Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Apr 2024]
Title:LMFNet: An Efficient Multimodal Fusion Approach for Semantic Segmentation in High-Resolution Remote Sensing
View PDF HTML (experimental)Abstract:Despite the rapid evolution of semantic segmentation for land cover classification in high-resolution remote sensing imagery, integrating multiple data modalities such as Digital Surface Model (DSM), RGB, and Near-infrared (NIR) remains a challenge. Current methods often process only two types of data, missing out on the rich information that additional modalities can provide. Addressing this gap, we propose a novel \textbf{L}ightweight \textbf{M}ultimodal data \textbf{F}usion \textbf{Net}work (LMFNet) to accomplish the tasks of fusion and semantic segmentation of multimodal remote sensing images. LMFNet uniquely accommodates various data types simultaneously, including RGB, NirRG, and DSM, through a weight-sharing, multi-branch vision transformer that minimizes parameter count while ensuring robust feature extraction. Our proposed multimodal fusion module integrates a \textit{Multimodal Feature Fusion Reconstruction Layer} and \textit{Multimodal Feature Self-Attention Fusion Layer}, which can reconstruct and fuse multimodal features. Extensive testing on public datasets such as US3D, ISPRS Potsdam, and ISPRS Vaihingen demonstrates the effectiveness of LMFNet. Specifically, it achieves a mean Intersection over Union ($mIoU$) of 85.09\% on the US3D dataset, marking a significant improvement over existing methods. Compared to unimodal approaches, LMFNet shows a 10\% enhancement in $mIoU$ with only a 0.5M increase in parameter count. Furthermore, against bimodal methods, our approach with trilateral inputs enhances $mIoU$ by 0.46 percentage points.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.