Computer Science > Computational Engineering, Finance, and Science
[Submitted on 8 Aug 2024]
Title:Reinforcement Learning from Human Feedback for Lane Changing of Autonomous Vehicles in Mixed Traffic
View PDF HTML (experimental)Abstract:The burgeoning field of autonomous driving necessitates the seamless integration of autonomous vehicles (AVs) with human-driven vehicles, calling for more predictable AV behavior and enhanced interaction with human drivers. Human-like driving, particularly during lane-changing maneuvers on highways, is a critical area of research due to its significant impact on safety and traffic flow. Traditional rule-based decision-making approaches often fail to encapsulate the nuanced boundaries of human behavior in diverse driving scenarios, while crafting reward functions for learning-based methods introduces its own set of complexities. This study investigates the application of Reinforcement Learning from Human Feedback (RLHF) to emulate human-like lane-changing decisions in AVs. An initial RL policy is pre-trained to ensure safe lane changes. Subsequently, this policy is employed to gather data, which is then annotated by humans to train a reward model that discerns lane changes aligning with human preferences. This human-informed reward model supersedes the original, guiding the refinement of the policy to reflect human-like preferences. The effectiveness of RLHF in producing human-like lane changes is demonstrated through the development and evaluation of conservative and aggressive lane-changing models within obstacle-rich environments and mixed autonomy traffic scenarios. The experimental outcomes underscore the potential of RLHF to diversify lane-changing behaviors in AVs, suggesting its viability for enhancing the integration of AVs into the fabric of human-driven traffic.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.