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Abstract

This paper reports the main methods applied in our submission to
TREC 2017 Precision Medicine Track. The goal of this challenge was to
retrieve documents containing potential treatments and clinical trials for
specific patient characteristics. Our main strategy involved using a seman-
tic search engine called Thalia (Text mining for Highlighting, Aggregating
and Linking Information in Articles), which allows the recognition of dis-
eases and genes mentioned in text. The recognition of named entities and
its linking to concepts in ontologies facilitates more accurate retrieval than
just relying on plain textual search and matching. We also highlight the
different strategies applied when querying Thalia in the context of this
Precision Medicine challenge, which aimed to support different use cases
(i.e. more focused or broader searches).

1 Introduction

Precision medicine is used to describe a recent trend that aims to provide treat-
ment to patients based on their individual characteristics [22, 1]. This can
help achieve better results than generic approaches, since patients’ features,
especially those present in their genome, greatly influence the effectiveness of
possible therapies [6]. However, an important challenge needs to be addressed
before the health professional can select an optimal course of treatment based
on the patient’s characteristics. A great deal of research on the relationship
between treatments and genetic variances is available, but most of it remains
scattered and hidden in the vast body of scholarly literature. As a result, this in-
formation is not readily available to clinicians. The lack of support tools, e.g. to
suggest relevant research publications, is one of the major obstacles in precision
medicine, which hinders the provision of relevant information inf context for a
particular patient [16].
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TREC 2017 Precision Medicine Track1 aims to address this problem, focus-
ing on the retrieval of treatment-related information for cancer patients from two
sources: abstracts of articles (indexed in PubMed2) and conference proceedings,
and clinical trial descriptions from the ClinicalTrials.gov database3.

Our approach to address this challenge was based on the use of a biomedical
semantic search engine called Thalia (Text mining for Highlighting, Aggregating
and Linking Information in Articles), which has been developed at our research
centre. The main purpose of Thalia is to enable semantic search in the context
of biomedical literature by leveraging previous named entity (NE) annotation
efforts. The key strategy to achieve a semantic behaviour is to normalise NEs,
i.e. link entities to concepts in an openly available ontology, which effectively
allows to map a concept with its multiple word forms. Thalia covers the en-
tire PubMed, which at the point of this challenge contained about 27 million
references.

The remaining of the paper describes related work in the area of precision
medicine, the main methods applied to handle this problem and a discussion
of the results. The methodology applied includes: annotating entities through
text mining workflows, indexing of documents in a search engine, and the rep-
resentation of the patient data and the different types of queries applied. Five
different query strategies were provided for each sub task: this was done both
to compare different matching strategies and to account for different user needs,
i.e. more focused (higher precision) or broader (higher recall) searches.

2 Related work

Computational methods have been shown to be the cornerstone of precision
medicine [13, 24, 10]. In particular, text mining has contributed to the ad-
vance of the field in different ways. For instance, several works have addressed
the extraction of different types of associations from large bodies of research
publications. Such relationships could be gene mutations and diseases [28],
protein-variants and diseases [27], or disease-gene-variant triplets [29]. In the
case of the work by Wei et al. [34], the authors go a step further aiming to
normalise gene variants to unique identifiers.

A recent article by Breitenstein et al. [3] reported how a rule-based text min-
ing approach can be used to infer breast cancer receptor status from electronic
health records. This information can be complemented with structured infor-
mation contained in cancer registries to provide the type of cancer treatment
that is optimal for a given patient. Integration of knowledge extracted from un-
structured data still requires addressing challenges that go from heterogenous
standards for annotation to security and ethical factors [4].

Mining entities and relationships is a first step towards the goal of untapping
hidden knowledge from vast amounts of biomedical literature. A consequent step

1http://www.trec-cds.org/2017.html
2https://www.ncbi.nlm.nih.gov/pubmed/
3https://www.clinicaltrials.gov/
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is to provide search mechanisms that would allow medical doctors to retrieve
articles or clinical trials that describe potential treatment for the particularities
of patients. Several articles have proposed engines for searching entities and
relationships, i.e. semantic search engines in PubMed [31, 21], clinical trials [5],
or electronic health records [35, 12]. Recently, a semantic search engine has
been made available, which specializes in personalised cancer therapies [17].

In summary, although there have been several attempts to use elements of
text mining for precision medicine purposes, few works addressed the problem
of providing support for therapeutic decisions in a clinical context. The TREC
precision medicine track offers an excellent opportunity to invigorate research
in this direction.

3 Task

The goal of the Precision Medicine Track at TREC 2017 is to support clinical
decision by providing helpful information for a particular patient. The patient
cases (referred to as topics) are described using the following attributes:

• target disease (a type of cancer),

• relevant genes and their variants present,

• demographic information: age and gender,

• other medical conditions.

Each of these attributes is provided as plain text, e.g. 12-year-old male or CDK4
Amplification. The whole task consists of 30 topics.

There are two document collections to retrieve relevant information from:
scientific abstracts and clinical trials. The first one is based on a January 2017
snapshot of PubMed (over 26 million documents) plus additional abstracts from
proceedings of the American Association for Cancer Research4 and American
Society of Clinical Oncology5 conferences (70,025 documents). The second col-
lection contains a snapshot from April 2017 of the ClinicalTrials.gov6 database
(241,006 documents). According to the provided guidelines7, a document is
considered relevant for a topic if it:

• focuses on the same, more specific or more general disease than the one
in the topic,

• takes into account the gene from the topic and either includes the same
variant or does not specify any variant, and

4http://www.aacr.org/
5https://www.asco.org/
6https://clinicaltrials.gov/
7http://trec-cds.appspot.com/2017.html and http://trec-cds.appspot.com/

relevance_guidelines.pdf
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• does not exclude from the trial or study patients with the provided demo-
graphics and conditions.

In the case of the clinical trials task, relevance implies that the corresponding
patient would have been eligible to participate in the trial. For a scientific
abstract there is an additional requirement, which is to include information
useful in the clinical context, e.g. about treatment or prevention of the disease
prognosis.

The output for each topic consists of two ranked lists of the identifiers of
up to 1000 relevant documents: one with scientific abstracts and the other one
with clinical trials.

4 Methods

This section reports the main methodological steps of our work. We describe
Thalia’s building blocks (i.e. NE recognisers and document indexing), its cus-
tomisation for the challenge, and how we converted the topics into search queries
to retrieve the recommended documents for the patients.

4.1 Named entity recognition

In order to allow semantic search capabilities, Thalia makes use of NE recog-
nisers developed as components of Argo [26], which is a web-based text mining
system. Since Argo is based on the UIMA architecture [9], its workflows could
be deployed in several ways. Given the heavy computational burden of annotat-
ing the whole PubMed, we created a standalone executable using the uimaFIT
library8, which was then ran on Computational Shared Facility (CSF), a cluster
infrastructure available at the University of Manchester. Each task consists of
reading a portion of PubMed, annotating NEs in text, and outputting them in
the PubAnnotation format [15], which was extended to JSON-LD [18] by replac-
ing object strings with links to ontologies. Thalia includes annotation of several
types (Chemicals, Diseases, Drugs, Genes, Metabolites, Proteins, Species and
Anatomical entities), but for the purpose of this task we used just two of them:

• Genes recognised by a conditional random field (CRF)-based model trained
on the BioCreative II GM Track training corpus [25, 30], which was then
followed by normalisation (linking) to the HGNC ontology [11];

• Diseases recognised by a CRF-based model trained on the NCBI disease
training set [25, 8], which was then followed by normalisation to the UMLS
Metathesaurus ontology [19].

To make this possible, the following UIMA components for biomedical language
processing were pipelined:

8https://uima.apache.org/uimafit.html
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• LingPipe sentence splitter9,

• OSCAR 4 tokeniser [14],

• GENIA part of speech tagger [33],

• NERSuite CRF tagger10,

• Acromine acronym recogniser [23],

• Concept normaliser [2],

• Binary UIMA CAS writer and reader from the DKPro component collec-
tion [7].

4.2 Search engine

Once the NER workflows were run on the whole corpus, the abstract text and
its annotations were then indexed on Elasticsearch11, along with any metadata.
In order to adapt Thalia for this challenge, we also incorporated abstracts from
AACR and ASCO. The index allows to search in a matter of seconds over the
whole collection by providing a textual keyword or choosing a concept from
an ontology. Standard tokenisation was applied on textual content, while for
the annotations we indexed their word forms as well as their identifiers in the
ontology.

For the clinical trials data, we needed to select fields that we identified as of
interest for indexing, namely: official title, brief summary, detailed description,
age eligibility, gender eligibility and eligibility criteria. The eligibility criteria
field needed some preprocessing as it could contain inclusion as well as exclusion
conditions. Upon examination of multiple cases, we manually generated rules
to separate inclusion from exclusion criteria, which involved the identification
of negation clauses as well as regular expressions to detect whether the text
referred to inclusion or exclusion criteria.

There are two means of accessing the search index: one is via a web user
interface, while the other one is via a RESTful API. Given the nature of the
task, which required to experiment with different query strategies, the API was
a more natural fit for this task. We developed our own query language for the
API, which allows to search for textual strings or concepts, which can be also
combined in a Boolean expression.

4.3 Topic representation

In the process of generating queries, each topic, i.e. a patient case, could be
represented by the following data:

9http://alias-i.com/lingpipe/
10http://nersuite.nlplab.org/
11https://www.elastic.co/
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1. Target disease to be treated, both as its name (Liposarcoma) and UMLS
Metathesaurus concept identifier (C0023827);

2. List of Genes that have to be taken into account, also as a name (KRAS )
and an HGNC identifier (6407), and optionally a corresponding Variant
represented as a text string, including proper names (V600E ) and modi-
fication types (Amplification);

3. List of Other conditions, represented in the same way as Target;

4. Demographic data: Gender as a Boolean (male of female) variable and
Age as a number.

We use a script to automatically extract the above information from the topics
XML file provided by the organisers of the challenge. To find the concept
identifier for a given name of a disease or a gene we use a Thalia feature that
returns the most commonly associated identifier with a given name based on
the whole PubMed corpus.

4.4 Query construction

This subsection contains a description of the process of converting the topics
represented as above into queries for Thalia. First, we present the techniques
used as building blocks for queries (Subsections 4.4.1–4.4.4) and then we show
the list of five queries that were prepared to search in abstracts (Subsection
4.4.6) and in the clinical trials (Subsection 4.4.7).

Each of the query strategies was used to retrieve lists of documents corre-
sponding to particular topics, which were then submitted to the task organisers
as runs. Since every run was created by using a corresponding query, we will
use these terms interchangeably.

4.4.1 Matching modes

Since diseases and genes are semantically interpreted by Thalia, several modes
of matching between a target NE and candidate occurrences in documents are
possible:

• T (textual): a term is matched if it occurs in a document in the same
textual form (allowing differences in number or letter case);

• S (semantic): a term is matched if the NE identifier is the same and
regardless of whether a different name is used;

• M (mixed): a term is matched if either textual or semantic matching
happens.
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4.4.2 Fields of interest

Both scientific abstracts and clinical trials have several fields that can contain
NEs, yet may not be relevant for this challenge. For the PubMed task, we
concatenated the contents of title and abstract and treated them as a single
document. In the case of the clinical trials the following fields were processed
separately:

• official Title: one-sentence summary of a trial;

• brief Summary: one-paragraph description of the trial, including its main
goals;

• detailed Description: several paragraphs of text, including details of the
study, but also background, related work, etc;

• Exclusions in eligibility criteria: a list of conditions that disqualify a
participant from the trial. Note that the exclusions were inferred from the
eligibility criteria field.

4.4.3 Ontological expansion

The normalisation of NE against ontologies in Thalia allows us to manually
explore the ontology structure and find concepts related to the target one, so
that they can be used in the queries. In this challenge, we applied the following
manual procedure:

1. For a given Target disease concept, we browsed the UMLS Metathesaurus
to select:

(a) the main concept corresponding to the disease,

(b) the concept automatically recognised as most common for the given
name by Thalia (see Section 4.3),

(c) all the concepts immediately connected to the main concept with RN
(narrower meaning) or RB (broader meaning) UMLS relations12.

2. Replaced the original concept from the query with a list of all the concept
identifiers found in the previous step.

This procedure, denoted as Neighbours(), allows us to broaden the search by
accepting occurrences of related diseases in addition to the original one.

12If the main concept has only one relation, we use this single related concept to find RN
and RB neighbours.
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4.4.4 Precision medicine keywords

For the sake of suggesting articles that contain potential treatment for the pa-
tient, we can include an additional requirement: an abstract has to contain
words that are likely to indicate that a medical treatment is mentioned. To
account for this, we compiled a list of keywords based on manual inspection of
the example documents, namely: therapy, therapeutic, diagnosis, patient, tar-
get, profiling, prognosis, prognostic, predict. A criterion denoted by PMWords
is satisfied if at least one of these words is found in a document.

4.4.5 Demographic eligibility

For a clinical trial to be relevant for a topic, it needs to investigate the disease of
interest, but also the patient has to be eligible for participation. This requires
an extra matching criterion, Demographic, which is satisfied if both following
conditions are met:

1. patient’s age being between a minimum and maximum defined in a clinical
trial;

2. the clinical trial accepting patients of the specified gender.

4.4.6 Queries for scientific abstracts

We combined the concepts explained above into the query strategies enumerated
below. In each run, for every topic a maximum of 1000 documents are allowed
as a result. Since some of the methods described below return less hits, we
cascaded the queries—i.e. we run several sub-queries in sequence. This means
that if the first query does not reach the maximum number of documents, the
following query is used to add more (distinct) results. This is repeated until 1000
documents are retrieved or all the cascading queries are used. This cascading
operation is denoted by ‘+’. The ‘–’ operator has the opposite meaning: from
the list of results of the first query, we remove those returned by the second
query. This is helpful to exclude certain results, e.g. those clinical trials that a
patient is not eligible for due to the conditions listed as Other.

1. Textual:
T(Disease) OR [ T(Gene) OR T(Variant) ]13

This is a baseline method with textual matching of crucial topic elements,
connected through disjunction. It is the least restrictive query, hence it is
aimed to achieve high recall.

2. StrictTextPM14:
T(Disease) AND [ T(Gene)] AND PMWords

This method uses text matching as well, but it is more strict, as it expects

13[. . . ] denotes an alternative among multiple potential items in the brackets, e.g. in this
case, different genes and variants.

14This method was not submitted on its own, but only as part of the Broad run.

8



both disease and genes to occur and also requires presence of the precision
medicine words.

3. Focused:
S(Disease) AND [ S(Gene) AND T(Variant) ] AND PMWords

This is the strictest variant: it requires a disease, a gene and its variant
to be matched semantically (gene variants are not annotated, so textual
matching is used for them). It also expects the precision medicine words
to be included. This is aimed to achieve the highest precision.

4. Semantic:
(S(Disease) AND [ S(Gene) AND T(Variant) ] AND PMWords) +

( S(Disease) AND [ S(Gene)] AND PMWords ) + ( S(Disease) AND [

S(Gene)] )

The main semantic matching method, which uses genes, variants and a
target disease. It consists of three sub-queries in decreasing order of strict-
ness.

5. Broad:
Semantic + StrictTextPM + Textual

A hybrid query that contains five cascading sub-queries ordered by de-
creasing strictness. This is expected to provide the most likely relevant
results on top of the list, but also include others that might be relevant
further down.

6. Ontological:
(S(Neighbours(Disease)) AND [ S(Gene) AND T(Variant) ] AND

PMWords) + ( S(Neighbours(Disease)) AND [ S(Gene)] AND

PMWords ) + ( S(Neighbours(Disease)) AND [ S(Gene)] )

This query is similar to Semantic, but in addition to a fixed concept for a
disease it also uses all its (manually selected) narrower and broader neigh-
bours. This should give some results that do not necessarily include the
same disease, but remain relevant (see TREC PM relevance guidelines).

The five strategies above, i.e. Textual, Focused, Semantic, Broad, On-
tological are used to obtain relevant document lists for each topic.

4.4.7 Queries for clinical trials

To find relevant clinical trials, just like for the scientific abstract task, we propose
Textual, Semantic, Broad, Focused and Ontological queries, i.e:

1. Textual:
( T(Disease,Title) AND [ T(Gene,Title) ] AND Demographic ) + (

T(Disease,Summary) AND [ T(Gene,Summary) ] AND Demographic ) +

( T(Disease,Description) AND [ T(Gene,Description) ] AND

Demographic ) - [ T(Other,Exclusions) ]

This is a text-based query, requiring that both the disease name and at
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least one of the gene names are present and the demographic criteria are
met. A cascading mechanism is used to prioritise the occurrences in title,
followed by brief description and detailed description. This follows the
assumption that trials mentioning the entities of interest in the title are
more likely to be relevant than those including them only in the detailed
description. The last argument indicates that if any of the patient’s other
conditions is mentioned in the exclusion list, the trial will not be retrieved.

2. Semantic:
( S(Disease,Title) AND [ S(Gene,Title) ] AND Demographic ) + (

S(Disease,Summary) AND [ S(Gene,Summary) ] AND Demographic ) +

( S(Disease,Description) AND [ S(Gene,Description) ] AND

Demographic ) - [ T(Other,Exclusions) ]

The same procedure as above, but using a semantic matching instead of
a textual one (except for Exclusions, which uses the textual one).

3. Broad:
( M(Disease,Title) AND [ M(Gene,Title) ] AND Demographic ) + (

M(Disease,Summary) AND [ M(Gene,Summary) ] AND Demographic ) +

( M(Disease,Description) AND [ M(Gene,Description) ] AND

Demographic ) - [ T(Other,Exclusions) ]

This method uses mixed matching, which is intended to give the broadest
list of results.

4. Focused:
( S(Disease,Title) AND [ S(Gene,Title) ] AND Demographic ) + (

S(Disease,Summary) AND [ S(Gene,Summary) ] AND Demographic ) -

[ T(Other,Exclusions) ]

This is similar to the semantic query, but without taking into account doc-
uments that mention the target disease in the detailed description only.
This seeks to retrieve less documents, but with higher relevance.

5. Ontological:
( S(Neighbours(Disease),Title) AND [ S(Gene,Title) ] AND

Demographic ) + ( S(Neighbours(Disease),Summary) AND [

S(Gene,Summary) ] AND Demographic ) + ( S(Neighbours(Disease),

Description) AND [ S(Gene,Description) ] AND Demographic ) - [

T(Other,Exclusions) ]

A variant of the semantic query that uses manually selected identifiers of
related concepts in the ontology for matching the target disease.

5 Results

This section presents the results of our five query strategies applied on each
of the tasks, i.e. the relevancy of documents in the corresponding runs. A
comparison against the median performance by all the participants in the track
is also included.
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5.1 Scientific abstracts

In the case of the scientific abstracts, for each topic the set of documents that
were labelled by the judges included all documents in top-10 ranks, i.e. depth-10
pools [32], plus a 30% random sample of the union of all documents retrieved at
ranks 11–50. This union was taken over all runs submitted by all the participants
on the same topic, and a document was considered for sampling if the best rank
at which it was ever retrieved was in that range.

Three main evaluation measures were considered here: an estimation of the
normalised discounted cumulative gain ( infNDCG) [36], precision at 10 (P10),
and R-precision (R-prec). A reference for the latter two is provided by Manning
et al. [20].

The performance for the five runs averaged over all topics is found in Table
1. The same results are shown as a bar plot in Figure 1. Since 29 other teams
participated in the track (with a total of 125 runs), for the sake of comparison
we also added to the plot the median results of all the participating teams.

Table 1: Retrieval performance for the scientific abstracts task measured by
infNDCG, P10 and R-prec on our five runs.

Textual Semantic Ontological Focused Broad

infNDCG 0.3294 0.3561 0.1793 0.2536 0.3800
P10 0.4333 0.4600 0.4200 0.3633 0.4667
R-prec 0.2043 0.2078 0.1725 0.1252 0.2287

The results show some interesting aspects. The run using the Semantic
query provided better results according to all evaluation measures compared to
the Textual run. However, the Broad query, which relaxes the requirements
to make it more inclusive by incorporating disjunctions as well as a cascading
strategy, proved to perform the best. On the negative side, the Focused run
missed too many relevant documents due to its restrictiveness. Despite having a
manual component, the Ontological run contained the least relevant documents.
We also note that the ranking of our runs were consistent across all measures.

For the best performing run, i.e. Broad, we also show the performance in
terms of infNDCG across all topics in Figure 2. As a reference, we also include
the best score by any team for each topic as well as the median performance.
The figure shows how the Broad strategy outperformed the median scores con-
sistently, and it is among the top performing approaches for topics #1 and
#3.

5.2 Clinical trials

The ground truth labels for the Clinical Trials task were created taking the
union of the top 15 results for all participants’ runs (i.e. depth-15 pools). The
organisers expected very few relevant trials, so only precision at 5, 10 and 15,
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Figure 1: Retrieval performance for the scientific abstracts task measured by
infNDCG, P10 and R-prec on our five runs. Dashed lines correspond to the
median performance of all participants in the track.

i.e. P5, P10 and P15, are considered here. Also, topic #10 did not have any
relevant documents, and as a result this topic was discarded by the organisers.

The performance for the five runs averaged over all topics is found in Table
2. The same results are shown as a bar plot in Figure 3, where the median
results of all the participating teams is added for reference.

Table 2: Retrieval performance for the clinical trials task measured by P5, P10
and P15 on our five runs.

Textual Semantic Ontological Focused Broad

P5 0.4207 0.3034 0.3655 0.2138 0.4483
P10 0.3276 0.2172 0.2862 0.1448 0.3724
P15 0.2759 0.1678 0.2253 0.1126 0.3080

To a certain degree, results are analogous to the ones obtained in the other
task. The Textual run ranks fairly high compared to the median performance.
However, limiting to semantic matching only seems to deteriorate the retrieval
performance. The Broad run performed the best for all metrics, which shows
that a mixed matching strategy results in a more robust retrieval. While the
Ontological run performed comparably better than for the other task, it is still
quite below the two best methods.

For the best performing run, i.e. Broad, we also show the performance in
terms of P5 across all topics in Figure 4. As a reference, we also include the
best score by any team for each topic as well as the median performance. The
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Figure 2: Retrieval performance for the Scientific Abstracts task in terms of
infNDCG for each topic for the Broad run. Best and median performance for
each topic is also shown for reference.

figure shows how the Broad strategy outperformed the median score for most
of the topics, and it is among the top performing approaches for six different
topics.

6 Discussion

Our main research question was testing whether a general-purpose semantic
search engine for biomedical texts, such as Thalia, can be useful in a precision
medicine context. The answer to this question is positive: the performance of
most of our queries is well above the median computed across all the submitted
solutions, the vast majority of which were designed just for this particular task.

We used the opportunity of submitting five runs per task to try out various
approaches. The resulting differences in performance are substantial and consis-
tent across measures, which allows to draw some conclusions on the underlying
techniques.

The Textual baseline, treating entity names as mere text strings, is out-
performed by only one or two methods and not every modification that was
intended to improve it turned out to be beneficial. A fundamental change is
introduced by the Semantic query. Since it involves matching conditions and
genes mentioned in the patient description as concepts, not strings, this would
enable proper handling of both synonymy (retrieving documents including other
names of the same concept) and polysemy (excluding documents containing oc-
currences of the same name but referring to a different meaning). The effect
on retrieval accuracy, however, appears to vary with respect to the document
type: although we observe gains for scientific abstracts, it is not the case for
clinical trials. We hypothesise that the reason for this mixed result is that the
machine learning models included in NE recognition algorithms were trained on
scholarly text and perform worse on clinical trial descriptions, which impedes
the semantic matching. These problems are even more noticeable in the results
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Figure 3: Retrieval performance for the clinical trials task measured by P5, P10
and P15 on our five runs. Dashed lines correspond to the median performance
of all runs in the track.

of the Focused run, which requires both the genes and conditions to be seman-
tically recognised, which does not happen in many relevant documents. This
issue is mitigated by a hybrid approach, which involves combining the semantic
and text-based techniques through mixed matching or cascading. The solution
implemented as the Broad runs achieve better performance than any other
of our proposed strategies, and in the case of several topics obtained the best
results in the shared task.

The Ontological query, which extends the Semantic one by involving man-
ual selection of related alternatives for conditions, also behaves differently with
respect to the type of document. While this strategy allows to find more clin-
ical trials, its performance in scientific abstracts suffers due to the presence of
many highly-ranked irrelevant documents. Apart from the semantic matching
problems mentioned above, the issue may lie in the discrepancy of relations of
‘more general’ and ‘more specific’ between UMLS Metathesaurus and evalua-
tion judges. For example, it was not strictly defined how much more general a
condition name could be to remain relevant for a particular case.

Clearly, many challenges need to be addressed before biomedical search en-
gines, such as Thalia, could match users’ queries to documents in a fully semantic
way. Nevertheless, the presented results suggest that this is a direction worth
pursuing and also show the benefits of searching beyond string-based keywords.
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Figure 4: Retrieval performance in terms of P5 for each topic for the Broad
run in the clinical trials task. Best and median performance for each topic is
also shown for reference.
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