Computer Science > Software Engineering
[Submitted on 26 Apr 2024]
Title:Automated Configuration Synthesis for Machine Learning Models: A git-Based Requirement and Architecture Management System
View PDF HTML (experimental)Abstract:This work introduces a tool for generating runtime configurations automatically from textual requirements stored as artifacts in git repositories (a.k.a. T-Reqs) alongside the software code. The tool leverages T-Reqs-modelled architectural description to identify relevant configuration properties for the deployment of artificial intelligence (AI)-enabled software systems. This enables traceable configuration generation, taking into account both functional and non-functional requirements. The resulting configuration specification also includes the dynamic properties that need to be adjusted and the rationale behind their adjustment. We show that this intermediary format can be directly used by the system or adapted for specific targets, for example in order to achieve runtime optimisations in term of ML model size before deployment.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.