latest view graphs. Depending on

the properties that need to be maintained, the ReadTxn manager

decides the version to read, which is discussed in Section 3.4. Here,

we present the algorithm for reading a version of view graph. As-

suming a transaction 𝑟𝑠 𝑗 needs to read 𝐺𝑡𝑖
, the intuition is that for

each view read by 𝑟𝑠 𝑗 , we read the recent view result/UC whose

timestamp is no larger than 𝑡𝑖 . The reason is that we have two

possible cases if a view result/UC for a node 𝑛𝑘 belongs to 𝐺𝑡𝑖
: 1)

𝑛𝑘 is or will be modified by 𝑤𝑡𝑖
, in which case we have a view

result/UC whose timestamp is 𝑡𝑖 ; 2) 𝑛𝑘 is not modified by 𝑤𝑡𝑖
, in

which case the most recent view result whose timestamp is smaller

than 𝑡𝑖 belongs to 𝐺
𝑡𝑖
.

3
For GCNB and ICNB, which do not need to read the uncommitted version, we can

skip generating UCs as an optimization

3.3 Maintaining Monotonicity and Visibility
To guarantee monotonicity, in the ReadTxn manager we maintain

a table (denoted as LastRead) that stores the timestamps of the view

results or UCs that are last read. Monotonicity requires that a read

transaction reads the view results or UCs whose timestamps are no

smaller than the corresponding timestamps in the LastRead table.

To maintain visibility, we guarantee that the view states returned

by a read transaction do not include UCs.

3.4 Maintaining Property Combinations
For the lenses that need to maintain consistency, we read the

MetaInfo and LastRead table to decide which versions of the view

graph to read. Specifically, to maintain𝑀-𝐶𝑓 for GCPB we use 𝑡𝑠 in

MetaInfo to read the latest graph. Similarly, to preserve 𝑀-𝑉 -𝐶𝑐 for

GCNB, we use 𝑡𝑐 to read the last committed graph. For 𝑘-GCNB,

we need to check whether the number of UCs for the latest graph
(i.e., 𝑐uc in MetaInfo) is no larger than 𝑘 . If so, we read the version

for 𝑡𝑠 , otherwise, 𝑡𝑐 is used.

Maintaining 𝑉 -𝐶𝑚 for LCNB will read both the last commit-

ted and latest view graphs. Among the two sets of returned view

states, we choose to return the set that does not have UCs and
corresponds to the more recent version. Maintaining 𝑀-𝐶𝑚 for

LCMB requires preserving monotonicity. This is done by checking

the LastRead table to see whether reading the committed version

violates monotonicity. If not, LCMB follows the same procedure of

LCNB. Otherwise, LCMB will read the latest graph. 𝑘-LCNB and

𝑘-LCMB are processed similarly with 𝑘 UCs relaxed.
For the property combination 𝑀-𝑉 (adopted by ICNB), which

sacrifices consistency, we do not need to read MetaInfo. Instead,

we directly read the view graph and return the most recent view

result for each node involved in the read transaction.

4 WRITE TRANSACTION SCHEDULER
We analyze two factors that impact the performance of the sched-

uler and design a scheduling algorithm that considers these factors

to reduce invisibility and staleness. Our discussion assumes pro-

cessing a write transaction𝑤𝑡𝑖
that updates a set of nodes 𝑁

𝑡𝑖
𝑤 .

Factors that impact invisibility and staleness. Staleness (or
invisibility) is increased if a view that is read by a user is stale

(or invisible), respectively. Therefore, prioritizing computing new

results for views that a user will spend more time reading will

best reduce the values of the two metrics. Since it is impossible to

exactly predict how long the user will spend reading a view, we

use 𝐷
𝑡𝑖
𝑘
, the total time during which a view 𝑛𝑘 has been read in the

viewport since the write transaction𝑤𝑡𝑖
started as a proxy. Using

𝐷
𝑡𝑖
𝑘
is based on the assumption that the user will spend more time

on a view in the future if they spent more time on this view in the

past. For a set of read transactions 𝑅 = {𝑟𝑠1 , · · · , 𝑟𝑠𝑚 } after𝑤𝑡𝑖
is

started, 𝐷
𝑡𝑖
𝑘
is defined as

𝐷
𝑡𝑖
𝑘
=

𝑚−1∑︁
𝑗=1

I[𝑛𝑘 is read by 𝑟𝑠 𝑗 ] × (𝑇𝑖𝑚𝑒 ′(𝑟𝑠 𝑗+1 ) −𝑇𝑖𝑚𝑒 ′(𝑟𝑠 𝑗 ))

𝑇𝑖𝑚𝑒 ′(𝑟𝑠 𝑗 ) is the time when the system receives the read transac-

tion 𝑟𝑠 𝑗 . I[𝑛𝑘 is read by 𝑟𝑠 𝑗 ] is 1 if the view 𝑛𝑘 is in the viewport

when 𝑟𝑠 𝑗 is issued, otherwise 0. Therefore, I[𝑛𝑘 is read by 𝑟𝑠 𝑗 ] ×
(𝑇𝑖𝑚𝑒 ′(𝑟𝑠 𝑗+1 ) −𝑇𝑖𝑚𝑒 ′(𝑟𝑠 𝑗 )) represents the duration when the view
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𝑛𝑘 stays in the viewport between two consecutive read transactions.

The system tracks the arrival time of each read transaction and

the views that are read by this transaction to calculate 𝐷
𝑡𝑖
𝑘
. In our

scheduling algorithm, we prioritize scheduling the view that has

higher 𝐷
𝑡𝑖
𝑘
.

In addition, there is another factor that impacts the staleness

and invisibility: the different amounts of time for computing the

results for different views. Intuitively, prioritizing computing the

new result for the view that has the least execution time will allow

the user to read a fresh view earlier, which is also observed by

previous work [16]. We use 𝑄
𝑡𝑖
𝑘
to represent the amount of time

for computing the new result for the view 𝑛𝑘 while processing𝑤𝑡𝑖
.

The view that has a smaller 𝑄
𝑡𝑖
𝑘
should have a higher priority.

Scheduling algorithm.Wedesign ametric 𝑃
𝑡𝑖
𝑘

= 𝐷
𝑡𝑖
𝑘
/𝑄𝑡𝑖

𝑘
to decide

the priority of a view 𝑛𝑘 . 𝑃
𝑡𝑖
𝑘
captures the characteristics of the two

aforementioned factors. If two views have the same 𝐷
𝑡𝑖
𝑘
, a lower

𝑄
𝑡𝑖
𝑘
yields a higher 𝑃

𝑡𝑖
𝑘
. Similarly, for the same 𝑄

𝑡𝑖
𝑘
, a higher 𝐷

𝑡𝑖
𝑘

results in a higher 𝑃
𝑡𝑖
𝑘
.

The scheduling algorithm works as follows. We first sort 𝑁
𝑡𝑖
𝑤 ,

the set of nodes 𝑤𝑡𝑖
will update, topologically, break them into

topologically independent groups, and compute each group with

respect to the topological order. That is, we should only compute

view results for views whose precedents are updated. To schedule

a view to be updated within a group, we compute 𝑃
𝑡𝑖
𝑘

for each

yet computed view 𝑛𝑘 in this group and choose the view with the

highest 𝑃
𝑡𝑖
𝑘
.

5 PROTOTYPE IMPLEMENTATION
We now discuss implementing the transactional panorama frame-

work in Superset [11], a widely used open-source BI tool. Superset

provides a web-based client interface, where a user can define visu-

alizations and organize them as part of a dashboard. The dashboard

can be refreshed manually or configured to refresh periodically.

Each refresh is interpreted as a write transaction. Superset adopts

a web server to process front-end requests and employs a database

to store the base tables and compute new view results for visual-

izations. The details of the prototype can be found in the extended

version [13].

6 EXPERIMENTS
The high-level goal of our experiments is to characterize the rel-

ative benefits of different lenses for various workloads—to help

users select the right lens for their needs and make appropriate

performance trade-offs (Section 6.1). Our experiments also seek

to demonstrate the value of the new lenses, which provide new

trade-off points for the user to select (Section 6.1-6.2), and evaluate

the performance benefit and overhead of the optimizations for the

write transaction scheduler (Section 6.3).

Benchmark.Webuild a dashboard based on the TPC-H benchmark.

This dashboard includes 22 visualizations for all of the 22 TPC-

H queries and runs on 1 GB of data stored in PostgreSQL. This

dashboard places two visualizations in a row, as in Figure 8. We test

one refresh of the dashboard with respect to modifications to the

base tables unless otherwise specified, since the main focus of this

Dashboard

q2q1

q4q3

q6q5

q22q21

Figure 8: TPC-H
dashboard

Configurations Options Default Value

Read behavior

{Regular Move,

Wait and Move,

Random Move }

Regular Move

Explore range {22, 16, 10, 4} 22

Viewport size {4, 10, 16, 22} 4

Figure 9: Experiment configurations
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Figure 10: Evaluations of different read behaviors

paper is on the scenario where there is only one write transaction

in the system at a time. This case happens when the period for

triggering a refresh is longer than the time for executing the refresh,

or if the system only processes one refresh at a time. For the test of

one refresh, we insert 0.1% new data to the tables Lineitem, Orders,

and PartSupp and then refresh all of the 22 visualizations. One

test ends when we have computed the new view results for all

visualizations.

We build a test client to simulate different user behaviors and

dashboard configurations. Similar to the web client of Superset, this

client sends web requests to the web server to trigger a refresh (i.e.,

start a write transaction), configure the lens used for processing a

refresh, and regularly pull refreshed results of visualizations in the

viewport (i.e., start read transactions). We simulate three types of

user behaviors in moving the viewport to read different visualiza-

tions, which we call the read behavior : 1) Regular Move: regularly
moving the viewport downward or upward and reversing the direc-

tion if we reach the boundary of the dashboard; 2) Wait and Move:
similar to the first one with the difference that it only moves the

viewport after all of visualizations in the viewport are refreshed; and

3) Random Move: randomly chooses a viewport, which simulates

the behavior where the user moves around a lot in the dashboard.

For the three behaviors, the viewport is placed at the top of the

dashboard at the beginning of each test and moved every 1 second.

For the first two behaviors, each move changes the viewport by a

row of visualizations. The test client can additionally vary the num-

ber of visualizations the user will inspect in the dashboard (denoted

as explore range) during a test. We assume these visualizations are at

the top of the dashboard. For example, explore range 4 means that

the user will explore the visualizations for 𝑞1−4 in Figure 8 during a

refresh. Our experiments also vary the number of visualizations in

the viewport (denoted as viewport size) to evaluate how the relative

sizes of the viewport and the dashboard impact invisibility and stal-

eness. The experiment configurations are summarized in Figure 9

and we use default configurations unless otherwise specified.

Configurations, andmeasuring invisibility and staleness. The
experiments are run on a t3.2xlarge instance of AWS EC2, which

has 16 GB of memory and 8 vCPUs, and uses Ubuntu 20.04 as the OS.

Our experiments use PostgreSQL 10.5 with default configurations.
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Figure 12: The number of invisible and stale views in the viewport during the refresh

The time interval between two consecutive read transactions is set

to be 100 ms to avoid overwhelming the web server. that is, the test

client sends requests to pull refreshed results every 100 ms. We run

each test three times and report the mean number except for the

tests that involve Random Move. For those tests, we run each 10

times and report the min, max, and mean.

To measure invisibility and staleness, the test client tracks the

timestamp when each read transaction returns and the content of

the returned view states, which include information for whether

each returned view state is a UC or a stale view result. Using this

information and the definitions in Section 2.7, we can compute

invisibility and staleness. For example, the invisibility for one test

is initialized to 0. During the test, if a read transaction has returned

a UC for a view, then the time difference between when this and

the next read transaction return will be added to the invisibility.

6.1 Performance of Base Lenses
We evaluate the configurations in Figure 9 for the base lenses using

one refresh. Afterwards, we test the impact of varied refresh inter-

vals for multiple refreshes.

Read behavior. Figure 10 reports the invisibility and staleness for

the base lenses under different read behaviors. Each test reports

the mean with the min/max as the error bar (i.e., the red line). We

note that if the invisibility or staleness for a lens is zero, then that

lens is not shown in the figure. To better see the trade-off between

invisibility and staleness, we also plot the two metrics together

in Figure 11 for Regular Move. We observe significant differences

in invisibility and staleness for different lenses in Figure 10—the

new lenses (i.e., LCMB, LCNB, and GCNB) can significantly reduce

invisibility while maintaining consistency compared to the existing

lens GCPB. Specifically, GCPB has the highest invisibility because it

always reads the latest graph, and LCMB, the lens that first reads the

committed graph and switches to read the latest graph, can reduce

invisibility by up to 95.2% compared to GCPB (i.e., Random Move).

LCMB reduces less invisibility in the case ofWait andMove because

it spends a longer time on reading the latest graph. That is, after the

first viewport, LCMB always reads the latest graph for the rest of

the viewports. LCNB and GCNB have zero invisibility. Recall that

LCNB always reads the version of view graph with zero UCs for
the viewport to maintain consistency and visibility, but sacrifices

monotonicity, and GCNB reads the last committed graph until all

of the new view results are computed for the latest graph. ICNB

also has zero invisibility, but sacrifices consistency.

On the other hand LCMB, LCNB, and ICNB can significantly

reduce staleness relative to GCNB. For example, LCMB reduces

staleness by up to 78.9% compared to GCNB (i.e., forWait andMove).
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Figure 13: Evaluations of different explore ranges
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Figure 14: Evaluations of different viewport sizes
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Figure 15: Evaluations of varied 𝑘 values
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Figure 16: Evaluation of varied refresh intervals

LCMB reduces the staleness by sacrificing visibility while ICNB and

LCNB need to sacrifices consistency and monotonicity, respectively.

Overall, these results show that it is valuable to enable a user to

have these options to make appropriate trade-offs. In addition,

Figure 10b verifies the result that the order between ICNB and

LCMB for staleness is undecided in Section 2.8—the staleness of

ICNB can be either higher or lower than LCMB in Figure 10b.

To better understand the behavior of different lenses, we fur-

ther report the returned number of invisible and stale views by

read transactions for Regular Move while we are processing the

write transaction. We aggregate the read transactions that finish

for every 2s and report the mean in Figure 12. The areas under
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Figure 17: Trade-off between invisibility and staleness with varied 𝑘 values
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Figure 18: Evaluation of scheduler optimizations (staleness)
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Figure 19: Evaluation of scheduler optimizations (invisibility)

the curve represent the invisibility/staleness in the respective fig-

ures. In Figure 12a, GCPB initially returns many UCs as it reads
the new version, and the number of UCs decreases as we compute

more view results. Specifically, for the first 10s, a user sees more

than 3 UCs on average, out of the 4 visualizations in the viewport.

Therefore, this user cannot interact for the first 10s, significantly

diminishing interactivity. LCMB, on the other hand, initially reads

the committed graph to avoid invisible views. Then, it reads the

latest graph (i.e., after 15s) to present fresh results to the user as

GCPB does. Figure 12b shows the number of stale views over time.

GCNB reads the same number of stale views as the viewport size

(i.e., 4 in our test) until the last transaction. LCMB, LCNB, and ICNB

can read the new version during refresh, which reduces staleness.

Explore range. This experiment evaluates the impact of varied

explore ranges on different lenses. The results in Figure 13 show

that we have smaller invisibility/staleness for GCPB, LCMB, LCNB,

and ICNBwhen the user explores a smaller number of visualizations

because these lenses are more likely to read the new results for

smaller explore ranges. The staleness for GCNB is independent of

the value of explore range since it only refreshes the visualizations

after all of the view results for the new version are computed.

Viewport size. Figure 14 reports the results of varying the view-
port sizes. The invisibility for GCPB increases as viewport size

increases because the user will read more invisible views for each

read transaction. However, the invisibility for LCMB slightly in-

creases and then decreases to zero. The reason for decreasing invis-

ibility is that a larger viewport size pushes LCMB to wait longer to

read the latest graph, which decreases invisibility. In an extreme

case, when the viewport size covers the whole dashboard, LCMB’s

performance converges to GCNB, which has zero invisibility but

the highest staleness, as shown in Figure 14b. The staleness for

GCNB, LCMB, LCNB, and ICNB increases as they will read more

stale views in one read transaction.

Refresh interval.We test three refreshes triggered periodically,

where the interval between two succeeding refreshes (i.e., refresh in-

terval) is varied from 10s to 60s. Same as the test for one refresh,

before starting each refresh, we insert 0.1% new data to the data-

base. We report the staleness and invisibility for different lenses.

Figure 16 shows that a smaller refresh interval introduces higher

staleness and invisibility when the refresh interval is less than the

execution time for processing a refresh (i.e., 37s in our test) for all

lenses except GCNB. This is because while a version of the view

graph is being computed, a smaller refresh interval creates a new

version of the view graph earlier. This leads the view results of

the under-computation version of the view graph to become stale

earlier, and, in turn the staleness and invisibility are increased. The

staleness of GCNB is not impacted by the varied refresh interval

because GCNB presents the up-to-date view results to the user

when it finishes all of the refreshes in the system and its staleness is

determined by the execution time for finishing multiple refreshes,

which is independent of the refresh interval.

6.2 Performance of 𝐾-Relaxed Variants
We evaluate the impact of 𝑘 for the 𝑘-relaxed variants; Recall that

𝑘 represents the additional UC𝑠 permitted while reading the latest

graph for LCMB, LCNB, and GCNB. Here, we vary the 𝑘 from 0 to

22 with an interval of 2. Our results in Figure 15-17 show that the 𝑘-

relaxed variants gracefully explore the trade-off between invisibility

and staleness, and enable more trade-off points that are not covered

in base lenses. Figure 15a shows that as we admit more UCs, the
invisibility increases for the 𝑘-relaxed variants. However, when

𝑘 becomes the same as or larger than the viewport size (i.e., 4 in

our test), the invisibility does not change for 𝑘-LCNB and 𝑘-LCMB

since they have converged to GCPB. However, staleness decreases

as we have a larger 𝑘 as shown in Figure 15b.

Figure 17 shows the trade-offs between invisibility and staleness

under three read behaviors. We see that the 𝑘-relaxed variants have

1504



different trade-offs for different read behaviors. For example, for

Regular Move in Figure 17a 𝑘-LCNB has better trade-offs than 𝑘-

GCNB when the staleness is larger than 100s, meaning that for

the same invisibility, 𝑘-LCNB has smaller staleness than 𝑘-GCNB.

When the staleness is smaller than 100s, all of the three 𝑘-relaxed

variants stay on the same trade-off curve. For Random Move, 𝑘-

LCMB has the best trade-offs compared to the other two variants,

and for Wait and Move, 𝑘-GCNB has the best trade-offs.

6.3 Effectiveness of Scheduler Optimizations
This experiment evaluates the benefit and overhead of the scheduler

optimizations in transactional panorama (TP for short). We com-

pare TP with three baselines: 1) NoOpt, after updating base tables

randomly picking a view to compute, which is from Superset; 2)

Antifreeze, from existing work that prioritizes computing the view

with the least execution time [16], which is the second factor in

TP’s scheduling metric; 3) MetricOpt, which prioritizes computing

the view that introduces the most invisibility plus staleness. Since

the invisibility and staleness is increased only when a view is read,

MetricOpt effectively prioritizes computing the view that the user

spent the most time reading, which corresponds to the first factor

in TP’s scheduling metric (i.e., 𝐷
𝑡𝑖
𝑘
). Recall that the effectiveness

of 𝐷
𝑡𝑖
𝑘
depends on the property that a view that was read more

in the past is more likely to be read in the future, which we call

temporal locality. To study impact of temporal locality, we vary

explore ranges and report staleness and invisibility for base lenses

under different scheduling metrics.

Figure 18 shows that TP has smaller staleness compared to NoOpt

and Antifreeze for all lenses. The performance benefit of TP over the

baselines is largerwhenwe have smaller explore ranges. Specifically,

TP reduces staleness by up to 75% and 62% compared to NoOpt

and Antifreeze, respectively. TP and the baselines have the same

staleness for GCNB because GCNB refreshes the views after all of

the new results are computed and its staleness is independent of a

scheduler policy. Figure 19 shows that TP has smaller invisibility

compared to NoOpt and Antifreeze in most cases. Similar to the

results of staleness, TP has greater benefit when explore range is

smaller except for LCMB with explore range 4. Here, the explore

range equals the viewport size, so LCMB does not have invisibility.

Overall, TP reduces invisibility by up to 70% and 54% compared to

NoOpt and Antifreeze, respectively. However, TP may have higher

invisibility than Antifreeze when the locality of reading the view

graph weakens, such as for LCMB with explore range being 22. In

this case, TP increases invisibility by 33%.

MetricOpt has similar results compared to TP since MetricOpt

also prevails when there is strong temporal locality. However, when

the locality weakens (e.g., the explore range is 22), TP has lower

staleness and invisibility because TP additionally considers the

different execution time for refreshing different views (i.e., the factor

from Antifreeze). Specifically, TP reduces staleness and invisibility

by up to 12% and 13%, respectively, compared to MetricOpt.

7 RELATED WORK
Our work is related to work in transaction processing, view main-

tenance and stream processing, and rendering results in interfaces.

Transaction processing. There is a long line of work on improving

the performance of transaction processing while maintaining guar-

antees such as serializability or snapshot isolation [15, 19, 20, 26,

29, 34, 36, 38, 40]. However, none of these projects consider main-

taining consistency while reading uncommitted results or other

desired user properties in visual interfaces, such as visibility and

monotonicity.

View maintenance and stream processing.Many papers pro-

pose various efficient incremental viewmaintenance algorithms [14,

21–23, 25, 30, 35, 42]. These techniques are orthogonal to our

model and can be used to improve performance. Some papers ex-

plore the intersection of stream processing and transaction pro-

cessing [18, 24, 27, 43]. Transactional panorama is different from

these papers because they do not consider the user’s semantics of

consuming the results in a visual interface along with properties

such as monotonicity and visibility.

Rendering analysis results in a visual interface. As summa-

rized in Table 1, many existing data analysis tools make fixed

choices on the properties maintained while rendering analysis re-

sults with respect to an update. Interaction Snapshots [37] addition-

ally presents a scaled-down display of the dashboard for each inter-

action (e.g., cross-filter), where this scaled-down version serves as

the new snapshot, with an indicator for whether the new snapshot is

computed. This way, the user can interact with the old snapshot and

replace it with the new snapshot later, similar to GCNB. However,

Interaction Snapshot does not allow a user to read uncommitted

results and choose the different properties they desire. Another

line of research renders approximate results [28, 31, 32, 39, 41] and

refines them later; we don’t use approximation.

8 CONCLUSION
We introduced transactional panorama, a framework that explores

the fundamental trade-offs between monotonicity, consistency, and

visibility when a user examines results in a visual interface under

updates. We identified feasible property combinations—and their

lenses—based on the MVC Theorems, as well as new performance

metrics, following it up by proving ordering relationships between

various lenses for the metrics. We additionally designed new algo-

rithms for efficiently maintaining different property combinations

and processing updates. We implemented transactional panorama

and its constituent lenses in a popular BI tool, Superset. Our experi-

ments demonstrated significant performance differences across our

lenses for various workloads, illustrating the benefit of our frame-

work and newly discovered property combinations. We believe

our transactional panorama framework is the first step in a new

research direction around bringing transactional notions to end-user
analytics/BI, with a human continuously “in-the-loop”.
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