Computer Science > Networking and Internet Architecture
[Submitted on 24 Jul 2024]
Title:Applications of Multi-Agent Deep Reinforcement Learning Communication in Network Management: A Survey
View PDF HTML (experimental)Abstract:With the advancement of artificial intelligence technology, the automation of network management, also known as Autonomous Driving Networks (ADN), is gaining widespread attention. The network management has shifted from traditional homogeneity and centralization to heterogeneity and decentralization. Multi-agent deep reinforcement learning (MADRL) allows agents to make decisions based on local observations independently. This approach is in line with the needs of automation and has garnered significant attention from academia and industry. In a distributed environment, information interaction between agents can effectively address the non-stationarity problem of multiple agents and promote cooperation. Therefore, in this survey, we first examined the application of MADRL in network management, including specific application fields such as traffic engineering, wireless network access, power control, and network security. Then, we conducted a detailed analysis of communication behavior between agents, including communication schemes, communication content construction, communication object selection, message processing, and communication constraints. Finally, we discussed the open issues and future research directions of agent communication in MADRL for future network management and ADN applications.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.