Evaluation of VI Index Forecasting Model by Machine Learning for Yahoo! Stock BBS Using Volatility Trading Simulation
Files
Date
2020-01-07
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
The risk avoidance is very crucial in investment and asset management. One commonly used index as a risk index is the VI index. Suwa et al. (2017) analyzed stock bulletin board messages and predicted it rise. In our study, we developed a simulation of trading Nikkei stock index options using intra-day data and verified the validity of the VI index prediction model proposed by Suwa et al. In a period from November 18, 2014, to June 29, 2016, we conducted a simulation using a long straddle strategy. The profit and loss from trading with the instructions of their model was +3,021 yen. The benchmark's profit and loss was -3,590 yen. The improvement with their model was +6,611 yen. Therefore, we confirmed that Suwa et al.'s VI index prediction model might be effective.
Description
Keywords
Data Analytics, Data Mining and Machine Learning for Social Media, intra-day data, machine learning, stock bulletin board, trading simulation
Citation
Extent
9 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 53rd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email [email protected] if you need this content in ADA-compliant format.