Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Jul 2024 (v1), last revised 4 Dec 2024 (this version, v2)]
Title:PICASSO: A Feed-Forward Framework for Parametric Inference of CAD Sketches via Rendering Self-Supervision
View PDF HTML (experimental)Abstract:This work introduces PICASSO, a framework for the parameterization of 2D CAD sketches from hand-drawn and precise sketch images. PICASSO converts a given CAD sketch image into parametric primitives that can be seamlessly integrated into CAD software. Our framework leverages rendering self-supervision to enable the pre-training of a CAD sketch parameterization network using sketch renderings only, thereby eliminating the need for corresponding CAD parameterization. Thus, we significantly reduce reliance on parameter-level annotations, which are often unavailable, particularly for hand-drawn sketches. The two primary components of PICASSO are (1) a Sketch Parameterization Network (SPN) that predicts a series of parametric primitives from CAD sketch images, and (2) a Sketch Rendering Network (SRN) that renders parametric CAD sketches in a differentiable manner and facilitates the computation of a rendering (image-level) loss for self-supervision. We demonstrate that the proposed PICASSO can achieve reasonable performance even when finetuned with only a small number of parametric CAD sketches. Extensive evaluation on the widely used SketchGraphs and CAD as Language datasets validates the effectiveness of the proposed approach on zero- and few-shot learning scenarios.
Submission history
From: Ahmet Serdar Karadeniz [view email][v1] Thu, 18 Jul 2024 11:02:52 UTC (2,086 KB)
[v2] Wed, 4 Dec 2024 22:07:40 UTC (4,113 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.