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Abstract 

The TREC 2017 Precision Medicine Track aims at building systems providing meaningful precision medicine-related information to 

clinicians in the field of oncology. The track includes two tasks: 1) retrieving scientific abstracts addressing treatment effect and 

prognosis of a disease and 2) retrieving clinical trials for which a patient is eligible. The SIB Text Mining group participated in both 

tasks. Regarding the retrieval of scientific abstracts, we designed a set of different queries with decreasing levels of specificity. The 

idea was to start initiating a very specific query, from which less specific queries will be inferred. We may thus consider as relevant 

abstracts that did not mention all critical aspects of the complete query but could still be of interest. Therefore, the main component of 

our approach was a large query generation module (e.g. disease + gene + variant; disease + gene; gene + variant) –  with each generated 

query being differentially weighted. To increase the scope of the queries, we applied query expansion strategies. In particular, a single 

nucleotide variant (SNV) generator was developed to recognize standard nomenclature as described by the Human Genome Variation 

Society (HGVS) as well as non-standard formats frequently found in the literature. We thus expect to retrieve a maximum of relevant 

abstracts. We then applied different strategies to favor relevant abstracts by re-ranking them based on more general criteria. First, we 

assumed that an abstract with a high frequency of drug names is more probably relevant to support our task. Therefore, we pre-annotated 

all the collection with DrugBank, thus enabling to retrieve the number of occurrences of drug names per abstract. Second, we assumed 

that the presence of some specific keywords (e.g. “treat”) in the abstract should increase the relevance of the paper, while the presence 

of some other keywords (e.g. “marker”) should decrease its relevance. Third, we assumed that some publications, such as clinical trials, 

should receive higher relevance for this task. Regarding the retrieval of clinical trials, we investigated for the competition different 

combinations of filtering and information retrieval strategies, mostly based on the exploitation of ontologies. Our preliminary analysis 

of the collection showed that : (1) demographic features (age and gender) are stored in a perfectly-structured form in clinical trials, thus 

this feature can be easily handled with strict filtering ; (2) the trials contain very few mentions of the requested genes and variants ; (3) 

diseases are stored in very inconsistent forms, as they are free text entities and can be mentioned in different fields such as condition, 

keywords, summary, criteria, etc. Thus, we assumed that identifying clinical trials dealing with the correct disease was the most 

challenging issue for this competition. For such a task, we perform Name Entity Recognition with the NCI thesaurus in order to 

recognize mentions of diseases in topics and in different fields of the clinical trials. This strategy handles several issues of free text 

descriptions, such as synonyms (“Cancer” and “Neoplasm” are equivalent) and hierarchies (“Colon carcinoma” is a subtype of 

“Colorectal carcinoma”). Then, for each topic, we apply different strategies of trials filtering – according to fields where the disease 

was identified – and hierarchies. Finally, classical information retrieval is performed with genes and variants as queries. The strictest 

filtering leads to an average of 62 retrieved trials per topic and tends to favor high precision, while the most relaxed filtering leads to 

an average of 379 retrieved trials per topic and tends to favor high recall. Yet, results show that the Precision values are poorly impacted 

by these strategies, while runs that favor Recall showed a better general behavior for this task. 

Introduction 

The SIB Text Mining group [1], at the Swiss Institute of 

Bioinformatics in Geneva, has a long history of 

participation in TREC campaigns, including TREC 

Genomics [2], TREC Medical Records [3], TREC 

Chemical IR [4] and TREC Clinical Decision Support [5, 

6] tracks. In parallel, the group is currently involved in 

several translational medicine research projects, 

including the MD-Paedigree project (EU FP7 

Programme), where its task was to help clinicians to 

retrieve similar cases in a federated digital repository 

gathering data from several European clinical centres, for 



better personalized predictive medicine. Additionally, the 

group started to work on variants with the aim to provide 

text-mining tools to facilitate variant interpretation 

through literature mining (e.g. variants prioritization).  

The TREC 2017 Precision Medicine Track focus on the 

identification of both scientific articles and clinical trials, 

regarded as useful for clinicians when treating patients in 

oncology. Generally, the topic consisted in: a disease, one 

or several mutated genes, some demographic information 

and some additional useful information, such as 

comorbidities. Two tasks were proposed. In the first task 

(i.e. the scientific abstracts retrieval task), participant’s 

system had to return a ranked list of scientific abstracts 

considered as clinically useful from a precision-medicine 

point of view. In the second task (i.e. the clinical trials 

retrieval task), participant’s system had to return a ranked 

list of clinical trials in which the patient may be (or would 

have been) eligible. The track provided no training data, 

and each group was allowed to submit up to five runs per 

task. The runs of both tasks were then evaluated by a pool 

of clinicians that judged the relevance of the submitted 

documents. Unfortunately, the guidelines used by these 

clinicians for judging relevance were not known at the 

submission time. 

For producing the runs for the scientific abstracts task, we 

developed a core system, based on a set of queries, each 

differentially weighted using a curated data sample. 

Assuming this strategy would enable us to retrieve a large 

subset of relevant abstracts, we then applied different 

strategies to work on the ranking of the retrieved 

abstracts, such as using the number of occurrences of drug 

names or the publication types.   

For producing the runs for the clinical trials task, we 

investigated and mixed different strategies based on 

Named Entity Recognition (NER), Information Retrieval 

(IR), and filtering, depending on the topic feature. On one 

hand the demographic feature is strongly structured in 

clinical trials, and was effectively managed by filtering, 

such as a selective query in a database. On the other hand, 

diseases are stored in very inconsistent forms in clinical 

trials, as they are free text entities and can be mentioned 

in different fields such as condition, keywords, summary, 

criteria, etc. We assume that identifying the possible 

conditions, and then applying more or less relaxed 

filtering, was the most challenging issue in this 

competition. 

1. Data 

The Precision Medicine track provides two collections, 

one for each task: scientific abstracts and clinical trials. 

Both tasks shares a common topics set.  

1.1 Scientific abstracts 

The scientific abstracts collection is composed of a 

snapshot of PubMed abstracts (January 2017) together 

with additional abstracts from AACR (American 

Association for Cancer Research) and ASCO (American 

Society of Clinical Ontology) proceedings. The XML 

version of the PubMed collection is used. It contains 

26,670,000 abstracts, corresponding to 26,669,401 

unique PMIDs. The latest version of a duplicated PMID 

is used. Title, abstract, publication date, publication types 

and MeSH terms are extracted for each abstract. AACR 

and ASCO abstracts are provided as TXT file. They 

contain respectively 33,018 and 37,007 abstracts. Only 

title, abstract and publication date are available for this 

subset.  

1.2 Clinical trials 

The scientific abstracts collection is composed of a 

snapshot of ClinicalTrials.gov (April 2017). It consisted 

of approximately 240,000 clinical trials in XML format. 

Clinical trials are semi-structured documents. They have 

dedicated sections for storing information, such as the 

study phase, the sponsors, the design of the study, or the 

eligibility criteria. Some sections contain formatted 

information (i.e. predefined values, such as demographic 

conditions) while others contain free text. Thus, different 

sections were exploited during the study. 

1.3 Topics 

The topics set consists of 30 semi-structured synthetic 

cases created by precision oncologists at the University of 

Texas MD Anderson Cancer Center. For each topic, the 

following information is mentioned: disease, one or 

several mutated gene(s) per case (including details about 

the variation in 26/37 cases), demographic data (i.e. age 

and sex) and additional information (e.g. comorbidities).  

1.4 Ontologies and resources 

Several publicly available ontologies and resources have 

been used for developing our systems.  

UniProtKB [7] is developed in collaboration between the 

European Bioinformatics Institute (EMBL-EBI), the 

Swiss Institute of Bioinformatics (SIB) and the Protein 

Information Resource (PIR). It is one of the main 

resources regarding protein and gene information. With 

555,594 manually annotated records, UniProtKB 

provides high-quality synonyms for both protein and gene 

names. 

NeXtProt is a protein-centric knowledgebase developed 

at the SIB Swiss Institute of Bioinformatics focused 



solely on human proteins [8]. It includes an extended 

representation of human variants. 

The dbSNP database is a National Center for 

Biotechnology Information (NCBI) resource that serves 

as a central, public repository for genetic variation [9]. 

dbSNP RefSNP cluster ID (rsid) are used to identify non-

redundant sets of SNPs that map to an identical location. 

The NCI Thesaurus (NCIt), provided by the National 

Cancer Institute, [10] is a reference terminology for 

biomedical coding, broadly used by both public and 

private care actors. This terminology covers clinical care, 

translational and basic research and public information 

and administrative activities. We used this resource for 

disease mapping, as it contains information for nearly 

10,000 cancer and related diseases. 

The Medical Subject Headings (MeSH) [11], provided by 

the US National Library of Medicine, is a controlled 

vocabulary used for indexing articles in MEDLINE. The 

MeSH is known for being less granular than specialized 

ontologies such as the NCIt, but also for being easily 

identified by Natural Language Processing, thanks to 

synonyms.  

DrugBank [12] is a database containing biochemical and 

pharmacological information about drugs and drug 

targets. As of its latest release, DrugBank includes 10,500 

records. A high number of synonyms are provided, as 

well as products names.  

2. Strategies 

In this section, we describe the strategies applied for each 

task.  

2.1 Scientific abstracts retrieval 

Our group has submitted five runs. As no official training 

data were provided for this task, we first built a basic 

training data set. We manually created 20 topics based on 

publicly resources such as ClinVar [13] and CIViC [14]. 

In average, there are 6.95 citations per case (minimum: 2; 

maximum: 31). However, this tuning set is limited by the 

facts that 1) ASCO and AACR articles are never cited; 2) 

few references are provided for each case and 3) no 

indication if the information of interest is located in the 

abstracts or in the full-text articles.   

We then annotated diseases, genes and drugs within the 

whole collection, based on existing terminologies (i.e. 

NCIt for diseases, UniProtKB for genes and DrugBank 

for drugs). These annotations were then indexed together 

with the title, abstract, publication date, publication types 

and MeSH terms for each document. Solr Apache 6.6 is 

used for indexing and retrieval.  

2.1.1 Baseline 

The core of our system relies on a set of different queries 

with decreasing levels of specificity. Indeed, our 

assumption is based on the fact that an abstract of interest 

may sometimes not mention the specified variant, but for 

instance another variant affecting the gene in a similar 

manner. Similarly, an abstract about the variant of interest 

for another cancer type may still be valuable from a 

clinical point of view. Therefore, our approach is based 

on the generation of a set of three queries: 

- Query 1: disease + gene + variant 

- Query 2: disease + gene 

- Query 3: gene + variant 

Results are then merged together through linear 

combination. Each set of results is differentially 

weighted.  

Moreover, we apply query expansion strategies. 

Synonyms of genes are generated using UniProtKB 

terminology, while synonyms of diseases are retrieved 

using NCIt. Regarding variants, a synonym list has been 

manually created for copy number variants (e.g. 

amplification), while a SNVs synonym generator has 

been developed for single nucleotide variants. Given 

variant information, that is gene name and amino acid 

change, the SNVs generator produced the standard 

nomenclature format at the protein level as described by 

the Human Genome Variation Society (HGVS) [15]. 

When a corresponding rsid was found through NeXtProt, 

the HGVS standard description was also generated for the 

different protein isoforms as well as for the transcript and 

genomic DNA description levels. Additionally, non-

standard formats frequently found in the literature were 

generated for these different levels of description [16]. It 

included at the protein level the use of single and three 

letters amino acid codes (e.g. Val600Glu) as well as 

hyphens and greater-than characters (e.g. 600Val>Glu). 

At the DNA level, the use of hyphens along with greater-

than characters was proposed (e.g. 1799T->A). When 

found, the rsid was also used as a synonym. 

This strategy aims at retrieving a maximum of relevant 

abstracts. We then apply additional strategies in order to 

re-rank the abstracts. 

2.1.2 Drug density 

Our first run (SIBTMlit1) assumes that an abstract with a 

high frequency of drug names is probably more relevant 

to support our task, which consists to retrieve existing 

knowledge in the scientific literature regarding treatment 

of cancer. We thus use the pre-annotation of the abstracts 

with DrugBank to estimate the drug density of an article 



(i.e. the number of occurrences of drug names in the 

abstract and title). Two settings have been tested for the 

annotations of DrugBank: the first is based on all drugs 

and products names and synonyms available in 

DrugBank, while the second is limited to drugs for cancer 

treatment. For this, a list of 384 DrugBank records has 

been defined based on different resources: cancer-related 

categories provided by DrugBank (e.g. Antineoplastic 

agents), the Cancer Drugs List provided by the National 

Cancer Institute [17], the List of Cancer Chemotherapy 

Drugs provided by the Navigating Care [18] and the Oral 

Chemotherapy Drugs List provided by CareFirst [19]. 

Results from the baseline run are then re-ranked based on 

the number of occurrences of drug names per abstract.  

2.1.3 Keywords density 

When manually assessing the results of the first run, we 

observed that our search engine was retrieving abstracts 

targeting the correct diseases, genes and variants. 

However, a consequent subset of these abstracts was not 

related to precision medicine studies, but other aspects, 

such as immunohistochemistry. Our second run 

(SIBTMlit2) assumes that the presence of some specific 

keywords, the so-called positive keywords (e.g. “treat”), 

in the abstract should increase the relevance of the article, 

while the presence of other keywords, the so-called 

negative keywords (e.g. “marker”), should decrease its 

relevance. Therefore, a list of positive and negative 

stemmed keywords was defined, based on the manual 

screening of a subset of retrieved articles, as well as the 

testing of list variations on the basic tuning set.  

2.1.4 Hierarchical query expansion 

Our third run (SIBTMlit3) assumes that an article 

targeting a more general (supertype) or more specific 

(subtype) cancer type may still be valuable from a clinical 

point of view. For expanding a disease to its children and 

parents, we used a simplified hierarchy provided by NCIt 

[20]. It only includes concepts in the Neoplasm by Site 

and Neoplasm by Morphology categories (Figure 1). Pre-

annotations of the corpus with the diseases are used to 

retrieve abstracts concerning a parent/child disease. 

Results are combined with the SIBTMlit2 run.  

 

 

 

 

 

 

Liposarcoma:   

 

Parent diseases:  

- Sarcoma 

- Connective and Soft Tissue Neoplasm 

- Mesenchymal Cell Neoplasm 

 

Child diseases: 

- Dedifferentiated Liposarcoma 

- Mixed Liposarcoma 

- Myxoid Liposarcoma 

- Pleomorphic Liposarcoma 

- Well Differentiated Liposarcoma 

Figure 1 Example of disease-based query expansion 

2.1.5 Publication types 

Our fourth run (SIBTMlit4) is based on the prioritization 

of the literature. Indeed, we assume that some 

publications, such as clinical trials, should receive higher 

relevance for this task. Similarly, AACR and ASCO may 

be considered as an important source of knowledge, as a 

high proportion of AACR and ASCO articles are focusing 

on cancer therapy and precision medicine studies. 

Moreover, these journals are presenting recent 

knowledge, sometimes not yet available in Medline 

abstracts. We defined four categories of publications 

(Table 1).  

 Publication type MeSH term 

4 

Controlled clinical trial 

Randomized controlled trial 

Pragmatic clinical trial 

Clinical trial 

Clinical trial, phase i 

Clinical trial, phase ii 

Clinical trial, phase iii 

Clinical trial, phase iv  

Clinical Trial 

Clinical Trial, Phase I 

Clinical Trial, Phase II 

Clinical Trial, Phase III 

Clinical Trial, Phase IV 

Controlled Clinical Trial 

Randomized Controlled 

Trial 

3 
ASCO proceedings 

AACR proceedings 

Cohort Studies 

Follow-Up Studies 

Longitudinal Studies 

National Longitudinal 

Study of Adolescent Health 

Prospective Studies 

Retrospective Studies 

2 

Case reports 

Guideline 

Practice guideline 

Case Reports 

1 

Clinical study 

Comparative study 

Evaluation studies 

Meta-analysis 

Clinical conference 

Clinical Study 

Observational Study 

Clinical Conference 

Comparative Study 

Table 1 Publication types and MeSH terms used to classify 

articles in categories.  



Publication types and MeSH terms are used to attribute an 

article to one category. If several categories are retrieved 

for a same article, the higher category is selected. If the 

publication belongs to one of these categories, its score is 

boosted. We tested different weights for each category. 

2.1.6 Fusion with clinical trials task 

Our last run (SIBTMlit5) is built on top of a run of the 

clinical trials task (SIBTct5). Our assumption is that 

clinical trials are an important source of information for 

cancer treatment. We thus decided to use the literature 

references available in clinical trials to re-rank our results. 

As no a priori tuning was possible for this task, we used 

the clinical trials run producing the larger number of 

results, thus expecting a more important impact on the 

results. For each clinical trial of the SIBTct5 run, the cited 

PubMed articles were collected and given the same score 

as the citing clinical trial. For instance, the third clinical 

trial (i.e. NCT02571829), scored 0.782 in the SIBTct5 

run, cites five PubMed articles (i.e. 16603719, 11960696, 

20601955, 23569312, 11872347), which all receives a 

score of 0.782. We thus obtain a list of ranked PMIDs that 

were then linearly combined with the SIBTMlit4 run to 

produce the SIBTMlit5 run.  

2.2 Clinical trials retrieval 

In this section, we describe the strategy and workflow we 

used for retrieving clinical trials. It consisted in four 

successive steps for handling  four topic features. 

2.2.1 Demographic features 

First, we dealt with demographic features, which were 

easy to handle. Indeed, topic demographic features are 

patient’s age and gender. In the clinical trial structure, 

there is an eligibility section, and three subsections that 

are gender, minimum_age, and maximum_age. 

Comprehensive screening of the collection showed that 

the gender are limited to three values (All, Male, or 

Female), and that ages are in a regular format (such as “18 

Years”, or “6 Months”). We thus designed a set of very 

simple rules in order to extract the age range and gender. 

Then, the first treatment was filtering: for each query, 

clinical trials that did not comply with the patient were 

discarded.  

2.2.2 Disease mapping and filtering  

The second step dealt with the disease feature. In both the 

topics and the clinical trials, diseases are mentioned in 

free text. Thus, we searched for an ontology in order to 

recognize and normalize diseases, and handle with 

synonyms (such as “colon cancer” and “colon neoplasm”) 

or acronyms (such as “Gastrointestinal Stromal Tumor” 

and “GIST”). We investigated MeSH, but several 

diseases in topics did not find a match (such as 

“Pancreatic ductal adenocarcinoma” which is too specific 

for the MeSH). Then, we investigated the NCI thesaurus 

(limited to the oncology part). As all query diseases were 

exactly mapped, we chose to work with the NCI 

thesaurus. 

We thus mapped NCI concepts in the clinical trials 

collection, thanks to simple regular expressions. This 

means that a term could be mapped in a longest word. For 

example, “sarcoma” was mapped in “liposarcoma”. We 

first mapped diseases in the condition field, as it is where 

the disease is supposed to be specified. For example, for 

topic 1, “liposarcoma” was found in some trials in this 

condition field. We assume it is the most reliable. But 

manual screening also revealed that diseases also can 

appear in the keyword fields. For example, one trial has 

“colorectal cancer” for condition, but “colon cancer” in 

keywords (colon cancer is a subtype of colorectal cancer 

in the NCI thesaurus). We also mapped diseases in the 

condition_browse and mesh_term fields, which provides 

corresponding MeSH terms. Comments in trials advise 

that this MeSH mapping is done by an imperfect 

algorithm. We assume that keywords and MeSH terms 

fields provide reliable information, yet less than the 

condition field. Finally, we searched for diseases in the 

whole trial. Indeed, investigated diseases can be 

incorrectly mentioned in dedicated fields, but appear in 

the description of the study, or of the groups, or in the 

inclusion criteria. Yet, in these sections, some diseases 

also can be mentioned for a state of the art. For example, 

for a trial on melanoma and the KIT protein, GIST is 

mentioned to be possibly involved by KIT, but is not 

investigated by this trial. We assume that these mappings 

are the less reliable, but can identify relevant diseases in 

trials that were not retrieved by the first mappings. Yet, 

we discarded the exclusion criteria from these mappings. 

We thus had NCI concepts mapped in the topics, and in 

all clinical trials (in different sections). Diseases were 

handled with filtering: clinical trials that did not 

correspond to the query condition were discarded. We 

decided to have more or less relaxed criteria. First, for a 

high precision run (SIBct1), for each topic, we only kept 

trials that shared the same NCI concept in the condition 

section. Then, we exploited the NCI hierarchy in order to 

include trials that shared a subtype of the topic disease in 

the condition field (SIBct2). Indeed, as mentioned before, 

a colon cancer is a subtype of a colorectal cancer. Yet, we 

assume that a trial dealing with a colorectal cancer is 

relevant for a patient with colon cancer. Then, we 

extended the investigated trials sections to keywords and 

MeSH conditions (SIBct3). Then, we also included trials 

that shared a supertype of the topic disease (SIBct4). 



Finally, for what was supposed to be the most recall 

oriented run, we extended the investigated trials sections 

to the whole document (SIBct5). 

2.2.3 Gene and variants 

In pre-analysis, we first mapped gene and variant names 

in the clinical trials thanks to regular expressions. The 

output showed that the collection contained few mentions 

of the topic genes (on average only 271 documents per 

gene or variant names). Moreover, we performed manual 

searches in the clinicaltrial.gov engine with gene name 

synonyms, or variant synonyms generated by the system 

reported previously. But none of these synonyms were 

found in the collection. We assumed that this feature 

could be efficiently handled with Information Retrieval. 

Moreover, the vectorial model would favor rare words 

(such as gene names) that are repeated in the trial. Then, 

for each topic – because of the prior demographic and 

disease filtering – we indexed only the possibly relevant 

trials with Terrier, BM25 weighting scheme. Once again, 

the exclusion criteria were discarded, as we found 

examples of trials that excluded specific genes in this 

section.  

2.2.4 Comorbidities 

Finally, we used the MeSH in order to map comorbidities 

in the “other” topic feature, then in the exclusion criteria 

section of the retrieved trials. For all runs, trials that 

contained a comorbidity were downweighted (50% 

penalty) but still submitted. 

Table 1 presents the five different runs that were 

computed for the competition. 

 

Run 
Use of NCI hierarchy for 

disease mapping 
Fields for disease mapping 

#CT per 

topic after 

filtering 

#CT per 

topic after 

IR 

SIBct1 No <condition> 1362 62 

SIBct2 Children included <condition> 1801 68 

SIBct3 Children included <condition> + <conditionMeSH> + <keywords> 2040 74 

SIBct4 Children and parents included <condition> + <conditionMeSH> + <keywords> 10772 251 

SIBct5 Children and parents included all fields 26170 379 

Table 1: description of the different strategies for disease filtering, and corresponding averages of clinical trials after 

filtering, then after Information Retrieval with gene and variants names. Runs are ranked from strictest criteria (1), 

which tend to favor high precision, to most relaxed criteria (5), which tend to favor recall.

3. Results & Discussion 

In this section, we present the results for the scientific 

abstracts retrieval task and the clinical trials retrieval task. 

3.1 Scientific abstracts retrieval 

In the following, we first present the settings of the 

system. We then report on the results obtained in the final 

evaluation.  

3.1.1 Tuning settings 

The selection of the best settings for our system relies on 

the basic tuning set described in section 2.1.  

The linear combination of the three different queries uses 

the following weights: results from Query 1 receives a 

weight of 65%, results from Query 2 gets a weight of 15% 

while results from Query 3 are attributed a weight of 20%.  

Regarding the drug density run, we observed that the use 

of the whole DrugBank performed better than the cancer-

limited list. We obtained the best results when a weight of 

38% was given to the drug density parameter. 

Regarding the keyword density run, the best results were 

obtained when using the keyword list presented in Figure 

2, as well as a weight of 13% for the keyword density 

information.   

Positive keywords:   

treat; drug; therap; prognos; surviv 

Negative keywords:  

immuno; marker; detect; sequencing 

Figure 2 Lists of positive and negative keywords 

 

Regarding the expansion to more general and specific 

diseases, we obtained the best results when a weight of 

3% was given to the expanded queries. 



Regarding the publication types based run, the best results 

were obtained when only the categories 4 and 3 were 

used, with a boost of respectively 60% and 20% was used. 

However, due to the benchmark limited to PubMed 

articles, the impact of the category 3, which is boosting, 

among others, the ASCO and AACR articles cannot be 

really estimated.  

Regarding the final run, merging results with the clinical 

trials task, we applied here a priori and intuitive settings. 

A weight of 30% was given to the PMIDs obtained 

through the clinical trials task.     

3.1.2 Final results 

Results for the 30 topics are presented in Table 2. Metrics 

used for this task are infNDCG, P10 and R-Prec. The 

infNDCG (inferred non discounted cumulative gain) 

reflects the gain brought by a document based on its 

position in the ranked results. P10 (precision at rank 10) 

represents the proportion of relevant documents retrieved 

in the top ten results. It thus reflects the ability of the 

system to retrieve relevant results at high ranks. Finally, 

R-Prec (R-Precision) return the number of relevant 

documents returned in the top R document, where R 

corresponds to the number of relevant documents for the 

query.  

 infNDCG P10 R-Prec 

SIBTMlit1 0.400 0.520 0.257 

SIBTMlit2 0.410 0.527 0.262 

SIBTMlit3 0.413 0.523 0.266 

SIBTMlit4 0.418 0.550 0.269 

SIBTMlit5 0.362 0.483 0.235 

Table 2: Final results for the 30 topics for the scientific 

abstracts task 

Our first strategy resulted in an infNDCG of 0.400, a P10 

of 0.520 and a R-Prec of 0.257. When using in addition 

the keywords density, our results are slightly improved 

regarding all measures, respectively of +2.3% for the 

infNDCG (0.410), +1.3% for the P10 (0.527) and +2.1% 

for the R-Prec (0.262). The third strategy, expanding 

diseases to parents/children diseases, has a positive 

impact regarding the infNDCG (+0.8%) and R-Prec 

(+1.6%), while the P10 slightly decreased (-0.6%). The 

combination with the fourth strategy (i.e. favoring articles 

based on the publication types) enabled to achieve our 

best results: the infNDCG reached 0.418 (+1.1%), the P10 

increased to 0.550 (+5.1%), while the R-Prec was also 

improved to 0.269 (+0.9%). Finally, our last strategy, 

aiming at combining results produced for the clinical trial 

tasks with results produced for the scientific abstract task, 

results were not conclusive: all three measures were 

strongly decreased.  

3.2 Clinical trials retrieval 

Results for the 30 topics are presented in Table 3. During 

the TREC workshop, only P5, P10 and P15 metrics were 

displayed. If Precision at high ranks is a useful indicator, 

we choose to display in this Table other metrics that 

shows complementary aspect of the system’s 

performances. For instance, if we assume that a user is 

ready to screen 200 results in order to find relevant 

documents, then R200 (Recall at rank 200) is interesting. 

R-Precision is used as a balanced metric between 

Precision and Recall. 

 P10 R-Prec R200 

SIBct1 0.289 0.138 0.181 

SIBct2 0.318 0.172 0.228 

SIBct3 0.364 0.198 0.256 

SIBct4 0.336 0.244 0.419 

SIBct5 0.334 0.259 0.504 

Table 3 Final results for the 30 topics for the clinical trials 

task 

It is worth reminding that the submitted runs were 

supposed to be from the most strict filtering (and thus 

most precise) run SIBct1, to the most relaxed filtering 

(and thus with most recall) run SIBct5. Yet, Precision 

performances are not consistent with this. The most 

surprising is that the strictest filtering (only keeping trials 

where the exact disease was mapped only in the condition 

field) leads to the worst observed precision. Yet, Recall 

performances are consistent. 50% of the relevant trials 

can be found in the top 200 trials returned by the most 

relaxed strategy. Focusing in R-Prec, it seems that 

strategies that favor Recall show a better general behavior 

for this task. 

Conclusion 

While information regarding disease, gene and variant is 

usually retrieved in full text articles, scientific abstracts 

reporting on treatment, prognosis and prevention of 

cancer do not always mention all this information. 

Therefore, the system we developed here for the scientific 

abstracts task is based on a constraint relaxing strategy, 

aiming to retrieve a maximum number of potentially 

relevant abstracts. Further strategies focus on the proper 

ranking of the retrieved abstracts. Results showed that 

four out of the five strategies tested to re-rank the results 

were valuable regarding the evaluation metrics selected 

for the task. However, due to the lack of training data, the 

impact obtained for each strategy is probably lower than 

what could have been expected with a better tuning of the 

parameters. Indeed, the weight a-priori attributed to each 

re-ranking strategy was relatively low. Among our 

strategies, the most innovative one, which consisted in 



favoring scientific abstracts cited in clinical trials, showed 

un-conclusive results. Further investigations regarding 

this strategy are planned. Indeed, the clinical trial run 

selected for the merging showed relatively low 

performance after the evaluation results were released. 

We can thus expect that this strategy could still be 

valuable if based on a better run.  

For the Clinical Trials task, strategies that favor Recall 

show a better general behavior, but it is disconcerting that 

strict filtering for disease mapping has poor - or even 

counterproductive - impact on Precision values. It is a pity 

that the relevance guidelines were not published before 

the run submission deadline. For instance, despite 

informal discussions in the task’s forum, it was unclear if 

diseases’ supertypes should be considered as relevant or 

not, while finally they were. Beyond this, teams that 

performed well exploited other sections in clinical trials, 

such as the phase or the study type. Now that gold 

standard is available, it will be possible to better catch 

what makes a clinical trial relevant or not. 
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